A short list of the most useful R commands

A summary of the most important commands with minimal examples. See the relevant part of the guide for better examples. For all of these commands, using the help(function) or ? function is the most useful source of information. Unfortunately, knowing what to ask for help about is the hardest problem.

See the R-reference card by Tom Short for a much more complete list.

Input and display

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>read.table(filename,header=TRUE)</code></td>
<td>#read files with labels in first row</td>
</tr>
<tr>
<td><code>read.table(filename,header=TRUE,sep=',')</code></td>
<td>#read a tab or space delimited file</td>
</tr>
<tr>
<td><code>x=c(1,2,4,8,16)</code></td>
<td>#create a data vector with specified elements</td>
</tr>
<tr>
<td><code>y=c(1:10)</code></td>
<td>#create a data vector with elements 1-10</td>
</tr>
<tr>
<td><code>n=10</code></td>
<td>#create a n item vector of random normal deviates</td>
</tr>
<tr>
<td><code>x1=c(rnorm(n))</code></td>
<td>#create another n item vector that has n added to each random uniform distribution</td>
</tr>
<tr>
<td><code>y1=c(runif(n))+n</code></td>
<td>#create n samples of size "size" with probability prob from the binomial</td>
</tr>
<tr>
<td><code>z=rbinom(n,size,prob)</code></td>
<td>#create n samples of size "size" with probability prob from the binomial</td>
</tr>
<tr>
<td><code>vect=c(x,y)</code></td>
<td>#combine them into one vector of length 2n</td>
</tr>
<tr>
<td><code>mat=cbind(x,y)</code></td>
<td>#combine them into a n x 2 matrix</td>
</tr>
<tr>
<td><code>mat[4,2]</code></td>
<td>#display the 4th row and the 2nd column</td>
</tr>
<tr>
<td><code>mat[3,]</code></td>
<td>#display the 3rd row</td>
</tr>
<tr>
<td><code>mat[,]</code></td>
<td>#display the 2nd column</td>
</tr>
<tr>
<td><code>subset(dataset,logical)</code></td>
<td>#those objects meeting a logical criterion</td>
</tr>
<tr>
<td><code>subset(data.df,select=variables,logical)</code></td>
<td>#get those objects from a data frame that meet a criterion</td>
</tr>
<tr>
<td><code>data.df[data.df=logical]</code></td>
<td>#yet another way to get a subset</td>
</tr>
<tr>
<td><code>x[order(x$B),]</code></td>
<td>#sort a dataframe by the order of the elements in B</td>
</tr>
<tr>
<td><code>x[rev(order(x$B)),]</code></td>
<td>#sort the dataframe in reverse order</td>
</tr>
<tr>
<td><code>browse.workspace</code></td>
<td>#a menu command that creates a window with information about all variables in the workspace</td>
</tr>
</tbody>
</table>
moving around

\texttt{ls()} \quad \#list the variables in the workspace
\texttt{rm(x)} \quad \#remove x from the workspace
\texttt{rm(list=ls())} \quad \#remove all the variables from the workspace
\texttt{attach(mat)} \quad \#make the names of the variables in the matrix
or data frame available in the workspace
\texttt{detach(mat)} \quad \#releases the names
\texttt{new=old[-n]} \quad \#drop the nth column
\texttt{new=old[n,]} \quad \#drop the nth row
\texttt{new=subset(old,logical)} \quad \#select those cases that meet the logical
\quad \text{condition}
\texttt{complete = subset(data.df,complete.cases(data.df))} \quad \#find those cases with no missing values
\texttt{new=old[n1:n2,n3:n4]} \quad \#select the n1 through n2 rows of variables n3
\quad \text{through n4)

distributions

\texttt{beta(a, b)}
\texttt{gamma(x)}
\texttt{choose(n, k)}
\texttt{factorial(x)}
\texttt{dnorm(x, mean=0, sd=1, log = FALSE)} \#normal distribution
\texttt{pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)}
\texttt{qnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)}
\texttt{rnorm(n, mean=0, sd=1)}
\texttt{dunif(x, min=0, max=1, log = FALSE)} \#uniform distribution
\texttt{punif(q, min=0, max=1, lower.tail = TRUE, log.p = FALSE)}
\texttt{qunif(p, min=0, max=1, lower.tail = TRUE, log.p = FALSE)}
\texttt{runif(n, min=0, max=1)}

data manipulation
replace(x, list, values)
#remember to assign this to some object i.e., x <-
replace(x,x==3,NA)
#similar to the operation x[x==3] <- NA

cut(x, breaks, labels = NULL,
include.lowest = FALSE, right = TRUE, dig.lab = 3, ...)

x.df=data.frame(x1,x2,x3 ...)
#combine different kinds of data into a data frame
 as.data.frame()
 is.data.frame()
x=as.matrix()
scale()
#converts a data frame to standardized scores

round(x,n)
#rounds the values of x to n decimal places
ceiling(x)
#vector x of smallest integers > x
floor(x)
#vector x of largest integer < x
as.integer(x)
#truncates real x to integers (compare to
 round(x,0)
as.integer(x < cutpoint)
#vector x of 0 if less than cutpoint, 1 if greater
 than cutpoint)
factor(ifelse(a < cutpoint, "Neg", "Pos"))
#is another way to dichotomize and to make a
 factor for analysis
transform(data.df,variable names = some operation)
#can be part of a set up for a data set

x%in%y
#tests each element of x for membership in y
y%in%x
#tests each element of y for membership in x
all(x%in%y)
#true if x is a proper subset of y
all(x)
for a vector of logical values, are they all true?
any(x)
#for a vector of logical values, is at least one
true?

Statistics and transformations

max()
min()
mean()
median()
sum()
var() #produces the variance covariance matrix
sd() #standard deviation
mad() #(median absolute deviation)
fivenum() #Tukey fivenumbers min, lowerhinge, median, upper hinge, max
table() #frequency counts of entries, ideally the entries are factors(although it works with integers or even reals)
scale(data, scale=T) #centers around the mean and scales by the sd
sum(x) #cumulative sum, etc.
cumprod(x)
cummax(x)
cummin(x)
rev(x) #reverse the order of values in x
cor(x,y, use="pair") #correlation matrix for pairwise complete data, use="complete" for complete cases

aov(x~y, data=datafile) #where x and y can be matrices
 aov.ex1 = aov(DV~IV, data=data.ex1) #do the analysis of variance or
 aov.ex2 = aov(DV~IV1*IV21, data=data.ex2) #do a two way analysis of variance
summary(aov.ex1) #show the summary table
print(model.tables(aov.ex1, "means"), digits=3) #report the means and the number of subjects/cell
boxplot(DV~IV, data=data.ex1) #graphical summary appears in graphics window

lm(x~y, data=dataset) #basic linear model where x and y can be matrices (see plot.lm for plotting options)
t.test(x, g)
pairwise.t.test(x, g)
power.anova.test(groups = NULL, n = NULL, between.var = NULL,
 within.var = NULL, sig.level = 0.05, power = NULL)
power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,
 power = NULL, type = c("two.sample", "one.sample", "paired"),
 alternative = c("two.sided", "one.sided"), strict = FALSE)
More statistics: Regression and Linear model

\[\text{lm}(Y \sim X) \]
\[\text{lm}(Y \sim X_1 + X_2) \]
\[\text{lm}(Y \sim X \mid W) \]
\[\text{solve}(A,B) \]
\[\text{solve}(A) \]
\[\text{factan}() \]
\[\text{princomp}() \]

Useful additional commands

\[\text{colSums}(x, \text{na.rm} = \text{FALSE}, \text{dims} = 1) \]
\[\text{rowSums}(x, \text{na.rm} = \text{FALSE}, \text{dims} = 1) \]
\[\text{colMeans}(x, \text{na.rm} = \text{FALSE}, \text{dims} = 1) \]
\[\text{rowMeans}(x, \text{na.rm} = \text{FALSE}, \text{dims} = 1) \]
\[\text{rowsum}(x, \text{group}, \text{reorder} = \text{TRUE}, ...) \]
\[\text{apply}(X, \text{MARGIN}, \text{FUN}, ...) \]
\[\text{apply}(x, 1, \text{min}) \]
\[\text{apply}(x, 2, \text{max}) \]
\[\text{col.max}(x) \]

Maximum value for each row
\[\text{which.min}(x) \]
\[\text{which.max}(x) \]
\[z = \text{apply} (\text{big5r}, 1, \text{which.min}) \]
\[\text{column} \]

Graphics

\[\text{par}(\text{mfrow} = c(\text{nrow}, \text{ncol})) \]
\[\text{par}(\text{ask} = \text{TRUE}) \]
\[\text{par}(\text{omi} = c(0, 0, 1, 0)) \]

Number of rows and columns to graph
Ask for user input before drawing a new graph
Set the size of the outer margins
mtext("some global title",3,outer=TRUE,line=1,cex=1.5) #note that we seem to need to add the global title last
 #cex = character expansion factor

boxplot(x,main="title") #boxplot (box and whiskers)

title("some title") #add a title to the first graph

hist() #histogram

plot()

plot(x,y,xlim=range(-1,1),ylim=range(-1,1),main=title)
par(mfrow=c(1,1)) #change the graph window back to one figure
symb=c(19,25,3,23)
colors=c("black","red","green","blue")
charact=c("S","T","N","H")
plot(PA,NAF,pch=symb[group],col=colors[group],bg=colors[condit],cex=1.5,main="Positive vs. Negative Affect by Film condition")
points(mPA,mNA,pch=symb[condit],cex=4.5,col=colors[condit],bg=colors[condit])

curve()

abline(a,b)

 abline(a, b, untf = FALSE, ...)
 abline(h=, untf = FALSE, ...)
 abline(v=, untf = FALSE, ...)
 abline(coef=, untf = FALSE, ...)
 abline(reg=, untf = FALSE, ...)

identify()

 plot(eatar,eanta,xlim=range(-1,1),ylim=range(-1,1),main=title)
 identify(eatar,eanta,labels=labels(energysR[,1])) #dynamically puts names on the plots
locate()

legend()

pairs() #SPLOM (scatter plot Matrix)
pairs.panels () #SPLOM on lower off diagonal, histograms on diagonal, correlations on diagonal
 #not standard R, but uses a function found in useful.r
matplot ()
biplot ()
plot(table(x)) #plot the frequencies of levels in x
x= recordPlot() #save the current plot device output in the object x
replayPlot(x) #replot object x
dev.control #various control functions for printing/saving graphic files
pdf(height=6, width=6) #create a pdf file for output
dev.of() #close the pdf file created with pdf
layout(mat) #specify where multiple graphs go on the page
 #experiment with the magic code from Paul Murrell to do fancy

graphic location
layout(rbind(c(1, 1, 2, 2, 3, 3),c(0, 4, 4, 5, 5, 0)))
for (i in 1:5) {
 plot(i, type="n")
 text(1, i, paste("Plot", i), cex=4)
}

Distributions

To generate random samples from a variety of distributions
runif(n,lower,upper)
norm(n,mean,sd)
rbinom(n,size,p)
sample(x, size, replace = FALSE, prob = NULL) #samples with or without replacement

Working with Dates

date <- strptime(as.character(date), "%m/%d/%Y") #change the date field to a internal form
for time
 #see ?formats and ?POSIXt
as.Date
month= months(date) #see also weekdays, Julian

Additional functions that I have created because I needed some specific operation may be included in the workspace by issuing the source command:
These functions include:

```r
#alpha.scale       #find coefficient alpha for a scale and a dataframe of items
#describe          give means, sd, skew, n, and se
#summ.stats        #basic summary statistics by a grouping variable
#error.crosses     (error bars in two space)
#skew              find skew
#panel.cor         taken from the examples for pairs
#pairs.panels      adapted from panel.cor  --  gives a splom, histogram, and correlation
#multi.hist        matrix
#correct.cor       #given a correlation matrix and a vector of reliabilities, correct for reliability
#fisherz           #convert pearson r to fisher z
#paired.r          #test for difference of dependent correlations
#count.pairwise    #count the number of good cases when doing pairwise analysis
#eigen.loadings    #convert eigen vector vectors to factor loadings by unnormalizing them
#principal         #yet another way to do a principal components analysis  --  brute force
eigenvalue decomp
#factor.congruence #find the factor congruence coefficients
#factor.model      #given a factor model, find the correlation matrix
#factor.residuals  #how well does it fit?
#factor.rotate     # rotate two columns of a factor matrix by theta (in degrees)
#phi2poly          #convert a matrix of phi coefficients to polychoric correlations
```

part of a short guide to R
Version of February 20, 2005
William Revelle
Department of Psychology
Northwestern University