MATH1015 - BIOSTATISTICS

Semester 1	Solution to Tutorial Set 7	2013

1. (d) Since $n=100$ and $p=0.02$, the mean and variance of X are respectively $E(X)=\mu=n p=50 \times 0.02=1$ and $\operatorname{Var}(X)=\sigma^{2}=n p(1-p)=50 \times 0.02 \times 0.98=0.98$. Then the sampling distribution of \bar{X} has mean μ and variance $\frac{\sigma}{n}$. Since the sample size $n=100>30$, the distribution of \bar{X} is approximately normal $N\left(\mu, \frac{\sigma^{2}}{n}\right)$,
i.e. $N\left(1, \frac{0.98}{100}\right)=N(1,0.0098)$.
2. (d) Use $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ where $\mu=100, \sigma^{2}=25$, and $n=16$, i.e. $\bar{X} \sim N\left(100, \frac{25}{16}\right)$
3. (e) Draw diagram to illustrate the area. $P(\bar{X} \leq 102)=P\left(Z \leq \frac{102-100}{5 / 4}\right)=P\left(Z \leq \frac{8}{5}\right)$.
4. $P(Z \leq 1.6)=0.9452$. R command is pnorm(1.6) (default mean is 0 and sd is 1).
5. We have $\mu=200, \sigma=5$ and $n=16$. Draw diagrams to illustrate the areas.
$P(X>208)=P\left(Z>\frac{208-200}{5}\right)=P(Z>1.6)=1-0.9452=0.0548$.
Since $\bar{X} \sim N\left(200, \frac{5^{2}}{16}\right), P(\bar{X}>208)=P\left(Z>\frac{208-200}{5 / 4}\right)=P(Z>6.4)=0.0000$.
It is very unlikely to observe the average of 208 calories or more in a sample of size 16 .
6. (a) Standard normal (b) t distributed with $n-1 \mathrm{df}$.
7. $\mathrm{se}=\frac{s}{\sqrt{n}}=\frac{\sqrt{0.00639}}{\sqrt{27}}=\frac{0.080}{\sqrt{27}}=0.015$.
8. From the t table with $\mathrm{df}=15$ and upper percentile $=(1-0.9) / 2=0.05, k=1.753$. Draw diagram to illustrate the area.
9. (a) Use: $\left(\bar{x}-t_{n-1, \alpha / 2} \times s / \sqrt{n}, \bar{x}+t_{n-1, \alpha / 2} \times s / \sqrt{n}\right)$, where $t_{15,0.05}=1.753$ from Q8, $n=16, \bar{x}=194.8$ and $s=13.14$. Therefore, the 90% CI for μ is

$$
(194.8-1.753 \times 13.14 / \sqrt{16}, 194.8+1.753 \times 13.14 / \sqrt{16}=(189.0414,200.5586)
$$

(b) Now the upper percentile is $(1-0.95) / 2=0.025$. From the t table, $t_{15,0.025}=2.131$.

Therefore, the 95% CI for μ is

$$
(194.8-2.131 \times 13.14 / \sqrt{16}, 194.8+2.131 \times 13.14 / \sqrt{16})=(187.7997,201.8003)
$$

10. Q5 Use 1-pnorm (208, 200, 5). Answer is 0.05479929.

Use 1-pnorm (208, 200, 5/4). Answer is 7.768852×10^{-11}.
Q8 The lower percentile is $1-(1-0.9) / 2=0.95$.
Use qt $(0.95,15)$. Answer is 1.753050 .
11. The R commands are

```
> x = scan(file=url("http://www.maths.usyd.edu.au/math1015/r/germination.txt"))
Read 65 items
> x
    [1] 84 88 81 91 84 88 85 90 88 85 87 93 90 88 85 87 90 85 85 89 89 91 85 79 90
[26] 90 86 89 92 80 88 84 89 90 86 92 87 89 85 84 82 89 89 89 85 86 86 88 87 83
[51] 89 87 87 91 86 91 93 94 88 88 93 87 87 91 89
> mean(x)
[1] 87.58462
> sd(x)
[1] 3.136939
> t.test(x)
```


One Sample t-test

data: x
$\mathrm{t}=225.1015, \mathrm{df}=64$, p -value $<2.2 \mathrm{e}-16$
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
86.8073288 .36191
sample estimates:
mean of x
87.58462
mean $=87.585, \mathrm{sd}=3.137$ and the $95 \% \mathrm{CI}=(86.807,88.362)$

Problem Sheet Week 7 - Solutions

1. Let \bar{X} be the mean of a random sample of size 100. $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$.

Use $\mu=69$ and $\frac{\sigma^{2}}{n}=\frac{48^{2}}{100}=4.8^{2}$.
(a) $P(\bar{X}>80)=P\left(Z>\frac{80-69}{4.8}\right)=P(Z>2.29)=0.0110$. Use 1-pnorm (80, 69, 4.8).
(b) $P(59 \leq \bar{X} \leq 79)=P\left(\frac{59-69}{4.8}<Z<\frac{79-69}{4.8}\right)=P(-2.08 \leq Z \leq 2.08)=0.9628$.

Use pnorm (79, 69, 4.8)-pnorm(59, 69, 4.8).
2. $\mu=5000, \sigma=500$ and $n=100 . \bar{X} \sim N\left(5000, \frac{500^{2}}{100}\right)$.
(a) $P(\bar{X}<4928)=P\left(Z<\frac{4928-5000}{50}\right)=P(Z<-1.44)=0.0749$. Use pnorm (4928, 5000, 50).
(b) $P(4950<\bar{X}<5050)=P\left(\frac{4950-5000}{50}<Z<\frac{5050-5000}{50}\right)=P(-1<Z<1)=0.68$. Use pnorm(5050, 5000, 50)-pnorm(4950, 5000, 50).
3. $\bar{X} \sim N\left(70, \frac{10^{2}}{16}\right) . \quad P(\bar{X}>75)=P\left(Z \geq \frac{75-70}{10 / \sqrt{16}}\right)=P(Z \geq 2)=1-0.9772=0.0228$. Use 1-pnorm(75, 70, 2.5).
4. $2.583,-1.313,2.365$. Use table 3 or R codes: $\mathrm{qt}(0.99,16)$, $\mathrm{qt}(0.1,28)$, $\mathrm{qt}(0.975,7)$.
5. Use $\left(\bar{x}-t_{n-1, \alpha / 2} \times s / \sqrt{n}, \bar{x}+t_{n-1, \alpha / 2} \times s / \sqrt{n}\right)$, where $t_{101,0.975}=1.984$ and $t_{68,0.975}=1.995$. The calculation can be checked using R where the 8 CIs are calculated using vectors of 8 means, 8 sd and $8 n$. The R codes are given below.

```
m=c(0.97,4.43,1.68,36.5,1,4.49,1.57,23.57)
s=c(0.22,0.64,0.47,16.08,0.19,0.71,0.4,13.79)
n=c(102,102,102,102,69,69,69,69)
lower=m-qt (0.975,n-1)*s/sqrt(n)
upper=m+qt(0.975,n-1)*s/sqrt(n)
CI=cbind(lower,upper)
CI
```

The results are
> CI
lower upper
[1,] $0.9267879 \quad 1.013212$
$\begin{array}{lll}{[2,]} & 4.3042921 & 4.555708\end{array}$
[3,] $1.5876832 \quad 1.772317$
[4,] 33.341588339 .658412
$\begin{array}{lll}{[5,]} & 0.9543570 & 1.045643\end{array}$
[6,] $4.3194394 \quad 4.660561$
[7,] 1.47390951 .666090
[8,] 20.257280326 .882720

