TUTORIAL EXERCISE PACKAGE - 2013

MATH1015-BIOSTATISTICS

Semester 1	Solution to Tutorial Set 8	2013

1. Answer: (b)

Explanation: If everything else is kept the same, then smaller margin of error means smaller t or z, which means lower confidence level.
2. Answer: (a) The 95% CI for p is $\hat{p} \pm z \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=0.48 \pm 1.96 \times \sqrt{\frac{0.48 \times 0.52}{1000}}=0.48 \pm 0.03097=$ (0.4490, 0.5110)
3. (a) Since $p=0.5$ lies inside $95 \% \mathrm{CI},(0.4490,0.5110)$, the data are consistent with $H_{0}: p=0.5$.
(b) Since $p=0.4$ lies outside $95 \% \mathrm{CI},(0.4490,0.5110)$, the data are against $H_{0}: p=0.4$.
4. Answer (c) The observed test statistic $=\frac{\bar{x}-\mu}{s / \sqrt{n}}=\frac{7-6}{2 / \sqrt{16}}=2$
5. Since the sample size is $16, \mathrm{df}=15$ and large observed values of \bar{x} argue against H_{0}, the P-value $=\mathrm{P}\left(t_{15} \geq 2.00\right)$. Using the t-table, the P-value is between 0.025 and 0.05 .
6. Answer (a). Reason: the P-value is less than 0.05 .
7. $n=22$, sample total $=191.4$ and $s=2.25$. The point estimate of μ is $\bar{x}=\frac{191.4}{22}=8.7$.

Use the one sample t-test to test $H_{0}: \mu=10$ against $H_{1}: \mu<10$.

$$
t_{o b s}=\frac{8.7-10}{2.25 / \sqrt{22}}=-2.71
$$

Small values of $t_{\text {obs }}$ argue against H_{0} and therefore, the P-value is

$$
P \text {-value }=P\left(t_{21}<-2.71\right)<0.01
$$

Since the P-value is very small, we have very strong evidence against H_{0}.
8. Test $H_{0}: \mu=300$ against $H_{1}: \mu \neq 300$.

Use the one-sample two-sided t-test to test this claim.

$$
t_{o b s}=\frac{295-300}{20 / \sqrt{46}}=-1.696
$$

Either small or large values of $t_{\text {obs }}$ argue against H_{0} and therefore, the P-value is

$$
P \text {-value }=2 P\left(t_{45} \leq-1.696\right) \in(2 \times 0.025,2 \times 0.05)=(0.05,0.1)
$$

Clearly, the P-value is above 0.05 and the data are consistent with H_{0}.
NOTE: In this case, the sample size is large and the t-test is almost identical to the test using normal instead of t distribution.
9. The R commands are

1-pt ((7-6)/(2/sqrt(16)), 15), pt ((191.4/22-10)/(2.25/sqrt(22)),21) and
$2 * p t((295-300) /(20 / s q r t(46)), 45)$ respectively.
The answers are
0.03197250 ,
0.006557571 and
0.0968744 respectively.
10. > t.test(x, mu=86)

One Sample t-test

data: x
$\mathrm{t}=4.0726, \mathrm{df}=64, \mathrm{p}$-value $=0.0001304$
alternative hypothesis: true mean is not equal to 86
95 percent confidence interval:
86.8073288 .36191
sample estimates:
mean of x
87.58462

Since the p-value $=0.0001304<0.05$, the data are against H_{0}.
11. > dat=read.table(file=url("http://www.maths.usyd.edu.au/math1015/r/hospital.txt"),skip=1)
$>$ dat
v1 v2 v3 v4 v5 v6 v7 v8 v9
$\begin{array}{lllllllll}1 & 1 & 5 & 30 & 2 & 99.0 & 8 & 2 & 2\end{array}$
$\begin{array}{llllllll}2 & 2 & 10 & 73 & 2 & 98.0 & 5 & 2\end{array} 1$
$\begin{array}{lllllllll}3 & 3 & 6 & 40 & 299.0 & 12 & 2 & 2 & 2\end{array}$
$4 \begin{array}{llllllll}4 & 11 & 47 & 2 & 98.2 & 4 & 2 & 2\end{array}$
$\begin{array}{lllllllll}5 & 5 & 5 & 25 & 2 & 98.5 & 11 & 2 & 2\end{array}$
$6 \quad 6 \quad 1482196.8 \quad 6 \quad 1 \quad 2 \quad 2$
$\begin{array}{lllllllll}7 & 7 & 30 & 60 & 1 & 99.5 & 8 & 1 & 1\end{array}$
$\begin{array}{lllllllll}8 & 8 & 11 & 56 & 2 & 98.6 & 7 & 2 & 2\end{array}$
$\begin{array}{lllllllll}9 & 9 & 17 & 43 & 2 & 98.0 & 7 & 2 & 2\end{array}$
$\begin{array}{lllllllll}10 & 10 & 3 & 50 & 1 & 98.0 & 12 & 2 & 1\end{array} 2$
$\begin{array}{lllllllll}11 & 11 & 9 & 59 & 2 & 97.6 & 7 & 2 & 1\end{array}$
$\begin{array}{llllllllll}12 & 12 & 3 & 4 & 1 & 97.8 & 3 & 2 & 2 & 2\end{array}$
$\begin{array}{lllllllll}13 & 13 & 8 & 22 & 2 & 99.5 & 11 & 1 & 2\end{array}$
$\begin{array}{lllllllll}14 & 14 & 8 & 33 & 2 & 98.4 & 14 & 1 & 1\end{array}$

15	15	5	20	2	98.4	11	2	1	2
16	16	5	32	1	99.0	9	2	2	2
17	17	7	36	1	99.2	6	1	2	2
18	18	4	69	1	98.0	6	2	2	2
19	19	3	47	1	97.0	5	1	2	1
20	20	7	22	1	98.2	6	2	2	2
21	21	9	11	1	98.2	10	2	2	2
22	22	11	19	1	98.6	14	1	2	2
23	23	11	67	2	97.6	4	2	2	1
24	24	9	43	2	98.6	5	2	2	2
25	25	4	41	2	98.0	5	2	2	1

```
> boxplot(age)
> length(age)
[1] 25
> t.test(age,mu=40,alt='greater')
    One Sample t-test
```

data: age
$\mathrm{t}=0.3084, \mathrm{df}=24, \mathrm{p}$-value $=0.3802$
alternative hypothesis: true mean is greater than 40
95 percent confidence interval:
34.36143 Inf
sample estimates:
mean of x
41.24

Since the sample size is 25 (small), t-test with normality assumption should be used. Since the p-value $=0.3802>0.05$, the data are against H_{0}.

Note that t.test provides the default 95% CI for μ. If we need a different confidence level, say 94%, then we can use t.test ($\mathrm{x}, \mathrm{mu}=11$, conf.level $=0.94$)

By default t.test tests two-sided alternative hypothesis. We can change it to lower or upper-
sided alternative, by using the options alt = 'less' (or alternate='l') and alt = 'greater', respectively. For example, t.test ($\mathrm{x}, \mathrm{mu}=11$, alt $=$ 'greater') tests $H_{0}: \mu=11$ vs. H_{1} : $\mu>11$.

Answers to Some of the Additional Problems

1.(Q7.26)

Test $H_{0}: \mu=230$ against $H_{1}: \mu \neq 230$.
$t_{\text {obs }}=-7.70 . \mathrm{df}=23$
P-value is less than 0.001 .
We have strong evidence against H0.
2. (Q7.27)

A 95% CI for μ is $175 \pm 2.069 \times 35 / \sqrt{24}$ or ($160.2,189.8$).
3. (Q7.28)

This 95% CI in (2) does not contain and and is significantly lower than 230.
The hypothesis test tells us precisely how significant the results are. The CI gives a range of values within which the true mean is likely to fall.

