## References

1. Cochran, W.G. (1963) Sampling Techniques, Wiley, New York.
2. Kish, L. (1995) Survey Sampling, Wiley Inter. Science.
3. Lohr, S.L. (1999) Sampling: Design and Analysis, Duxbury Press.
4. McLennan, W. (1999) An Introduction to Sample Surveys, A.B.S. Publications, Canberra.

## Section outline

1. Simple random samples and stratification.

Finite population correction factor. Sample size determination. Inference over subpopulations.
2. Stratified sampling.

Optimal allocation.
3. Ratio and regression estimators.

Ratio estimators. Hartley-Ross estimator. Ratio estimator for stratified samples. Regression estimator.
4. Systematic sampling and cluster sampling.
5. Sampling with unequal probabilities.

Probability proportional to size(PPS) sampling. The Horvitz-Thompson estimator.

STAT3014/3914 Applied Stat.-Sampling C1-Simple random sample

## 1 Simple Random Samples (SRS)

### 1.1 The Population

We have a finite number of elements, $N$ where $N$ is assumed known. The population is $Y_{1} \ldots Y_{N}$, where $Y_{i}$ is a numerical value associated with $i$-th element. We adopt the notation where capital letters refer to characteristics of the population; small letters are used for the corresponding characteristics of a sample.
Population Total: $Y=\sum_{i=1}^{N} Y_{i}$,
Population Mean: $\mu=\bar{Y}=\frac{Y}{N}=\frac{1}{N} \sum_{i=1}^{N} Y_{i}$,
Population Variance : $\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2} \quad$ and
$S^{2}=\frac{N}{N-1} \sigma^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}$.
These are fixed (population) quantities, to be estimated.
If we have to consider two numerical values: $\left(Y_{i}, X_{i}\right), \quad i=1, \cdots, N$ an additional population quantity of interest is

$$
R=\frac{\sum_{i=1}^{N} Y_{i}}{\sum_{i=1}^{N} X_{i}}=\frac{Y}{X}=\frac{\bar{Y}}{\bar{X}}
$$

the ratio of totals.

### 1.2 Simple Random Sampling

Focus on the numerical values $Y_{i}, \quad i=1, \cdots, N$. A random sample of size $n$ is taken without replacement: the observed values $y_{1}, \cdots, y_{n}$ are random variables and are stochastically dependent. The sampling frame is a list of the values $Y_{i}, i=1, \cdots, N$.

$$
\begin{aligned}
& \text { The natural estimator for } \bar{Y} \text { is } \widehat{\bar{Y}}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\bar{y} \\
& \text { and hence for } Y=N \mu \text { is } \quad \widehat{Y}=N \bar{y} .
\end{aligned}
$$

Distributional properties of $\bar{y}$ are complicated by the dependence of the $y_{i}$ 's.

$$
\text { Sample variance: } \quad s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

## Fundamental Results

$$
\begin{aligned}
& E(\bar{y})=\mu . \\
& \operatorname{Var}(\bar{y})=\left(1-\frac{n}{N}\right) \frac{S^{2}}{n}=(1-f) \frac{S^{2}}{n}=\left(\frac{N-n}{N-1}\right) \frac{\sigma^{2}}{n} \\
& \operatorname{var}(\bar{y})=\left(1-\frac{n}{N}\right) \frac{s^{2}}{n} \\
& E\left(s^{2}\right)=S^{2}
\end{aligned}
$$

where $f$ is the sampling fraction and the finite population correction (f.p.c.) is $1-f$.

Proof: Let $\bar{y}=\frac{1}{n} \sum_{i \in \mathcal{S}} y_{i}=\frac{1}{n} \sum_{i=1}^{N} y_{i} I_{i}$ where the sample membership indicator

$$
I_{i}=\left\{\begin{array}{l}
1 \text { if element } i \text { is in the sample } \\
0 \text { if otherwise }
\end{array}\right.
$$

First, we have

$$
\begin{aligned}
E\left(I_{i}\right)= & 0 \times \operatorname{Pr}\left(I_{i}=0\right)+1 \times \operatorname{Pr}\left(I_{i}=1\right)=\pi_{i}=\frac{n}{N}, \\
E\left(I_{i}^{2}\right)= & 0^{2} \times \operatorname{Pr}\left(I_{i}=0\right)+1^{2} \times \operatorname{Pr}\left(I_{i}=1\right)=\pi_{i}=\frac{n}{N}, \\
E\left(I_{i} I_{j}\right)= & 0 \times 0 \operatorname{Pr}\left(I_{i}=0 \& I_{j}=0\right)+0 \times 1 \operatorname{Pr}\left(I_{i}=0 \& I_{j}=1\right)+ \\
& 1 \times 0 \operatorname{Pr}\left(I_{i}=1 \& I_{j}=0\right)+1 \times 1 \operatorname{Pr}\left(I_{i}=1 \& I_{j}=1\right) \\
= & \pi_{i j}=\frac{n(n-1)}{N(N-1)} \\
\operatorname{Var}\left(I_{i}\right)= & E\left(I_{i}^{2}\right)-E^{2}\left(I_{i}\right)=\pi_{i}\left(1-\pi_{i}\right)=\frac{n}{N}\left(1-\frac{n}{N}\right), \\
\operatorname{Cov}\left(I_{i}, I_{j}\right)= & E\left(I_{i} I_{j}\right)-E\left(I_{i}\right) E\left(I_{j}\right)=\pi_{i j}-\pi_{i} \pi_{j}=\frac{n(n-1)}{N(N-1)}-\left(\frac{n}{N}\right)^{2} .
\end{aligned}
$$

Then

$$
E(\bar{y})=\frac{1}{n} \sum_{i=1}^{N} y_{i} E\left(I_{i}\right)=\frac{1}{n} \sum_{i=1}^{N} y_{i} \cdot \frac{n}{N}=\frac{1}{N} \sum_{i=1}^{N} y_{i}=\bar{Y} . \quad \text { Unbiased }
$$

$E[\operatorname{var}(\bar{y})] \stackrel{\text { def. }}{=} E\left[\left(\frac{N-n}{N}\right) \frac{s_{y}^{2}}{n}\right] \stackrel{P f .2 \rightarrow}{=}\left(\frac{N-n}{N}\right) \frac{S_{y}^{2}}{n} \stackrel{\leftarrow \text { Pf. } 1}{=} \operatorname{Var}(\bar{y})$ Unbiased.
Proof 1: show that $\operatorname{Var}(\bar{y})=\left(\frac{N-n}{N}\right) \frac{S_{y}^{2}}{n}$.

STAT3014/3914 Applied Stat.-Sampling C1-Simple random sample

$$
\begin{aligned}
& \operatorname{Var}(\bar{y})=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{N} y_{i} I_{i}\right) \\
= & \frac{1}{n^{2}}\left[\sum_{i=1}^{N} y_{i}^{2} \operatorname{Var}\left(I_{i}\right)+2 \sum_{i} \sum_{j, i<j} y_{i} y_{j} \operatorname{Cov}\left(I_{i}, I_{j}\right)\right] \\
= & \frac{1}{n^{2}}\left\{\sum_{i=1}^{N} y_{i}^{2}\left[\frac{n}{N}\left(1-\frac{n}{N}\right)\right]+2 \sum_{i} \sum_{j, i<j} y_{i} y_{j}\left[\frac{n(n-1)}{N(N-1)}-\left(\frac{n}{N}\right)^{2}\right]\right\} \\
= & \frac{n}{n^{2}}\left\{\frac{1}{N}\left(1-\frac{n}{N}\right) \sum_{i=1}^{N} y_{i}^{2}+2 \frac{1}{N}\left(\frac{n-1}{N-1}-\frac{n}{N}\right) \sum_{i} \sum_{j, i<j} y_{i} y_{j}\right\} \\
= & \frac{1}{n}\left(1-\frac{n}{N}\right)\left\{\frac{1}{N} \sum_{i=1}^{N} y_{i}^{2}+2 \frac{1}{N}\left(1-\frac{n}{N}\right)^{-1} \frac{N(n-1)-n(N-1)}{N(N-1)} \sum_{i} \sum_{j, i<j} y_{i} y_{j}\right\} \\
= & \frac{1}{n}\left(1-\frac{n}{N}\right)\left\{\frac{1}{N} \sum_{i=1}^{N} y_{i}^{2}+2 \frac{1}{N} \frac{N}{N-n} \frac{n-N}{N(N-1)} \sum_{i} \sum_{j, i<j} y_{i} y_{j}\right\} \\
= & \frac{1}{n}\left(1-\frac{n}{N}\right) \frac{1}{N-1}\left\{\frac{N-1}{N} \sum_{i=1}^{N} y_{i}^{2}-2 \frac{1}{N} \sum_{i} \sum_{j, i<j} y_{i} y_{j}\right\} \\
= & \frac{1}{n}\left(1-\frac{n}{N}\right) \frac{1}{N-1}\left\{\sum_{i=1}^{N} y_{i}^{2}-\frac{1}{N}\left(\sum_{i=1}^{N} y_{i}^{2}+2 \sum_{i} \sum_{j, i<j} y_{i} y_{j}\right)\right\} \\
= & \frac{1}{n}\left(1-\frac{n}{N}\right) \frac{1}{N-1}\left\{\sum_{i=1}^{N} y_{i}^{2}-\frac{1}{N}\left(\sum_{i=1}^{N} y_{i}\right)\left(\sum_{i=1}^{N} y_{i}\right)\right\} \\
= & \left(1-\frac{n}{N}\right) \frac{S_{y}^{2}}{n}=\frac{N-n}{N} \frac{N}{N-1} \frac{\sigma_{y}^{2}}{n}=\left(\frac{N-n}{N-1}\right) \frac{\sigma_{y}^{2}}{n}
\end{aligned}
$$

Proof 2: show that $E\left(s_{y}^{2}\right)=S_{y}^{2}$ where $S_{y}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{Y}\right)^{2}=\frac{N}{N-1} \sigma_{y}^{2}$.

$$
E\left(s_{y}^{2}\right)=E\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\right]=\frac{1}{n-1} E\left\{\sum_{i=1}^{n}\left[\left(y_{i}-\bar{Y}\right)-(\bar{y}-\bar{Y})\right]^{2}\right\}
$$

$$
\begin{aligned}
& =\frac{1}{n-1} E\left[\sum_{i=1}^{n}\left(y_{i}-\bar{Y}\right)^{2}-n(\bar{y}-\bar{Y})^{2}\right] \\
& =\frac{1}{n-1}\left[\sum_{i=1}^{n} E\left(y_{i}-\bar{Y}\right)^{2}-n E(\bar{y}-\bar{Y})^{2}\right] \\
& =\frac{1}{n-1}\left[\sum_{i=1}^{n} \operatorname{Var}\left(y_{i}\right)-n \operatorname{Var}(\bar{y})\right] \\
& =\frac{1}{n-1}\left[n \sigma_{y}^{2}-n\left(\frac{N-n}{N-1}\right) \frac{\sigma_{y}^{2}}{n}\right] \\
& =\left(n-\frac{N-n}{N-1}\right) \frac{\sigma_{y}^{2}}{n-1}=\left(\frac{n N-n-N+n}{N-1}\right) \frac{\sigma_{y}^{2}}{n-1} \\
& =\frac{N}{N-1} \sigma_{y}^{2}=S_{y}^{2}
\end{aligned}
$$

## Central Limit Property

For large sample size $n$ ( $n>30$ say), and small to moderate $f$, we have the approximation

$$
(\bar{y}-\mu) / \sqrt{\operatorname{Var}(\bar{y})} \sim \mathcal{N}(0,1)
$$

Confidence Interval for $\mu=\bar{Y}$
Replacing $S^{2}$ by $s^{2}$, an approximate $95 \%$ C.I. for $\mu$ and $Y$ are respectively

$$
\begin{array}{r}
\bar{y} \pm 1.96 \frac{s}{\sqrt{n}} \sqrt{1-f} \\
N\left(\bar{y} \pm 1.96 \frac{s}{\sqrt{n}} \sqrt{1-f}\right)
\end{array}
$$

Read Tutorial 10 Q1.

STAT3014/3914 Applied Stat.-Sampling C1-Simple random sample
Example: (Industrial firm) An industrial firm is concerned about the time spent each week by staff on certain tasks. The time-log sheets of a SRS of $n=50$ employees show the average amount of time spent on these tasks is 10.31 hours, with a sample variance $s^{2}=2.25$. The company employs $N=750$ staff. Estimate the total number of man-hours used each week on the tasks and construct a $95 \%$ CI for the estimate.

Solution: From $N=750$ time-log sheets, a SRS of $n=50$ sheets was obtained. The average amount of time used in the sample is $\bar{y}=10.31$ hours/week. Since $n=50$ is large, we take $z_{0.025}=1.96$. Hence

### 1.3 Simple Random Sampling for Attributes.

The method for SRS can be applied to estimate the total number, or proportion (or \%) of units which possess some qualitative attribute. Let this subset of the population be $C$.

Let

$$
\begin{aligned}
Y_{i} & =1 \text { if } i \in C \\
& =0 \text { if } i \notin C
\end{aligned}
$$

and similarly for $y_{i}$ 's .
Customary notation:

$$
\begin{aligned}
\mu & =\bar{Y}=P \text { is the population proportion, } \\
Y & =\sum_{i=1}^{N} Y_{i}=N P \text { is the population total count }
\end{aligned}
$$

$$
\bar{y}=p \text { is the sample proportion. }
$$

Let $y=\sum_{i=1}^{n} y_{i}=n p, Q=1-P$ and $q=1-p$.
Thus

$$
\widehat{Y}=N p=N y / n
$$

Since

$$
\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{N} Y_{i}^{2}-N \bar{Y}^{2}=N \bar{Y}-N \bar{Y}^{2}=N P(1-P)
$$

we have

$$
S^{2}=N P(1-P) /(N-1) \approx P(1-P)
$$

and similarly,

$$
\begin{aligned}
& s^{2}=n p(1-p) /(n-1) \approx p(1-p) \text { and } \\
& \frac{s^{2}}{n}=\frac{n p(1-p)}{n(n-1)}=\frac{p(1-p)}{n-1} \approx \frac{p(1-p)}{n}
\end{aligned}
$$

### 1.4 Sample Size Calculations

To calculate the sample size needed for sampling yet to be carried out, we want to be at least $100(1-\alpha) \%$ sure the estimate $\bar{y}$ of $\mu$ is within $100 \delta \%$ of the actual value of $\mu$ (e.g. $1-\alpha=0.95, z_{\alpha / 2}=1.96$ ). That is

$$
\begin{aligned}
& \operatorname{Pr}\left\{|\bar{y}-\mu| \leq \delta_{\mu}\right\} \geq 1-\alpha \\
\Leftrightarrow & \operatorname{Pr}\left(\frac{|\bar{y}-\mu|}{\sqrt{\operatorname{Var}(\bar{y})}} \leq \frac{\delta_{\mu}}{\sqrt{\operatorname{Var}(\bar{y})}}\right) \geq 1-\alpha \\
\Leftrightarrow & \delta_{\mu} / \sqrt{\operatorname{Var}(\bar{y})} \geq z_{\alpha / 2} \\
\Leftrightarrow & \left(1-\frac{n}{N}\right) \frac{S^{2}}{n} \leq \frac{\left(\delta_{\mu}\right)^{2}}{z_{\alpha / 2}^{2}} \\
\Leftrightarrow & \frac{S^{2}}{n}-\frac{S^{2}}{N} \leq \frac{\left(\delta_{\mu}\right)^{2}}{z_{\alpha / 2}^{2}} \\
\Leftrightarrow & \frac{S^{2}}{n} \leq \frac{\left(\delta_{\mu}\right)^{2}}{z_{\alpha / 2}^{2}}+\frac{S^{2}}{N} \\
\Leftrightarrow & n \geq \frac{S^{2}}{\frac{\left(\delta_{\mu}\right)^{2}}{z_{\alpha / 2}^{2}}+\frac{S^{2}}{N}} \quad \text { Normal } \\
\Leftrightarrow & n \geq \frac{N S^{2}}{N\left(\delta_{\mu}\right)^{2} / z_{\alpha / 2}^{2}+S^{2}}
\end{aligned}
$$

Ignoring f.p.c. (i.e. taking $f=0$ or $\operatorname{Var}(\bar{y})=S^{2} / n$ when $N$ is unknown)

$$
n \geq \frac{z_{\alpha / 2}^{2} S^{2}}{\left(\delta_{\mu}\right)^{2}} \approx \frac{z_{\alpha / 2}^{2} s^{2}}{\left(\delta_{\bar{y}}\right)^{2}}
$$

where $s^{2}$ and $\bar{y}$ are estimates from a pilot survey and $s^{2} \approx p(1-p)$ for attributes.

STAT3014/3914 Applied Stat.-Sampling C1-Simple random sample
Example: (blood group)

1. What size sample must be drawn from a population of size $N=800$ in order to estimate the proportion with a given blood group to within 0.04 (i.e. an absolute error of $4 \%$ ) with probability 0.95 ?
2. What sample size is needed if we know that the blood group is present in no more than $30 \%$ of the population?

## Solution:

Read Tutorial 10 Q2.

STAT3014/3914 Applied Stat.-Sampling C1-Simple random sample

### 1.5 Inference over Subpopulations-Poststratification

Motivating example: (dentist) There are 200 children in a village. One dentist takes a simple random sample of 20 and finds 12 children with at least one decayed tooth and a total of 42 decayed teeth. Another dentist quickly checks all 200 children and finds 60 with no decayed teeth.

Estimate the total number of decayed teeth.

$$
\begin{array}{lll}
C_{1}: \geq 1 \text { decayed teeth } & C_{2}: \text { no decayed teeth } & \text { Total } \\
N_{1}=140 & N=200 \\
N_{2}=12 & & N=60 \\
n_{1}=12 & n_{2}=8 & \\
\sum_{i \in C_{1}} y_{i}=42=\sum_{i=1}^{n} y_{i}^{\prime} & &
\end{array}
$$



From a population of $N$ individuals, one simple random sample of $n$ individuals $y_{i}, i=1, \cdots, n$ is drawn. Separate estimates might be wanted for one of a number of subclasses $\left\{C_{1}, C_{2}, \cdots\right\}$ which are subsets of the population (sampling frame) using post-stratification.

## Reasons:

1. Unavailability of a suitable sampling frame for each stratum even though the stratum sizes $N_{1}, \ldots, N_{L}$ are often obtainable from official statistics.
2. Inability to classify population elements into an appropriate stratum without actual contact,
e.g. personal characteristics such as educational level and political preference and household characteristics such as owned/rented accommodation, income level and household size are unknown
3. Multi-variate and multi-purpose nature of most surveys.
4. Post-stratification is to correct the distorted sample proportion due to non-response.

STAT3014/3914 Applied Stat.-Sampling C1-Simple random sample

## Example:

POPULATION (SAMPLING FRAME)
Australian population retailers
the employed

## SUBPOPULATION

 unemployed Queenslanders supermarkets the employed working overtimeSolution: The estimate for the overall average no. of decay teeth using overall sample mean is

The estimate for the overall or conditional total number of decayed teeth, $Y$ is
ignoring the information of $n_{1}=12$ and $N_{1}=140$ from the second dentist. Using these information and condition on those with at least one decayed teeth, the average no. of decay teeth is

Alternative estimate for the average no. of decayed teeth using the conditional sample mean is

Hence the estimate for the total no. of decayed teeth is

Read Tutorial 10 Q3.

Formulae: Denote the total number of items in class $C_{l}$ by $N_{l}$. Note that $N_{l}$ is generally unknown but we can estimate $N_{l}$ by

$$
\widehat{N}_{l}=N n_{l} / n
$$

where $w_{l}=n_{l} / n$ is the sample proportion of units falling into $C_{l}$ and the corresponding population proportion is $W_{l}=N_{l} / N$.

The same technique is used to estimate population mean \& total in $C_{l}$ :

$$
\bar{Y}_{l}=\sum_{i \in C_{l}} y_{i} / N_{l}, \quad \text { and } \quad Y_{l}=\sum_{i \in C_{l}} y_{i}
$$

using

$$
\begin{array}{lll}
\text { Data } C_{1} & C_{2} & \text { Mean }
\end{array}
$$

$$
\begin{array}{llllll}
y_{i}: & y_{1} & y_{2} & \ldots & y_{n_{1}+1} & y_{n_{1}+2}
\end{array} \ldots \bar{y}
$$

Then

$$
\begin{array}{lllllll}
y_{i}^{\prime}: & y_{1} & y_{2} & \ldots & 0 & 0 & \ldots \\
\bar{y}_{1}^{\prime}
\end{array}
$$

$$
y_{i}: y_{1} y_{2} \ldots-\quad-\ldots \bar{y}_{1}
$$

The unbiased estimator for the total $Y_{l}=N \bar{Y}^{\prime}=\sum_{i=1}^{N} Y_{i}^{\prime}$ in $C_{l}$ and its variance are

$$
\widehat{Y}_{p s t, l m 1}=N \bar{y}^{\prime}=N \sum_{i=1}^{n} y_{i}^{\prime} / n \quad \text { and } \quad \operatorname{var}\left(\widehat{Y}_{p s t, l m 1}\right)=N^{2}\left(1-\frac{n}{N}\right) \frac{s_{l}^{\prime 2}}{n}
$$

1. When $N_{l}$ is known, the unbiased estimator for mean $\bar{Y}_{l}=Y_{l} / N_{l}$ in $C_{l}$ and its variance estimate are

$$
\widehat{\bar{Y}}_{p s t, l m 1}=N \bar{y}^{\prime} / N_{l}=\bar{y}^{\prime} / W_{l} \quad \text { and } \quad \operatorname{var}\left(\widehat{\bar{Y}}_{p s t, l m 1}\right)=\frac{1}{W_{l}^{2}}\left(1-\frac{n}{N}\right) \frac{s_{l}^{\prime 2}}{n}
$$

$$
\begin{aligned}
& y_{i}^{\prime}=\left\{\begin{array}{lll}
y_{i} & \text { if } & i \in C_{l} \\
0 & \text { if } & i \notin C_{l}
\end{array}\right. \\
& \bar{y}^{\prime}=\sum_{i=1}^{n} y_{i}^{\prime} / n \text { estimates the mean } \bar{Y}^{\prime}=\sum_{i=1}^{N} y_{i}^{\prime} / N \text {. }
\end{aligned}
$$ where ${S_{l}^{\prime 2}}^{2}$ can be estimated by $s_{l}^{\prime 2}$ :

$$
{S_{l}^{\prime}}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}^{\prime}-\bar{Y}^{\prime}\right)^{2} \quad \text { and } \quad s_{l}^{\prime 2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}^{\prime}-\bar{y}^{\prime}\right)^{2} .
$$

Note: the random variable $n_{l}$ are not included in these calculations.
2. When $N_{l}$ is unknown, we can estimate the total $Y_{l}$ by $N \bar{y}^{\prime}$ but we cannot estimate $\bar{Y}_{l}$ by $\bar{y}^{\prime} / W_{l}$. A natural way is to estimate $W_{l}=\frac{N_{l}}{N}$ by $w_{l}=\frac{n_{l}}{n}$ :

$$
\widehat{\bar{Y}}_{p s t, l m 2}=n \bar{y}^{\prime} / n_{l}=\bar{y}_{l} \quad \text { and } \quad \operatorname{var}\left(\widehat{\bar{Y}}_{p s t, l m 2}\right) \simeq \frac{1}{W_{l}}\left(1-\frac{n}{N}\right) \frac{s_{l}^{2}}{n}
$$

Similarly the total estimator and its variance estimate are

$$
\widehat{Y}_{p s t, l m 2}=N_{l} \bar{y}_{l}=N_{l} n \bar{y}^{\prime} / n_{l} \quad \text { and } \quad \operatorname{var}\left(\widehat{Y}_{p s t, l m 2}\right) \simeq N^{2} W_{l}\left(1-\frac{n}{N}\right) \frac{s_{l}^{2}}{n}
$$

where $s_{l}^{2}=\frac{1}{n_{l}-1} \sum_{i \in C_{l}}\left(y_{i}-\bar{y}_{l}\right)^{2}$ is the sample variance in $C_{l}$ and $\frac{N_{l}^{2}}{W_{i}}=N^{2} W_{l}$.

Theorem: For the estimator $\hat{\bar{Y}}_{l}=\bar{y}_{l}=\left(n / n_{l}\right) \bar{y}^{\prime}$,

$$
\begin{aligned}
E\left(\bar{y}_{l}\right) & =\bar{Y}_{l} \\
\operatorname{Var}\left(\bar{y}_{l}\right) & \simeq \frac{1}{W_{l}}\left(1-\frac{n}{N}\right) \frac{S_{l}^{2}}{n}
\end{aligned}
$$

provided we define $E\left(\bar{y}_{l}\right)=\bar{Y}_{l}$ when $n_{l}=0$.

Proof: Using conditional expectation,

$$
\begin{aligned}
E\left(\bar{y}_{l}\right) & =E_{n_{l}}\left\{E\left(\bar{y}_{l} \mid n_{l}\right)\right\} \\
& =E\left(\bar{y}_{l} \mid n_{l}=0\right) \operatorname{Pr}\left(n_{l}=0\right)+\sum_{i \geq 1} E\left(\bar{y}_{l} \mid n_{l}=i\right) \operatorname{Pr}\left(n_{l}=i\right) \\
& =\bar{Y}_{l} \operatorname{Pr}\left(n_{l}=0\right)+\sum_{i \geq 1} \bar{Y}_{l} \operatorname{Pr}\left(n_{l}=i\right)=\bar{Y}_{l}
\end{aligned}
$$

where for each fixed $n_{l}$, a simple random sample of size $n_{l}$ is drawn from $C_{l}$. Further using conditional variance,

$$
\begin{aligned}
\operatorname{Var}\left(\bar{y}_{l}\right) & =\operatorname{Var}(\underbrace{\left.E\left(\bar{y}_{l} \mid n_{l}\right)\right)}_{\bar{Y}_{l}}+E\left(\operatorname{Var}\left(\bar{y}_{l} \mid n_{l}\right)\right)=0+E\left(\operatorname{Var}\left(\bar{y}_{l} \mid n_{l}\right)\right) \\
& =E\left[\left(1-\frac{n_{l}}{N_{l}}\right) \frac{S_{l}^{2}}{n_{l}}\right]=E\left(\frac{S_{l}^{2}}{n_{l}}-\frac{S_{l}^{2}}{N_{l}}\right) \simeq \frac{S_{l}^{2}}{n W_{l}}-\frac{S_{l}^{2}}{N W_{l}} \\
& =\frac{1}{W_{l}}\left(1-\frac{n}{N}\right) \frac{S_{l}^{2}}{n}
\end{aligned}
$$

since $\quad E\left(\frac{1}{n_{l}}\right) \simeq \frac{1}{n W_{l}}+\frac{1-W_{l}}{n^{2} W_{l}^{2}} \simeq \frac{1}{n W_{l}}$ where the ignored term:

$$
\text { extra var. }=\frac{1-W_{l}}{n^{2} W_{l}^{2}} S_{l}^{2}
$$

is the extra variability due to the random sample size $n_{l}$.
Theorem: $E\left(\frac{1}{n_{l}}\right) \simeq \frac{1}{n W_{l}}+\frac{1-W_{l}}{n^{2} W_{l}^{2}}$.
Proof: $\frac{1}{n_{l}}=\left(n_{l}-n W_{l}+n W_{l}\right)^{-1}=\frac{1}{n W_{l}}\left(1+\frac{n_{l}-n W_{l}}{n W_{l}}\right)^{-1}$

$$
=\frac{1}{n W_{l}}\left[1-\left(\frac{n_{l}-n W_{l}}{n W_{l}}\right)+\left(\frac{n_{l}-n W_{l}}{n W_{l}}\right)^{2}-\ldots\right]
$$

STAT3014/3914 Applied Stat.-Sampling C1-Simple random sample
Hence $E\left(\frac{1}{n_{l}}\right)=\frac{1}{n W_{l}}\left[1-\frac{E\left(n_{l}-n W_{l}\right)}{n W_{l}}+\frac{E\left(n_{l}-n W_{l}\right)^{2}}{n^{2} W_{l}^{2}}-\ldots\right]$

$$
\simeq \frac{1}{n W_{l}}+\frac{1}{n W_{l}}\left(\frac{n W_{l}\left(1-W_{l}\right)}{n^{2} W_{l}^{2}}\right)=\frac{1}{n W_{l}}+\frac{1-W_{l}}{n^{2} W_{l}^{2}}
$$

since $E\left(n_{l}\right)=n W_{l}$ and $\operatorname{Var}\left(n_{l}\right)=n W_{l}\left(1-W_{l}\right)$.
Corollary: The estimator $\widehat{Y}_{p s t, l m 2}=N_{l} \bar{y}_{l}$ is unbiased for $Y_{l}$ and has $\operatorname{Var}\left(\widehat{Y}_{l}\right)=N_{l}^{2} \operatorname{Var}\left(\bar{y}_{l}\right)$.

When $N_{l}$ is known, the estimator $\widehat{Y}_{p s t, l m 2}=N_{l} \bar{y}_{l}$ uses more information (both $N_{l} \& n_{l}$ ) than $N \bar{y}^{\prime}$ and so is a better unbiased estimator.

Using this method, the overall total and mean estimates are:

$$
\widehat{Y}_{p s t}=N \sum_{l=1}^{L} W_{l} \bar{y}_{l} \text { and } \operatorname{var}\left(\widehat{Y}_{p s t}\right) \simeq N^{2}\left(1-\frac{n}{N}\right) \frac{1}{n} \sum_{l=1}^{L} W_{l} s_{l}^{2}
$$

and

$$
\widehat{\bar{Y}}_{p s t}=\sum_{l=1}^{L} W_{l} \bar{y}_{l} \text { and } \operatorname{var}\left(\hat{\bar{Y}}_{p s t}\right) \simeq\left(1-\frac{n}{N}\right) \frac{1}{n} \sum_{l=1}^{L} W_{l} s_{l}^{2}
$$

respectively since

$$
\widehat{\bar{Y}}_{p s t}=\frac{1}{N} \sum_{l=1}^{L} \widehat{Y}_{p s t, l m 2}=\frac{1}{N} \sum_{l=1}^{L} N_{l} \bar{y}_{l}=\sum_{l=1}^{L} W_{l} \bar{y}_{l}
$$

$\operatorname{var}\left(\hat{\bar{Y}}_{p s t}\right)=\sum_{l=1}^{L} W_{l}^{2} \operatorname{var}\left(\bar{y}_{l}\right) \simeq \sum_{l=1}^{L} W_{l}^{2} \frac{1}{W_{l}}\left(1-\frac{n}{N}\right) \frac{s_{l}^{2}}{n} \simeq\left(1-\frac{n}{N}\right) \frac{1}{n} \sum_{l=1}^{L} W_{l} s_{l}^{2}$
Compare $\widehat{\bar{Y}}_{\text {pst }}$ to $\hat{\bar{Y}}=\bar{y}=\sum_{l=1}^{L} w_{l} \bar{y}_{l}$ and $\operatorname{var}(\hat{\bar{Y}})=\left(1-\frac{n}{N}\right) \frac{s^{2}}{n}$
for one SRS without post-stratification, we have
$W_{l}$ replaces $w_{l}$ and $\sum_{l=1}^{L} W_{l} s_{l}^{2}$ replaces $s^{2}$ to correct sample proportions. Read Tutorial 11 Q1,c,d.

## Post-stratified estimator based on 1 SRS

| Par. | $N_{l}$ | Estimator | $\operatorname{Variance}$ |
| :--- | :--- | :--- | :--- |
| $\bar{Y}_{l}$ | known | $\widehat{\bar{Y}}_{p s t, l m 1}=N \bar{y}^{\prime} / N_{l}$ | $\operatorname{var}\left(\widehat{\bar{Y}}_{p s t, l m 1}\right)=\frac{1}{W_{l}^{2}}\left(1-\frac{n}{N}\right) \frac{s_{l}^{\prime 2}}{n}$ |
| $Y_{l}$ | unknown | $\widehat{Y}_{p s t, l m 1}=N \bar{y}^{\prime}$ | $\operatorname{var}\left(\widehat{Y}_{p s t, l m 1}\right)=N^{2}\left(1-\frac{n}{N}\right) \frac{s_{l}^{\prime 2}}{n}$ |
| $\bar{Y}_{l}$ | unknown | $\widehat{\bar{Y}}_{p s t, l m 2}=\bar{y}_{l}$ | $\operatorname{var}\left(\widehat{\bar{Y}}_{p s t, l m 2}\right) \simeq \frac{1}{W_{l}}\left(1-\frac{n}{N}\right) \frac{s_{l}^{2}}{n}$ |
| $Y_{l}$ | known | $\widehat{Y}_{p s t, l m 2}=N_{l} \bar{y}_{l}$ | $\operatorname{var}\left(\widehat{Y}_{p s t, l m 2}\right) \simeq N^{2} W_{l}\left(1-\frac{n}{N}\right) \frac{s_{l}^{2}}{n}$ |
| $\bar{Y}$ | known | $\widehat{\bar{Y}}_{p s t}=\sum_{l=1}^{L} W_{l} \bar{y}_{l}$ | $\operatorname{var}\left(\widehat{\bar{Y}}_{p s t}\right) \simeq\left(1-\frac{n}{N}\right) \sum_{l=1}^{L} W_{l} \frac{s_{l}^{2}}{n}$ |
| $Y$ | known | $\widehat{Y}_{p s t}=\sum_{l=1}^{L} N_{l} \bar{y}_{l}$ | $\operatorname{var}\left(\widehat{Y}_{p s t}\right) \simeq N^{2}\left(1-\frac{n}{N}\right) \sum_{l=1}^{L} W_{l} \frac{s_{l}^{2}}{n}$ |

where $y_{i}^{\prime}=y_{i}$ if $i \in C_{l} \& 0$ otherwise, $\quad \bar{y}^{\prime}=\frac{1}{n} \sum_{i \in C_{l}} y_{i}, \bar{y}_{l}=\frac{1}{n_{l}} \sum_{i \in C_{l}} y_{i}$,

$$
s_{l}^{\prime 2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}^{\prime}-\bar{y}^{\prime}\right)^{2}, \quad \text { and } \quad s_{l}^{2}=\frac{1}{n_{l}-1} \sum_{i \in C_{l}}\left(y_{i}-\bar{y}_{l}\right)^{2}
$$

