1. Answer: (e) Use t-table with $\mathrm{df}=25-1=24$ and upper area $=(1-0.9) / 2=0.05$.
2. Answer: (a) The 90% CI for $\mu: \bar{x} \mp t_{n-1, \alpha / 2} \frac{s}{\sqrt{n}}=42.7 \mp 1.711 \frac{5}{\sqrt{25}}$
3. Answer: (d) Reason: $Z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}} \sim N(0,1)$ by the CLT on the sample mean which is also the sample proportion $\hat{p}=X / n$ when the sample size n is large and $p=p_{0}$ under H_{0}.
Note that (c) $X \sim B\left(n, p_{0}\right)$ is also right. However the exact P-value based on binomial distribution is more complicated to calculate when n is large but it can be easily obtained from R.
4. Answer: (a) $Z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{\frac{36}{200}-0.24}{\sqrt{\frac{0.24(1-0.24)}{200}}}=-1.99$
5. Answer: (d) Since the P-value $=P(Z<-1.99)=1-0.9767=0.0233>0.01$, the data are consistent with H_{0} that the proportion of success is 24%.
6. The 99% CI for $p: \hat{p} \mp z_{1-\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=0.18 \mp 2.575 \sqrt{\frac{0.18(1-0.18)}{200}}=0.18 \mp 0.07=$ $(0.11,0.25)$ since $\hat{p}=\frac{36}{200}=0.18$.

Note that we do NOT check if $p_{0}=0.24 \in(0.11,0.25)$ as an alternative procedure for testing $H_{0}: p=0.24$ in Q3- 5 because the SE in the CI is calculated using $\hat{p}=0.18$ instead of $p_{0}=0.24$ under H_{0}.
7. We have $n=8, \bar{d}=1.14$ and $s_{d}=12.22$. The paired t-test on the difference between two means is:

1. Hypotheses: $H_{0}: \mu_{d}=0$ against $H_{1}: \mu_{d} \neq 0$
2. Test statistic: $t_{\text {obs }}=\frac{\bar{d}-0}{s_{d} / \sqrt{n}}=\frac{1.14-0}{12.22 / \sqrt{8}}=0.264$
3. P-value: $2 P\left(t_{\text {obs }}>0.264\right)>2(0.25)=0.5$.
4. Conclusion: Since the P -value >0.05, the data are consistent with H_{0} that the dietary counseling made no difference in reducing sodium intake.
5. Use pnorm((36/200-0.24)/sqrt ($0.24 *(1-0.24) / 200))$. Answer is 0.02347236 .

Use $2 *(1-\mathrm{pt}(1.14 /(12.22 /$ sqrt (8) $), 7)$). Answer is 0.7994847 .
9. $>\operatorname{diff}=\operatorname{scan}()$

1: $-1.74-22.4717 .29-6.844 .99 \quad 9.27 \quad 9.51-0.88$
9 :
Read 8 items
> t.test(diff)

One Sample t-test

data: diff
$\mathrm{t}=0.2642, \mathrm{df}=7, \mathrm{p}$-value $=0.7993$
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-9.074864 11.357364
Note that the 95% CI for μ_{d} is $(-9.074864,11.357364)$. Since it includes $\mu_{d}=0, \mu_{d}$ is not significantly different from zero. Besides the P-value $=0.7993>0.05$. Hence the conclusion is still "the data are consistent with H_{0} ".
10. $>x=\operatorname{scan}()$

1: $7.85 \quad 12.03 \quad 21.84 \quad 13.94 \quad 16.68 \quad 41.78 \quad 14.97 \quad 12.07$
9:
Read 8 items
$>y=\operatorname{scan}()$
1: $9.5934 .504 .55 \quad 20.78 \quad 11.69 \quad 32.51 \quad 5.46 \quad 12.95$
9:
Read 8 items
$>$ t.test $(x, y$, paired $=T$)
Result same as in Q10.
11. > lead=scan(file=url("http://www.maths.usyd.edu.au/math1015/r/lead.txt"))

Read 124 items

> lead
[1] $000 \begin{array}{lllllllllllllllllllllllllllllllllll} & 0\end{array}$

[112] $0 \begin{array}{lllllllllllll} & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
> $\mathrm{n}=$ length (lead)
> $\mathrm{x}=$ length (lead[lead==1])
$>\mathrm{ph}=\mathrm{x} / \mathrm{n}$
$>\mathrm{p} 0=0.15$
> $\mathrm{z} 0=(\mathrm{ph}-\mathrm{p} 0) / \operatorname{sqrt}(\mathrm{p} 0 *(1-\mathrm{p} 0) / \mathrm{n})$
> pvalue=2*(1-pnorm(z0))
> c(x,n,ph,z0,pvalue)
[1] $24.0000000124 .0000000 \quad 0.1935484 \quad 1.3580877 \quad 0.1744358$
The count x is 24 .
The sample proportion is $\frac{24}{124}=0.1935$.
The test statistic is $Z_{0}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{\frac{24}{124}-0.15}{\sqrt{\frac{0.15(1-0.15)}{124}}}=1.3581$
The P-value is $2 P(Z>1.3581)=0.1744$.
Since the P-value >0.05, the data are consistent with $H_{0}: p=0.15$.

Additional Problems to Week 9 - Solutions

1. We have $\mu_{0}=1800, n=50, \bar{x}=1850$ and $s=100$. The one sample t-test on the true mean μ is:
2. Hypotheses: $H_{0}: \mu=1800$ against $H_{1}: \mu>1800$
3. Test statistic: $T_{49}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{1850-1800}{50 / \sqrt{50}}=7.071$
4. P-value: $P\left(t_{49}>7.071\right)<0.001$.
5. Conclusion: Since the P -value <0.01, there is strong evidence in the data against H_{0}. The breaking strength of the steel wires produced by the new technique is higher than 1800N.
6. We have $n=1000, \hat{p}=\frac{550}{1000}=0.55$ and $p_{0}=0.5$. The one sample Z-test on the true proportion p is:
7. Hypotheses: $H_{0}: p=0.5$ against $H_{1}: p>0.5$
8. Test statistic: $Z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{0.55-0.5}{\sqrt{\frac{0.5(1-0.5)}{1000}}}=3.16$
9. P-value: $P(Z>3.16)=1-0.9992=0.0008$
10. Conclusion: Since the P-value <0.05, there is strong evidence in the data against H_{0}. Candidate A will receive more than 50% of the vote.
11. We have $n=10, \bar{d}=-4$ and $s_{d}=5.7735$.

Twin	1	2	3	4	5	6	7	8	9	10
First	32	36	21	30	49	27	39	38	56	44
Second	44	43	28	39	51	25	32	42	64	44
Diff	-12	-7	-7	-9	-2	2	7	-4	-8	0

The paired sample t-test to compare two means is:

1. Hypotheses: $H_{0}: \mu_{d}=0$ against $H_{1}: \mu_{d} \neq 0$
2. Test statistic: $T_{9}=\frac{\bar{d}-0}{s_{d} / \sqrt{n}}=\frac{-4-0}{5.7735 / \sqrt{10}}=-2.19$
3. P-value: $2 P\left(t_{9}<-2.19\right)>2(0.25)=0.5$
4. Conclusion: Since the P -value >0.05, the data is consistent with H_{0} that the annual incomes for the first and second born twins are equal.
