1. (a) X is binomial, since there are only two possibilities at each birth (i.e. boy or girl), with a fixed number of independent trials $(n=15)$ and a fixed success probability ($p=0.5$) in each trial.
(b) X is not binomial, since the number of trials, n is not fixed
(c) X is binomial, since each has blood type O or not O , with a fixed number of independent $\operatorname{trials}(n=6)$ and a fixed success probability $(p=0.25)$ in each trial.
2. In (a), $X \sim B(15,1 / 2)$ and the distribution is symmetric since $p=\frac{1}{2}$.

In (c), $X \sim B(6,0.25)$ and the distribution is not symmetric since $p \neq \frac{1}{2}$.

$$
\begin{aligned}
& \text { (a) } P(X=2)=\binom{15}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{13}=\binom{15}{2}\left(\frac{1}{2}\right)^{15}=0.0032 \\
& P(X \leq 2)=P(X=0)+P(X=1)+P(X=2) \\
& =\binom{15}{0}\left(\frac{1}{2}\right)^{15}+\binom{15}{1}\left(\frac{1}{2}\right)^{15}+\binom{15}{2}\left(\frac{1}{2}\right)^{15}=0.0037 . \\
& \text { (c) } P(X=2)=\binom{6}{2}(0.25)^{2}(0.75)^{4}=0.2966 \text {; } \\
& P(X \leq 2)=\binom{6}{0}(0.75)^{6}+\binom{6}{1}(0.25)(0.75)^{5}+\binom{6}{2}(0.25)^{2}(0.75)^{4}=0.8306 .
\end{aligned}
$$

3. $n=10$ and $p=0.4$.

$$
\begin{aligned}
& P(X \leq 4)=0.6331 \\
& P(X=4)=0.6331-0.3823=0.2508 \\
& P(X>3)=1-P(X \leq 3)=1-0.3823=0.6177
\end{aligned}
$$

4. Let X be the number of mice becoming aggressive within one minute.

$$
X \sim B(10,0.4) \quad \text { (if each trial is independent) }
$$

Show how this is related to Q3.
(a) $P(X=4)=0.2508$;
(b) $P(X \leq 4)=0.6331$;
(c) $P(X \geq 4)=P(X>3)=0.6177$
5. In this experiment the number of trials is fixed, each independent trial consists of defective/nondefective (or success/failure) outcomes, and the probability of a defective at each trial is the same. Therefore, the distribution of X is binomial.
6. Ans (c) since $n=8 \& p=0.1$.
7. Ans (d) since $P(X \leq 2)=0.9619$.
8. From (6), we have $n=8$ and $p=0.1$.

$$
\begin{aligned}
\mathrm{E}(X) & =n p=8 \times 0.1=0.8 \\
\operatorname{Var}(X) & =n p(1-p)=8 \times 0.1 \times 0.9=0.72 \\
\mathrm{SD}(X) & =\sqrt{0.72}=0.8485
\end{aligned}
$$

Answers to R problems:

9. R for $\mathrm{Q} 2:(\mathrm{a})$ dbinom $(2,15,0.5)$; $\operatorname{pbinom}(2,15,0.5)$;
(c) dbinom (2, 6, 0.25); pbinom(2, 6, 0.25);

R for Q4: pbinom (4, 10, 0.4); dbinom(4, 10, 0.4); 1 - pbinom(3, 10, 0.4)
10. > set.seed(1235) \#set a seed to generate 100 values
> x=rbinom(100,5,0.6)
$>\mathrm{x}$
[1] 4342233234133325133241244243433323434
[38] 4343253224324334433413543431442142334
[75] 32531533433232333543342303
> table(x) \#(a)
x
$\begin{array}{lrrrrr}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 7 & 18 & 43 & 25 & 6\end{array}$
> hist(x, breaks=c(-1,0,1,2,3,4,5)) \#(a)
$>$ mean(x) \#(b)
[1] 3.02
$>\operatorname{var}(\mathrm{x}) \quad$ \#(b)
[1] 1.050101
> $5 * 0.6$ \#true mean
[1] 3
> $5 * 0.6 *(1-0.6)$ \#true var
[1] 1.2
> $\mathrm{r}=\mathrm{c}(0,1,2,3,4,5)$ \#(c)
> pr=dbinom(r,5,0.6) \#(c)
> rbind(r,pr) \#(c)
[,1] [,2] [,3] [,4] [,5] [,6]
r 0.000001 .00002 .00003 .00004 .00005 .00000
pr 0.010240 .07680 .23040 .34560 .25920 .07776
> sum(r*pr) \#(c)
[1] 3
Histogram of x

Problem Set 5

1. $\mathrm{P}(X \leq 2)=0.7443$.
2. | i | 0 | 1 | 2 | 3 | 4 | 5 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p_{i} | 0.1681 | 0.3601 | 0.3087 | 0.1323 | 0.0284 | 0.0024 | 1.0000 |

Use dbinom(i,5,0.3), $i=0,1,2,3,4,5$.
$E(X)=0 \times 0.1681+1 \times 0.3601+2 \times 0.3087+3 \times 0.1323+4 \times 0.0284+5 \times 0.0024=1.5$.

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-[E(X)]^{2} \\
& =0^{2} \times 0.1681+1^{2} \times 0.3601+2^{2} \times 0.3087+3^{2} \times 0.1323+4^{2} \times 0.0284+5^{2} \times 0.0024-1.5^{2} \\
& =1.05 .
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}(X) & =n p=5 \times 0.3=1.5 \\
\operatorname{Var}(X) & =n p(1-p)=5 \times 0.3 \times 0.7=1.05 \\
\mathrm{SD}(X) & =\sqrt{1.05}=1.024695
\end{aligned}
$$

3. Let X be the number of faulty items in a sample of $10 . \quad X \sim B(10,0.1)$.
(a)

$$
\begin{aligned}
P(\text { line shut down }) & =P(X \geq 3) \\
& =1-P(X \leq 2) \\
& =1-.9298 \\
& =0.0702
\end{aligned}
$$

(b) (i) 0.3222 ; (ii) 0.6172 ; (iii) 0.8327 ; (iv) 0.9453 ; (v) 0.9877

Use 1-pbinom (2,10, p), $\mathrm{p}=0.1,0.2,0.3,0.4,0.5,0.6$.

4. | i | 0 | 1 | 2 | 3 | 4 | 5 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p_{i} | 0.3277 | 0.4096 | 0.2048 | 0.0512 | 0.0064 | 0.0003 | 1.0000 |

* use check these answers with a binomial table.
$E(X)=0 \times 0.3277+1 \times 0.4096+2 \times 0.2048+3 \times 0.0512+4 \times 0.0064+5 \times 0.0003=0.9999$.

