MATH1015 - BIOSTATISTICS

Semester I Solution to Tutorial Set 9 2013	Semester 1	Solution to Tutorial Set 9	2013
--	------------	----------------------------	------

- 1. Answer: (e) Use t-table with df=25-1=24 and upper area=(1-0.9)/2=0.05.
- 2. Answer: (a) The 90% CI for μ : $\bar{x} \mp t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} = 42.7 \mp 1.711 \frac{5}{\sqrt{25}}$
- 3. Answer: (d) Reason: $Z = \frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \sim N(0,1)$ by the CLT on the sample mean which is also the sample proportion $\hat{p} = X/n$ when the sample size *n* is large and $p = p_0$ under H_0 .

Note that (c) $X \sim B(n, p_0)$ is also right. However the exact P-value based on binomial distribution is more complicated to calculate when n is large but it can be easily obtained from R.

4. Answer: (a)
$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} = \frac{\frac{36}{200} - 0.24}{\sqrt{\frac{0.24(1-0.24)}{200}}} = -1.99$$

- 5. Answer: (d) Since the P-value=P(Z < -1.99) = 1 0.9767 = 0.0233 > 0.01, the data are consistent with H_0 that the proportion of success is 24%.
- 6. The 99% CI for $p: \hat{p} \mp z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.18 \mp 2.575 \sqrt{\frac{0.18(1-0.18)}{200}} = 0.18 \mp 0.07 = (0.11, 0.25)$ since $\hat{p} = \frac{36}{200} = 0.18$.

Note that we do NOT check if $p_0 = 0.24 \in (0.11, 0.25)$ as an alternative procedure for testing H_0 : p = 0.24 in Q3-5 because the SE in the CI is calculated using $\hat{p} = 0.18$ instead of $p_0 = 0.24$ under H_0 .

- 7. We have n = 8, $\bar{d} = 1.14$ and $s_d = 12.22$. The paired *t*-test on the difference between two means is:
 - 1. Hypotheses: $H_0: \mu_d = 0$ against $H_1: \mu_d \neq 0$
 - 2. Test statistic: $t_{\rm obs} = \frac{\bar{d}-0}{s_d/\sqrt{n}} = \frac{1.14-0}{12.22/\sqrt{8}} = 0.264$
 - 3. P-value: $2P(t_{obs} > 0.264) > 2(0.25) = 0.5$.

4. Conclusion: Since the P-value > 0.05, the data are consistent with H_0 that the dietary counseling made no difference in reducing sodium intake.

Use pnorm((36/200-0.24)/sqrt(0.24*(1-0.24)/200)). Answer is 0.02347236.
 Use 2*(1-pt(1.14/(12.22/sqrt(8)),7)). Answer is 0.7994847.

```
9. > diff=scan()
  1: -1.74 -22.47 17.29 -6.84 4.99 9.27 9.51 -0.88
  9:
  Read 8 items
  > t.test(diff)
         One Sample t-test
  data: diff
  t = 0.2642, df = 7, p-value = 0.7993
  alternative hypothesis: true mean is not equal to 0
  95 percent confidence interval:
   -9.074864 11.357364
  Note that the 95% CI for \mu_d is (-9.074864, 11.357364). Since it includes \mu_d = 0, \mu_d
  is not significantly different from zero. Besides the P-value=0.7993> 0.05. Hence the
  conclusion is still "the data are consistent with H_0".
10. > x=scan()
  1: 7.85 12.03 21.84 13.94 16.68 41.78 14.97 12.07
  9:
  Read 8 items
  > y=scan()
  1: 9.59 34.50 4.55 20.78 11.69 32.51 5.46 12.95
  9:
  Read 8 items
  > t.test(x, y, paired = T)
  Result same as in Q10.
11. > lead=scan(file=url("http://www.maths.usyd.edu.au/math1015/r/lead.txt"))
  Read 124 items
  > lead
    [112] 0 1 1 1 1 1 0 0 0 0 0 0 0
  > n=length(lead)
```

```
> x=length(lead[lead==1])
```

> ph=x/n > p0=0.15 > z0=(ph-p0)/sqrt(p0*(1-p0)/n) > pvalue=2*(1-pnorm(z0)) > c(x,n,ph,z0,pvalue) [1] 24.0000000 124.0000000 0.1935484 1.3580877 0.1744358 The count x is 24. The sample proportion is $\frac{24}{124} = 0.1935$. The test statistic is $Z_0 = \frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} = \frac{\frac{24}{124}-0.15}{\sqrt{\frac{0.15(1-0.15)}{124}}} = 1.3581$ The *P*-value is 2P(Z > 1.3581) = 0.1744. Since the *P*-value > 0.05, the data are consistent with $H_0: p = 0.15$.

Additional Problems to Week 9 - Solutions

- 1. We have $\mu_0 = 1800$, n = 50, $\bar{x} = 1850$ and s = 100. The one sample *t*-test on the true mean μ is:
 - 1. Hypotheses: $H_0: \mu = 1800$ against $H_1: \mu > 1800$
 - 2. Test statistic: $T_{49} = \frac{\bar{x} \mu_0}{s/\sqrt{n}} = \frac{1850 1800}{50/\sqrt{50}} = 7.071$
 - 3. P-value: $P(t_{49} > 7.071) < 0.001$.

4. Conclusion: Since the P-value < 0.01, there is strong evidence in the data against H_0 . The breaking strength of the steel wires produced by the new technique is higher than 1800N.

- 2. We have n = 1000, $\hat{p} = \frac{550}{1000} = 0.55$ and $p_0 = 0.5$. The one sample Z-test on the true proportion p is:
 - 1. Hypotheses: $H_0: p = 0.5$ against $H_1: p > 0.5$
 - 2. Test statistic: $Z = \frac{\hat{p} p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} = \frac{0.55 0.5}{\sqrt{\frac{0.5(1-0.5)}{1000}}} = 3.16$
 - 3. P-value: P(Z > 3.16) = 1 0.9992 = 0.0008

4. Conclusion: Since the P-value < 0.05, there is strong evidence in the data against H_0 . Candidate A will receive more than 50% of the vote.

3. We have n = 10, $\bar{d} = -4$ and $s_d = 5.7735$.

Twin										
First Second	32	36	21	30	49	27	39	38	56	44
Second	44	43	28	39	51	25	32	42	64	44
Diff	-12	-7	-7	-9	-2	2	7	-4	-8	0

The paired sample *t*-test to compare two means is:

1. Hypotheses: $H_0: \mu_d = 0$ against $H_1: \mu_d \neq 0$

2. Test statistic:
$$T_9 = \frac{d-0}{s_d/\sqrt{n}} = \frac{-4-0}{5.7735/\sqrt{10}} = -2.19$$

3. P-value:
$$2P(t_9 < -2.19) > 2(0.25) = 0.5$$

4. Conclusion: Since the P-value > 0.05, the data is consistent with H_0 that the annual incomes for the first and second born twins are equal.