
STAT3014/3914 Applied Statistics-Sampling Preliminary

References

1. Cochran, W.G. (1963) Sampling Techniques, Wiley, New York.

2. Kish, L. (1995) Survey Sampling, Wiley Inter. Science.

3. Lohr, S.L. (1999) Sampling: Design and Analysis, Duxbury Press.

4. McLennan, W. (1999) An Introduction to Sample Surveys, A.B.S.

Publications, Canberra.

Section outline

1. Simple random samples and stratification.

Finite population correction factor. Sample size determination. In-

ference over subpopulations.

2. Stratified sampling.

Optimal allocation.

3. Ratio and regression estimators.

Ratio estimators. Hartley-Ross estimator. Ratio estimator for strat-

ified samples. Regression estimator.

4. Systematic sampling and cluster sampling.

5. Sampling with unequal probabilities.

Probability proportional to size(PPS) sampling. The Horvitz-Thompson

estimator.
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1 Simple Random Samples (SRS)

1.1 The Population

We have a finite number of elements, N where N is assumed known.

The population is Y1 . . . YN , where Yi is a numerical value associated with

i-th element. We adopt the notation where capital letters refer to char-

acteristics of the population; small letters are used for the corresponding

characteristics of a sample.

Population Total: Y =
N∑
i=1

Yi,

Population Mean: µ = Ȳ =
Y

N
=

1

N

N∑
i=1

Yi,

Population Variance : σ2 =
1

N

N∑
i=1

(Yi − Ȳ )2 and

S2 =
N

N − 1
σ2 =

1

N − 1

N∑
i=1

(Yi − Ȳ )2.

These are fixed (population) quantities, to be estimated.

If we have to consider two numerical values: (Yi, Xi), i = 1, · · · , N
an additional population quantity of interest is

R =

N∑
i=1

Yi

N∑
i=1

Xi

=
Y

X
=
Ȳ

X̄

the ratio of totals.
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1.2 Simple Random Sampling

Focus on the numerical values Yi, i = 1, · · · , N . A random sample

of size n is taken without replacement : the observed values y1, · · · , yn
are random variables and are stochastically dependent. The sampling

frame is a list of the values Yi, i = 1, · · · , N.

The natural estimator for Ȳ is ̂̄Y =
1

n

n∑
i=1

yi = ȳ

and hence for Y = Nµ is Ŷ = Nȳ.

Distributional properties of ȳ are complicated by the dependence of the

yi’s.

Sample variance: s2 =
1

n− 1

n∑
i=1

(yi − ȳ)2

Fundamental Results

E(ȳ) = µ.

Var( ȳ) = (1− n

N
)
S2

n
= (1− f )

S2

n
=

(
N − n
N − 1

)
σ2

n

var( ȳ) = (1− n

N
)
s2

n

E(s2) = S2

where f is the sampling fraction and the finite population correction

(f.p.c.) is 1− f .
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Proof: Let y =
1

n

∑
i∈S

yi =
1

n

N∑
i=1

yiIi where the sample membership

indicator

Ii =

{
1 if element i is in the sample,

0 if otherwise.

First, we have

E(Ii) = 0× Pr(Ii = 0) + 1× Pr(Ii = 1) = πi =
n

N
,

E(I2
i ) = 02 × Pr(Ii = 0) + 12 × Pr(Ii = 1) = πi =

n

N
,

E(IiIj) = 0× 0 Pr(Ii = 0&Ij = 0) + 0× 1 Pr(Ii = 0&Ij = 1) +

1× 0 Pr(Ii = 1&Ij = 0) + 1× 1 Pr(Ii = 1&Ij = 1)

= πij =
n(n− 1)

N(N − 1)

Var(Ii) = E(I2
i )− E2(Ii) = πi(1− πi) =

n

N
(1− n

N
),

Cov(Ii, Ij) = E(IiIj)− E(Ii)E(Ij) = πij − πiπj =
n(n− 1)

N(N − 1)
−
( n
N

)2

.

Then

E(y) =
1

n

N∑
i=1

yiE(Ii) =
1

n

N∑
i=1

yi ·
n

N
=

1

N

N∑
i=1

yi = Y . Unbiased

E[var(y)]
def.
= E

[(
N − n
N

)
s2
y

n

]
Pf.2→

=

(
N − n
N

)
S2
y

n

←Pf.1
= Var(y) Unbiased.

Proof 1: show that Var(y) =

(
N − n
N

)
S2
y

n
.
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Var(y) = Var

(
1

n

N∑
i=1

yiIi

)

=
1

n2

[
N∑
i=1

y2
iVar(Ii) + 2

∑
i

∑
j,i<j

yiyjCov(Ii, Ij)

]

=
1

n2

{
N∑
i=1

y2
i

[ n
N

(
1− n

N

)]
+ 2

∑
i

∑
j,i<j

yiyj

[
n(n− 1)

N(N − 1)
−
( n
N

)2
]}

=
n

n2

{
1

N

(
1− n

N

) N∑
i=1

y2
i + 2

1

N

(
n− 1

N − 1
− n

N

)∑
i

∑
j,i<j

yiyj

}

=
1

n

(
1− n

N

){ 1

N

N∑
i=1

y2
i + 2

1

N

(
1− n

N

)−1 N(n− 1)− n(N − 1)

N(N − 1)

∑
i

∑
j,i<j

yiyj

}

=
1

n

(
1− n

N

){ 1

N

N∑
i=1

y2
i + 2

1

N

N

N − n
n−N

N(N − 1)

∑
i

∑
j,i<j

yiyj

}

=
1

n

(
1− n

N

) 1

N − 1

{
N − 1

N

N∑
i=1

y2
i − 2

1

N

∑
i

∑
j,i<j

yiyj

}

=
1

n

(
1− n

N

) 1

N − 1

{
N∑
i=1

y2
i −

1

N

(
N∑
i=1

y2
i + 2

∑
i

∑
j,i<j

yiyj

)}

=
1

n

(
1− n

N

) 1

N − 1

{
N∑
i=1

y2
i −

1

N

(
N∑
i=1

yi

)(
N∑
i=1

yi

)}

=
(

1− n

N

) S2
y

n
=
N − n
N

N

N − 1

σ2
y

n
=

(
N − n
N − 1

)
σ2
y

n

Proof 2: show that E(s2
y) = S2

y where S2
y = 1

N−1

N∑
i=1

(yi−Y )2 = N
N−1σ

2
y.

E(s2
y) = E

[
1

n− 1

n∑
i=1

(yi − y)2

]
=

1

n− 1
E

{
n∑
i=1

[(yi − Y )− (y − Y )]2

}
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=
1

n− 1
E

[
n∑
i=1

(yi − Y )2 − n(y − Y )2

]

=
1

n− 1

[
n∑
i=1

E(yi − Y )2 − nE(y − Y )2

]

=
1

n− 1

[
n∑
i=1

Var(yi)− nVar(y)

]

=
1

n− 1

[
nσ2

y − n
(
N − n
N − 1

)
σ2
y

n

]

=

(
n− N − n

N − 1

)
σ2
y

n− 1
=

(
nN − n−N + n

N − 1

)
σ2
y

n− 1

=
N

N − 1
σ2
y = S2

y

Central Limit Property

For large sample size n (n > 30 say), and small to moderate f, we have

the approximation

(ȳ − µ)/
√

Var(ȳ) ∼ N (0, 1).

Confidence Interval for µ = Ȳ

Replacing S2 by s2, an approximate 95% C.I. for µ and Y are

respectively

ȳ ± 1.96
s√
n

√
1− f,

N(ȳ ± 1.96
s√
n

√
1− f )

Read Tutorial 10 Q1.
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Example: (Industrial firm) An industrial firm is concerned about the

time spent each week by staff on certain tasks. The time-log sheets of a

SRS of n = 50 employees show the average amount of time spent on these

tasks is 10.31 hours, with a sample variance s2 = 2.25. The company

employs N = 750 staff. Estimate the total number of man-hours used

each week on the tasks and construct a 95% CI for the estimate.

Solution: From N = 750 time-log sheets, a SRS of n = 50 sheets was

obtained. The average amount of time used in the sample is y = 10.31

hours/week. Since n = 50 is large, we take z0.025 = 1.96. Hence

Ŷ = Ny = 750× 10.31 = 7732.5 hours

var(Ŷ ) = N 2
(

1− n

N

) s2

n
= 7502

(
1− 50

750

)
2.25

50
= 23, 625

se(Ŷ ) =
√

23, 625 = 153.70

95% CI for Y = (Ny − 1.96× se(Ŷ ), Ny + 1.96× se(Ŷ ))

= (7732.5− 1.96× 153.70, 7732.5 + 1.96× 153.70)

= (7431.2, 8033.8)
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1.3 Simple Random Sampling for Attributes.

The method for SRS can be applied to estimate the total number, or

proportion (or %) of units which possess some qualitative attribute. Let

this subset of the population be C.

Let

Yi = 1 if i ∈ C
= 0 if i /∈ C

and similarly for yi’s .

Customary notation:

µ = Ȳ = P is the population proportion,

Y =

N∑
i=1

Yi = NP is the population total count,

ȳ = p is the sample proportion.

Let y =
n∑
i=1

yi = np, Q = 1− P and q = 1− p.

Thus Ŷ = Np = Ny/n.

Since
N∑
i=1

(Yi − Ȳ )2 =

N∑
i=1

Y 2
i −NȲ 2 = NȲ −NȲ 2 = NP (1− P ),

we have

S2 = NP (1− P )/(N − 1) ≈ P (1− P )

and similarly,

s2 = np(1− p)/(n− 1) ≈ p(1− p) and

s2

n
=
np(1− p)

n(n− 1)
=
p(1− p)

n− 1
≈ p(1− p)

n
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1.4 Sample Size Calculations

To calculate the sample size needed for sampling yet to be carried out,

we want to be at least 100(1−α)% sure the estimate ȳ of µ is within

100δ% of the actual value of µ (e.g. 1− α = 0.95, zα/2 = 1.96). That

is

Pr{|ȳ − µ| ≤ δµ} ≥ 1− α

⇔ Pr

(
|ȳ − µ|√

Var( ȳ)
≤ δµ√

Var( ȳ)

)
≥ 1− α

⇔ δµ/
√

Var( ȳ) ≥ zα/2

⇔
(

1− n

N

) S2

n
≤ (δµ)2

z2
α/2

⇔ S2

n
− S2

N
≤ (δµ)2

z2
α/2

⇔ S2

n
≤ (δµ)2

z2
α/2

+
S2

N

⇔ n ≥ S2

(δµ)2

z2
α/2

+ S2

N

⇔ n ≥ NS2

N(δµ)2/z2
α/2 + S2

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
µ

0

ȳ

z

Normal

Standard normal

µ+ δµ
δµ

SE(ȳ)

µ− δµ
−δµ
SE(ȳ)

Area
≥ 1− α zα/2 = 1.96

� -

Ignoring f.p.c. (i.e. taking f = 0 or Var( ȳ) = S2/n when N is unknown)

n ≥
z2
α/2S

2

(δµ)2
≈

z2
α/2s

2

(δȳ)2

where s2 and ȳ are estimates from a pilot survey and s2 ≈ p(1− p) for

attributes.
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Example: (blood group)

1. What size sample must be drawn from a population of size N = 800

in order to estimate the proportion with a given blood group to

within 0.04 (i.e. an absolute error of 4%) with probability 0.95?

2. What sample size is needed if we know that the blood group is present

in no more than 30% of the population?

Solution:

1. We have N = 800, S2 ' p̂(1 − p̂) = 0.52 = 0.25, δµ = 0.04 and

z0.025 = 1.96. Note that S2 = p(1 − p) is max at p = 0.5 and this

gives the most conservative n.

-

6

p

p (1− p)

0.5

0.25

0 1
ppppppppppppppppp

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

n ≥ NS2

Nδ2
µ/z

2
α/2 + S2

=
800(0.25)

800(0.042)/1.962 + 0.25
= 342.93

Take n = 343.

2. Now S2 = p(1− p) = 0.3(0.7) = 0.21.

n ≥ NS2

Nδ2
µ/z

2
α/2 + S2

=
800(0.21)

800(0.042)/1.962 + 0.21
= 309.28

Take n = 310.

Read Tutorial 10 Q2.
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1.5 Inference over Subpopulations-Poststratification

Motivating example: (dentist) There are 200 children in a village.

One dentist takes a simple random sample of 20 and finds 12 children

with at least one decayed tooth and a total of 42 decayed teeth. Another

dentist quickly checks all 200 children and finds 60 with no decayed teeth.

Estimate the total number of decayed teeth.

C1: ≥ 1 decayed teeth C2: no decayed teeth Total
N1 = 140 N2 = 60 N = 200
n1 = 12 n2 = 8 n = 20∑
i∈C1

yi = 42 =
n∑
i=1

y′i

'

&

$

%

'

&

$

%

C1

n1 = 12

C2

n2 = 8

N1 = 140 N2 = 60

∑
i∈C1

yi

= 42

From a population of N individuals, one simple random sample of n

individuals yi, i = 1, · · · , n is drawn. Separate estimates might be

wanted for one of a number of subclasses {C1, C2, · · · } which are subsets

of the population (sampling frame) using post-stratification.

Reasons:

1. Unavailability of a suitable sampling frame for each stratum even

though the stratum sizes N1, . . . , NL are often obtainable from offi-

cial statistics.

2. Inability to classify population elements into an appropriate stratum

without actual contact,

e.g. personal characteristics such as educational level and political

preference and household characteristics such as owned/rented ac-

commodation, income level and household size are unknown

3. Multi-variate and multi-purpose nature of most surveys.

4. Post-stratification is to correct the distorted sample proportion due

to non-response.
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Example:

POPULATION (SAMPLING FRAME) SUBPOPULATION

Australian population unemployed Queenslanders

retailers supermarkets

the employed the employed working overtime

Solution: The estimate for the overall average no. of decay teeth using

overall sample mean is

̂̄Y = ȳ′ =
1

n

∑
i∈C1

yi =
42

20
= 2.1.

The estimate for the overall or conditional total number of decayed

teeth, Y is

Ŷpst,1m1 = Nȳ′ = 200× 2.1 = 420,

ignoring the information of n1 = 12 and N1 = 140 from the second

dentist. Using these information and condition on those with at least

one decayed teeth, the average no. of decay teeth is

̂̄Y pst,1m1 =
Nȳ′

N1
=

200(2.1)

140
= 3

Alternative estimate for the average no. of decayed teeth using the con-

ditional sample mean is

̂̄Y pst,1m2 = ȳ1 =
nȳ′

n1
=

42

12
= 3.5

Hence the estimate for the total no. of decayed teeth is

Ŷpst,1m2 = N1ȳ1 = 140(3.5) = 490

Read Tutorial 10 Q3.
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Formulae: Denote the total number of items in class Cl by Nl. Note

that Nl is generally unknown but we can estimate Nl by

N̂l = Nnl/n

where wl = nl/n is the sample proportion of units falling into Cl and

the corresponding population proportion is Wl = Nl/N .

The same technique is used to estimate population mean & total in Cl:

Ȳl =
∑
i∈Cl

yi/Nl, and Yl =
∑
i∈Cl

yi

using

y′i =

{
yi if i ∈ Cl
0 if i /∈ Cl

C1 C2 MeanData
yi : y1 y2 . . . yn1+1 yn1+2 . . .

y′i : y1 y2 . . . 0 0 . . .

yi : y1 y2 . . . − − . . .

ȳ

ȳ′1
ȳ1

Then ȳ′ =
n∑
i=1

y′i/n estimates the mean Ȳ ′ =
N∑
i=1

y′i/N .

The unbiased estimator for the total Yl = NȲ ′ =
N∑
i=1

Y ′i in Cl and its

variance are

Ŷpst,lm1 = Nȳ′ = N
n∑
i=1

y′i/n and var(Ŷpst,lm1) = N 2
(

1− n

N

) s′l2
n

1. When Nl is known, the unbiased estimator for mean Ȳl = Yl/Nl in

Cl and its variance estimate are

̂̄Y pst,lm1 = Nȳ′/Nl = ȳ′/Wl and var( ̂̄Y pst,lm1) =
1

W 2
l

(
1− n

N

) s′l2
n
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where S ′l
2 can be estimated by s′l

2:

S ′l
2

=
1

N − 1

N∑
i=1

(y′i − Ȳ ′)2 and s′l
2

=
1

n− 1

n∑
i=1

(y′i − ȳ′)2.

Note: the random variable nl are not included in these calculations.

2. When Nl is unknown, we can estimate the total Yl by Nȳ′ but we

cannot estimate Ȳl by ȳ′/Wl. A natural way is to estimate Wl =
Nl

N
by wl =

nl
n

:

̂̄Y pst,lm2 = nȳ′/nl = ȳl and var( ̂̄Y pst,lm2) ' 1

Wl

(
1− n

N

) sl2
n

Similarly the total estimator and its variance estimate are

Ŷpst,lm2 = Nlȳl = Nlnȳ
′/nl and var(Ŷpst,lm2) ' N 2Wl

(
1− n

N

) sl2
n

where s2
l =

1

nl − 1

∑
i∈Cl

(yi − ȳl)2 is the sample variance in Cl and

N 2
l

Wi
= N 2Wl.

Theorem: For the estimator ̂̄Y l = ȳl = (n/nl)ȳ
′,

E(ȳl) = Ȳl

Var(ȳl) '
1

Wl

(
1− n

N

) S2
l

n

provided we define E(ȳl) = Ȳl when nl = 0.
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Proof: Using conditional expectation,

E(ȳl) = Enl{E(ȳl|nl)}
= E(ȳl|nl = 0) Pr(nl = 0) +

∑
i≥1

E(ȳl|nl = i) Pr(nl = i)

= Ȳl Pr(nl = 0) +
∑
i≥1

Ȳl Pr(nl = i) = Ȳl

where for each fixed nl, a simple random sample of size nl is drawn from

Cl. Further using conditional variance,

Var(ȳl) = Var(E(ȳl|nl))︸ ︷︷ ︸
Ȳl

+E(Var (ȳl|nl)) = 0 + E(Var(ȳl|nl))

= E

[(
1− nl

Nl

)
S2
l

nl

]
= E

(
S2
l

nl
− S2

l

Nl

)
' S2

l

nWl
− S2

l

NWl

=
1

Wl

(
1− n

N

) S2
l

n

since E

(
1

nl

)
' 1

nWl
+

1−Wl

n2W 2
l

' 1

nWl
where the ignored term:

extra var. =
1−Wl

n2W 2
l

S2
l

is the extra variability due to the random sample size nl.

Theorem: E

(
1

nl

)
' 1

nWl
+

1−Wl

n2W 2
l

.

Proof:
1

nl
= (nl − nWl + nWl)

−1 =
1

nWl

(
1 +

nl − nWl

nWl

)−1

=
1

nWl

[
1−

(
nl − nWl

nWl

)
+

(
nl − nWl

nWl

)2

− . . .

]
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Hence E

(
1

nl

)
=

1

nWl

[
1− E(nl − nWl)

nWl
+
E(nl − nWl)

2

n2W 2
l

− . . .
]

' 1

nWl
+

1

nWl

(
nWl(1−Wl)

n2W 2
l

)
=

1

nWl
+

1−Wl

n2W 2
l

since E(nl) = nWl and V ar(nl) = nWl(1−Wl).

Corollary: The estimator Ŷpst,lm2 = Nl ȳl is unbiased for Yl and has

Var (Ŷl) = N 2
l Var(ȳl).

When Nl is known, the estimator Ŷpst,lm2 = Nl ȳl uses more information

(both Nl & nl) than Nȳ′ and so is a better unbiased estimator.

Using this method, the overall total and mean estimates are:

Ŷpst = N

L∑
l=1

Wl ȳl and var (Ŷpst) ' N 2
(

1− n

N

) 1

n

L∑
l=1

Wls
2
l

and

̂̄Y pst =

L∑
l=1

Wl ȳl and var ( ̂̄Y pst) '
(

1− n

N

) 1

n

L∑
l=1

Wls
2
l

respectively since

̂̄Y pst =
1

N

L∑
l=1

Ŷpst,lm2 =
1

N

L∑
l=1

Nl ȳl =

L∑
l=1

Wl ȳl

var ( ̂̄Y pst) =

L∑
l=1

W 2
l var(ȳl) '

L∑
l=1

W 2
l

1

Wl

(
1− n

N

) s2
l

n
'
(

1− n

N

)1

n

L∑
l=1

Wls
2
l

Compare ̂̄Y pst to ̂̄Y = ȳ =

L∑
l=1

wl ȳl and var ( ̂̄Y ) =
(

1− n

N

) s2

n

for one SRS without post-stratification, we have
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Wl replaces wl and
L∑
l=1

Wls
2
l replaces s2 to correct sample proportions.

Read Tutorial 11 Q1,c,d.

Post-stratified estimator based on 1 SRS

Par. Nl Estimator Variance

Ȳl known ̂̄Y pst,lm1 = Nȳ′/Nl var( ̂̄Y pst,lm1) =
1

W 2
l

(
1− n

N

) s′l2
n

Yl unknown Ŷpst,lm1 = Nȳ′ var(Ŷpst,lm1) = N 2
(

1− n

N

) s′l2
n

Ȳl unknown ̂̄Y pst,lm2 = ȳl var( ̂̄Y pst,lm2) ' 1

Wl

(
1− n

N

) sl2
n

Yl known Ŷpst,lm2 = Nlȳl var(Ŷpst,lm2) ' N 2Wl

(
1− n

N

) sl2
n

Y known Ŷ pst =

L∑
l=1

Wlyl var(Ŷ pst) '
(

1− n

N

) L∑
l=1

Wl
s2
l

n

Y known Ŷpst =

L∑
l=1

Nlyl var(Ŷpst) ' N 2
(

1− n

N

) L∑
l=1

Wl
s2
l

n

where y′i = yi if i ∈ Cl & 0 otherwise, ȳ′ = 1
n

∑
i∈Cl

yi, ȳl = 1
nl

∑
i∈Cl

yi,

s′l
2 =

1

n− 1

n∑
i=1

(y′i − ȳ′)2, and s2
l =

1

nl − 1

∑
i∈Cl

(yi − ȳl)2.
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