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3 Ratio and regression estimators

3.1 Motivating examples

Frequently, we are interested in measuring the ratio of a matched pair
of variables. This occurs when the sampling unit comprises a group or
cluster of individuals, and our interest is in the population mean per
individual.

For example, to estimate average income/adult in the population in a
household survey, we record for the ith household (i = 1,--- ,n) the
number of adults who live there, x;, and the household income, y;.

Then the parameter, average income per adult in the population,
N

Y;
_ household income Z;

 total no. of adults XV
> Xi
i=1
can be estimated by the ratio estimator
n
> Yi _
n ZZ’.
> T
i=1

Relationship between estimates
Ratio Mean Total
R 5y X vy

R XA Y
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3.2 Two characteristics per unit in SRS

Theorem: If X, and Y, are a pair of numerical characteristics defined
on every unit of the population, and 4 and x are the corresponding
means from a SRS without replacement of size n , then

n) 1 [vaﬂyz —Y)(Xi - X)] _ (1 B ﬁ) Sy

Cov(a:,y):(l—ﬁ - 1

and

Sy — )@ —2)\ S (Y =YX, — X)
E( n—1 ) N N —1 -

Proof. Consider U; = X; +Y; and the corresponding sample values are
u; = x; + ;. Clearly

Var (1) — (1_N)S_?f@i)”zflmNﬁnyv

(- 1)1 [2%()@- — X2+ (=Y 2N (X - X) (Y - V)

N 1
N .

Since Var () = Var (T + y) = Var (Z) + Var (g) + 2Cov(z, ), (1)) is
proved. can be proved in a similar way.

Theorem: For large sample,

(a) E(r) — R =~ 0, approzimately unbiased,

() Var(r) = = (1 - ) X [zgﬁm — RX,)?

1 (1 n)S?
X2 N/ n
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Proof:

(a) Recall E(y) =Y, E(z) = X and Var(z) = O(n™!) (order of n™1).
Thus for large sample,

(b) Note that

r—R=2_R~?
T

Thus, for large sample,

1 ~ _ E(d?)  Var(d)
Var(r) = Bl(r = R ~ 55 B[y — Ro) =~ = 1
where d = y— Rz is the sample mean of d; = y;— Rz, i =1, -+ ,n,
drawn from the population of D; =Y; — RX;, 1 =1,--- , N with

Ed)=E({y—-Ri)=E({l)—RE()=Y —RX =Y — =X =0.
For a SRS of d;,

<l =<

where
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1. Ordinary: z not related to y v — 7 & var( ) = (1 _ N) %y

n

’ "1 Solid i ’
olid line: y; —
w/ Yi—Y
U . .
v l i Zz(yz )
y n—1
-
2. Ratio: x positively related to y Y — y & var(/_\ Y,) = (1 _ %) %
It Yis,— Solid line: z; = y; — ra
Lj
7 X fooeeseo '
Y 2
VMRS -2
Y= ix = Sz — 2rps,s, + 7"233,
(a=0b=r) .

V)
=N
I
—_
]
S
|
\g
8
~—
N}

n—1
=1
J— 7
= n_lzzz;[(yz—ﬂ)—r(xi—f)]Q Sincegj—rf:g—%f:()
1 n n n
N [z@@-—w—zrzm—xxyi—wwz@ s
i=1 i=1
= 322/—27‘5:,;3/—%7“ SQ—Sy—QTprSy—FTQSQ

<

or s7 = ni 7 (iy? — QTiaziy@—l—’rQix?) :
i=1 i=1 i=1
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Remark:

1. If X; and Y; are positively related, we have s? < 832/. Hence X, can be
used as an auxiltary variable which provides additional information
and hence improves the precision of the estimate Y.

2. When X is replaced by 7 if it is unknown, ordinary estimator results.

3. When ratio estimation is used, estimates of variance and sample size
are quite sensitive to data points that do not fit the ideal pattern
called influential observation. It is important to plot the data and
look for these unusual data points before proceeding with an analysis.

4. The ‘ratio of means’ R = £ is biased and can be almost unbiased
if n is large. Another ratio estimator is the ‘mean of ratios’
~ n N
R* =7 = 15 % where rf = % is unbiased for R* = + > %,

n / x; ( x; N = x;
1= =

However R* gives equal weight to each cluster which may vary greatly
in size. Unlike R*, R is weighed by the cluster size which is an
advantage over R*.
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3.3 Ratio estimate for population mean and total

The ratio estimator of the population total Y is

V.- Yx_rx
€T

Similarly, the ratio estimator of population mean is

v, =9x—rx
€T

These ratio estimates use extra information of z;, ¢« = 1,--- ,n and
the true total and mean X or X, thus i 1mprov1ng the precision of ratio

estimates over the ordinary estimates Y = Ny y and — y respectively.

From the previous result,

(a) B(Y,) = XE(r) ~ XR =
Similarly E()A/r) = XE(r)

(b) Since Var(ié@) R ( — —) ~ and Val”(?r) ~ N* (1 — %) &7

The estimator r for R is generally biased , so ?T and }C/r are also
biased for Y and Y respectively.

Bias:
Cov(r,z) = E(rz) — E(r)E(7) = E (% a:) — E(r)E(z)
N B Co(nd)  peoeos
E(r)= B E@) R— =02

SydU STAT3014 (2015) Second semester Dr. J. Chan 39



THE UNIVERSITY OF

afy SYDNEY
STAT3014/3914 Applied Stat.-Sampling C3-Ratio & reg est.

Therefore for any ratio estimates,

|bias r| R — E(r))| 0rz 0z _ Oz -
- = ) I < - — 3
o, o, X X CV(w) ( )

since |prz| < 1. Thus if the CV(Z) is small, the bias of R=r issmall
relative to SE(r) of R. But if n is small, the bias can be large.

Efficiency:

The ratio estimator is more efficient than the ordinary estimator, that is

var(Y) > var(Y,), if v(2)

2cv(y)
where cv(y) is the sample cv for Y defined as

A

p >

(4)

Sy

cv(y) = 5

Then

3 nyloo o
var(Y) —var(Y,) >0 = <1 — N> ﬁ[sy — 5] >0
= [s7 — (s] = 2rpsysy +1753)] > 0

= 15,(2p5y, — 18;) > 0
= 2ps, — 15, >0 sincer >0& s, >0

_Yse _ ov(x) y

= p>Z-= = =2

P z2s, 2cv(y) ST = T
and the equality holds when p = ov(z) .
2cv(y)
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Example: (7-11) The manager of 7-11 is interested in estimating the
total sale in thousands for all of its 300 branches. From last year record,
the total sale in thousands for all the 300 branches is 21300. Careful
check of this year records are obtained for a SRS of 15 branches with the
following results:

Branch Last year sale x This year sale y = Branch Last year sale x This year sale y

1 50 56 9 100 165
2 35 48 10 250 409
3 12 22 11 50 73
4 10 14 12 50 70
ot 15 18 13 150 95
6 30 26 14 100 99
7 9 11 15 40 83
8 25 30

v o= 926, Y a7 =117400, » y; =1175, Y "y = 231815, Y my; = 155753
i=1 i=1 i=1 i=1 i=1

s> = 9983.81

The ordinary estimate of the total sale this year in thousands is
~ 1175
Y = Ny = 300 (1—5> = 23500

with

~ s2 15\ 9983.81
se(Y) = N\/(l - %)—y - 300\/(1 - 300) —— = 754372
n

The ratio estimate and its se for the total sale this year in thousands are

Y. = Xr = 21300 U _ or097.54
926
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)

se(

<

(R TR oM S o2
=1 =1 =1

15 1 1175 1175,
= 3004/(1— 231815 — 2+ —— - 155753 + (=——)2 - 117400
\/( 300> 15 x 14 ( 926 (a6 >
= 3226.66

AN

which is much smaller than se(Y') = 7543.72 thousands.
Read Tutorial 11 QQ2a,b, Q3a.b.

3.4 Regression estimator

Since Y, = XR = 7%, the line y = max with slope m = % passes

through the origin (0,0) and (X,Y,). However, the linear relationship
between X and Y may not pass through the origin. A more general
estimator, the regression estimator fits a regression line:

y=A+Br=9y— BT+ Br=9y+ Bz —7) (5)
to the sample data where the least square estimate of B is

55y _ 2511(% —Y)(x;i — X) _ 25\41 iy — NXY _ Sy _ PSy
ECR SONTS SEE e
and A =79y — B7T.

Note: Cov(X,Y) = S5,, = 55,,/(N — 1), Var(X) = 52 = 55,,/(N — 1),
cov(X,Y) = 84 = 884/ (n — 1) and var(X) = s% = ss,,./(n — 1).

B:

Then the regression estimator of the population mean Y is to substitute

r=X to to obtain

AN

Yieg=7+bX —7)
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where
h— SSay _ Z?zl(yi - y)(xz - f) _ Z:L: Y — NTY _ Sy (6)
SSuz EZL 1(33 7)* ZZL 1 3322 — nT* 52 .
Since

AN

Yig=7+bX -7)~y+BX-7)=%

the sample mean of the variable 2/ = y; + B(X — x;), we have

AN

E(Y eq) = Ey+B(X —7)|=E(y)+B[X — E(Z)]=Y Approx. unbiased
and

Var(?reg) ~ Var(z') = Var[j + B(X — )] = Var(y — BT)
= Var(y) + B* Var( ) — 2B Cov(y, )

SR (R T ()

(-3 %0-m

Hence
2 2 -2
= Y\ Sre ny s (1 —p )
V) = (- ) 5= (- §) "
where s2,, is the sample variance of 2 = y; + b(X — ;).

The regression estimator for the population total Y is

Yo = N7+ b(X — 7))

and its variance estimate is

~ 2 21 7
) = N (1 ) = 3 (1 )
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Bias:

Bias in Yoy = E(Yyeg) — Y = E(§) + EB(X — )] - Y
— EWX — 7)) = —Cov(b, 7).

Efficiency:

1. The regression estimator is at least as efficient as the ordinary

estimator, that is var(Y') > var(Y,,) since

Var(?) — Var(?mg) = (1 — ﬁ) %[32 — 5% ]

N Y reg
1
= (1= ) i 20

where the equality holds when p = 0, i.e. there is no association
between Y and X.

2. The regression estimator is more efficient than the ratio estimator,

that is var(Y,) > var(Y,.,) unless

in which case they are equivalent and the regression of y on x is
linear through the origin and the variance of y is proportional to x.

var(?,,,) — V&F(?mg) = (1 — 2) l[s? — 5% ]

N n reg
ny 1, A 2.2 2 ~2
= (1 - N) E[Sy — 2rpsysy + 175, — s,(1 — p7)]
ny 1l o9 A 2 ~2
= (1 — N) E(r Sy — 21PSySy + 5,0°)

1
- (-3
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— (1 — %) %2(7’530 — bs,)?

= (1= %) Zr =0 > 0= (r=b? >0

N/ n
N S.CE S.CL" SZIZ’
where ps, = Y Sy = = — 2y S, = bs,.
515y Sy 5%

3. Since Y, = 7 + b(X — T), the regression estimator adjusts the 7
up or down by an amount b(X — T).

(a) When the slope b = 0, thE regression estimator 7r€g = 7 becomes
the ordinary estimator Y.

(b) When the y-intercept a =7 — b =0 < b = % = r, the slope b
becomes the ratio estimate r and the regression estimator

?reg — (y ) =Y+

gl IQI
gl IQI

X-j=2X=Xr=Y,
T
becomes the ratio estimator Y.

Example: (7-11) Estimate the total sale using the regression estimator.

Solution: The regression estimate of the total sale this year in thou-
sands is

. 926 1175
SSpy = Y Ty — nTY = 155753 — 15 x — X —— = 8321633

1=1

& 926 2
88y = fo — nT? = 117400 — 15 x <1—5> = 60234.93,
=1

- 1175 °
ssy = Y _yr —ny = 231815 — 15 x (1—5) — 139773.33.
1=1
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We have $3216.33
b=t 2 35
55 60234.03
and 83216.33
P R ' — 0.9069.
/85255, /60234.93 x 139773.33
It follows that
Yeg = N[+bX —7)]
1175 21300 926
— 300 | =2 4+ 1.3815 _ — 27340.65
[ 5 ' ( 300 15 )]

as compared with Y = 23500 and ﬁ = 27027.54. The s.e. estimate is

log) = ) (1= 2y

_ 2
_ 300\/<1_ 15) 9983.81(1 —0.90692) .,

300 15

AN P

which is < se(Y;) = 3226.66 << se(Y') = 7543.72. This shows that the
dropping of zero y-intercept assumption improves the estimate slightly.
Note that the y-intercept estimate is

1175 926

which is quite close to zero.

Read Tutorial 11 Q2c¢,d, & 3c¢,d.
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3.5 The Hartley - Ross Estimator

Since the ratio estimator r for R is biased, the following leads to an
unbiased estimator of R.

Theorem: Let Z = f(X,Y) be a fixed function of two variables.
Define Z; = f(X;,Y;) and z; = f(x;,y;). Then

n — N
£zt N__l i1 %L — T) _ 2 i1 ?ZXZ
NX n—1 NX

(7)

Proof: The LHS is

NX
N N N N
Y Zi(Xi - X) Y ZXi-X)Y Zi Y ZiX,
:Z+N_1 1=1 :Z+z:1 _ 1=1 :z:l _
NX N —1 NX NX
For the problem of estimation of R from sample (z;,v;), i=1,--- ,n,
we assume X; >0, ¢ =1,---, N and define the function
ZZ:f(xzayZ):yZ/xZ:Tj7 7::17"'777’
and Z; =Y;/X;, i=1,2,--- , N, so from (7]
N Yz'X
E f*+N__1n(y_W*> :i:Z:R
NX n—1 NX X
since
n __n% ‘___n ‘__n%_ -
ZZ:;ZZ(:UZ x)—;xi(xz x)—;yz x;%—n(y ).

Thus the Hartley-Ross estimator as an unbiased estimator of R is
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th =7+

N —1 n(y — 7x)

NX n—1

for which we need to know X (or X = NX). This estimator contains
a mean of ratio estimate and an adjustment for unbiasness.

The Hartley-Ross estimators for mean and total are

N —1In(y — 7z
for the population mean: (Y )

for the population total:

Remarks:

S S 1
1. So far, we have R = % biased for R, R* = — Z
x n

1=1

unbiased for R* =

we just use

This is the ordinary estimator F (%) =

not use the information from the sample {x;} but i

and

Vi = X7

h rt N n—1

?hr:Xf*qL(N—l)n(y_Tlx).
n_

=y/X 7

Ey) _

)

e ><j|| =

gi biased for R &

N
1 i = : :
N g z—l and Ry, unbiased for R. Finally, could

= R which does

s unbiased for R.

2. For small samples we might expect the Hartley-Ross estimator to be

better. There is no general result on the comparison of the variances

N —1 —
%7 To = %7 and Thr = T+ NX n(?jz _Tl x) for all

of r =

sample sizes.
See Cochran (2nd Ed) Theorem 6.3 §6.15.
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Summary of estimators and variance estimates based on 1 SRS

Ord Ratio Regression Hartley-Ross
. 7 7 . N—1n(y—72)
Ratio R = 2 - _
o X T NX -1
1 n. sy 1 n . s>
—=1-3)7 50-5)-" - -
X N n| X N'n
% T Y — . Swy v o o, N—1n(y—rz)
M Y =X —(X — X
ean Y = Y+ S%( ) T+ s
R A"l
N'n N’ n N n
var(Y,) < var(Y)| var(Y rey) < var(Y,)
ifﬁ>y,8x equal if b=1r =2
278y z
T 2 n—
2 2 2 ~2
n.s n.s n . so(1—p%)
N*(1- =) N(1-—=)=L [N*(1— —)L—= ]
1= A=) N A-5)——
(ny —mf),
y
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¥

Example: (7-11)

Solution: The ratios and their summary are given below:

i T Yi  Ti=Yi/T v T yi  Ti= i/
1 50 516) 1.120 9 100 165 1.650
2 39 48 1.371 10 250 409 1.636
3 12 22 1.833 11 50 73 1.460
4 10 14 1.400 12 50 70 1.400
5) 15 18 1.200 13 150 95 0.633
0 30 20 0.867 14 100 55 0.550
7 9 11 1.222 15 40 83 2.075
8 25 30 1.200 Total 19.618
We have 7 = EZT;‘ = 19.618 = 1.3079, z = 61.7333 and y =
n < 15

78.3333.

The Hartley-Ross estimate of the total sale this year in thousands is

th -

X7+ (N —1)

21300(1.3079) + (300 — 1)

(g —r'a)

n—1

15[78.333 — 1.3079(61.7333)]

15—-1
= 27086.9
Read Tutorial 12 Q1(a).
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Example: In asurvey of family size (x1), weekly income (x2) and weekly
expenditure on food (y), we want to estimate the average weekly expen-
diture on food per family in the most efficient way. A simple random
sample of 27 families yields the following data:

D @y =109, Y wy =16277, > y; = 2831, pyyy = 0.925, fyy, = 0.573
The sample covariance matrix for y, 1 and x5 is

[ 547.8234 26.5057 1796.5541 \

26.5057  1.4986 80.1595

\1796.5541 80.1595 17967.0541)

From the census data X; = 3.91 and X, = 542.

(a) Estimate the standard errors of the ratio estimators for Y using a;
and using xo. Compare the standard errors with the s.e. for the
simple estimate ignoring the covariates. Which estimator has the
smallest estimated s.e.”?

(b) Calculate the best available estimate of the average weekly expen-
diture on food per family and give an approximate 95% confidence
interval for this average.

Solution:

(a) The standard errors of the ratio estimators for Y using o and using
T are
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2831
o= 2l B g

>ixy o 109

s2 = 55 —2r Sy T

= 547.8234 — 2(25.97)(26.5057) + 25.97%(1.4986)
— 181.896

Yoy 2831

TS 16277

s%, = sz — 21 Sy, +178

= 547.8234 — 2(0.1739)(1796.5541) + 0.1739%(17967.0541)

= 475.7895

R 2 181.896
se(Y,) = \/% =/ S = 25056
~ 2 475.7895.193
se(Y,9) = \/% — \/ S = 41078
~ s2 547.8234
se(Y) = /2 = ‘/T = 4.5044
n

The first ratio estimator Y, has the lowest s.e. due to the higher cor-

282

= 0.1739

relation p, ., = 0.925. The second ratio estimator only has marginal
improvement as the correlation p, ,, = 0.573 is weak but

js. 2831 /17967.0541
pray = 0.573 > 200 — v 0.4980.

2rs, 2.16277-/5AT 234
Note that fpc is ignored because the population size N is unknown.

(b) The estimate of the average weekly expenditure on food per family

AN

Y, = rnX =2597(3.91) = 101.5524
95% CI for Y = 101.5524 F 1.96(2.5956) = (96.4651, 106.6397)
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3.6 Ratio estimate for subpopulation in poststratification

For some (), we want to estimate:

N N
Rl:ZYi ZXZ-:ZY//ZX{,:R’
i—1 i—1

icC) icC)
if we define
Y, X)) = (Y, X;)ifi € C
= (0,0)if i ¢ C.
Note: X' = Xj, i.e. the sum of X over all population equals to the

sum of X; over (. Hence the natural estimator of ratio and its variance
estimate 1s

TR
/ ;yz icC, Z 1 () 1 (1 n) s;lz
r = = =r; and var(r) ~ — - —
L > : : (X")? N/ n
4 xi ZECZ
1=1
where

(z, yi) = (m,y) ifi e C

= (0,0)if ¢ ¢ C,
_, X 1 < 1
X/ _ : A r_ — .
A can be estimated by z - Z T = Z x; and
1=1 1€y
.
Si' =7 2 - XY
i—1

can be estimated by

r2 1 / AV 1 , )2
Sl = HZ(% — ) = Z(yz — ;)"

. n—1:
1=1 1eC)
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The ratio estimator of mean in C} and its variance estimate are

= _ = 1 ny s’
V=X d var(Vy) o (1 1) 22
I yr; and  var(Y ) W ~)
since
= _ X? ny s’
Yr _ X2 _ _l (1 - _) rl
var(Y ;) Fvar(r;) <7 ~)

) 2

. XZN? <1 n>3412_ 1 (1 ”)%
- N2 X7 N/ n W} N/ n

Similarly, the ratio estimator of total in C} and its variance estimate are

~ ~ n\ s
V,=X d K“”WO__>H
I yr; and  var(Yy) ~)
since
~ X? n 3;,2 o N2 n 3;2
var(Yy)) = Xfvar(r) = )_(52 (1 — N) TZ =X QX/Q <1 — N> T; :

Note that these estimators correspond to method 1 in Section 1.5 for
poststratification and n; does not come into any of these calculations.

Read Tutorial 12 Q1b,c.
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3.7 Ratio Estimation for Stratified SRS

In a stratified SRS, a SRS of a specified sample size n; is taken in each of
the L strata with known size N, e.g. the 6 states of Australia. There
are two types of ratio estimates depending on the order of taking ratio
and summing over strata.

1. Take ratios r; = ;/7; first and sum over }/}l = X;r; to obtain Es =
> i/ X
2. Sum over XA/Z and )?l first to obtain Y and X and then take ratio
R.=Y/X.

3.7.1 The ‘Separate’ Ratio Estimate

L
Suppose the stratum totals X;, [ =1,---, L are knownso X = > X]
=1
is known also. Then

Yy 1 1 <& 1t
fo= %= XZYJ = XZXZTZ == WX
[=1 =1 =1
X, NNX 1 y
since yl = Xﬁlﬁj =5 W, X, and r; = i—ll Then
L
5 X XYy 1 Y
E(R,) = —F(r) ~ —— == Y, =— =R,
(Rs) e (1) Z XXX Z =5
=1 =1 =1
L
Y, ~ 1 2
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where

2

Spl = s, _27751:1%_'_77 v = n; — 1 Zyzl —2n Zx”y” T szl] '

Similarly the separate ratio estima o %01" the mean 1s

o L _ )
Yst,s = Z V[/ZXZ T and V&I‘ st, S Z ‘/‘/l (1 . _) S;L;*l
=1

Bias:
For large stratum sample sizes, r; will be approximately unbiased for R;
and var(r;) will approximate Var(r;) reasonably well.

For moderate and small samples, bias is important, and we should con-
sider it here. We know that in a single stratum
|bias 7| c T

Consider the bias of ﬁs ;
bias (R,)| = E(R, — R)

L
X . X
= g y]blas | < mlax\blas | g 5

[=1 [=1

, 07,0
< max |bias 7| < max [ —=
[ l X

Hence

. D max o max o
s.e. Ry s.e.(Rg) ! X min oy, \X
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since

. X\ 2
se.(Rs) = < l) var(ry) >ml1narl

\\Mh

L
vt
I=1

Lo/1\? [T 1
> min o Z — >m1na > ——mino
- l Tl L Tl L2 \/Z l T‘l

[=1

where X; = p;X. The sum of squares of unequal proportions is higher
than that from equal proportions in general. This is due to the convexity
property of the function f(p) = p®. For example, when L = 2 with cases

(1 — p,p) and (27 2)

1 11
(1—p)2+p2—2(5)2 =2p2—2p+§ =52 - 1)2 > 0.

Therefore the ratio on the LHS can be /L times as large as the o,/ X;
bound on individual relative biases. Even if the biases are individually
small, the overall bias can be large.

3.7.2 The ‘Combined’ Ratio Estimate

[t is defined as

L
W = S
ﬁ_lzzl _yst_z_z
C_L _a_js_/:_/\
Swz, XX

=1
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H

A~

and in contrast to R, it does not require the knowledge of individual
X’s. Note that

L
~ Us Us 1 - Y
E(Rc) =F (£> ~ F <%) ~ f E VVZE(yl) = y = R Approx. unbiased

X st

Theorem:

1SN [V — Y — R(Xiy — X))
| — L) = &= .
Var XQZVVZ( )m( N —1

Proof: First

L
3 yst 1 _ _ 1 _ _
R~R =% "R=_—(y,-Rey)=—Y Wils—R
T fst(yt «Tt) Zo £ l(yz fUl)
L
1 . 1 - 1 -
= = Widi = —dy = —d,
jst . jst t X t

where dj; = y; — Rxy;, 1 = 1,--- ,n; estimates Dj; = Y, — RX}; and
I R _
= — E d;;. Note that typically D; # 0. Hence

D 1 7 1 2 n SCQTZ
Var(Rc) ~ ﬁ\/ar(dst) ~ 9 ; I/‘/l (1 — E) Tl
where
- "
S2 = Dy — Dy)* = Vi — Y — R(X; — X))
ol Nz—lg( i — Di) Nl_lg[l 1 — R(Xii — Xi)]
2 2 Q2
= S —2RS,,, + R le,
and this can be estimated by
-
Szrl - n; — 1 Z[ylz — Y — Tc(xli — a_jl)]Q — Szl — 2TCSZBlyl + TES?UZ

1=1
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as compared to

1 ny ny ny
2 2 2 2 2 2 2
Ssrl = 1 E i — 21 E Y T E %] = 8y, = 2T1Sayy, 17 Sy,
i—1 i=1 i=1

for separate ratio estimator.

There is less risk of bias in fic than in RS. We can show that

‘E<§c - R)‘ (Ol’z)
= < max | =
s.e. R, l X
in contrast to

E(R, — - R)| < VI (%> . (awl)

s.e. Ry min; oy, ! X

AN

for the separate ratio estimator Rj.

Similarly the combine ratio estimate for the mean and its variance are

~ _ o~ 2
Yac=XR: and |var(Yg.) ZM/Z <1——) erl,

n

and for the total are

2

}ZLC:XEC and  |var(Ys.) NZZI/VZ (1——) SC’”Z.
ny

Read Tutorial 12 Q2.
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Estimators and variance estimates for stratified SRS (Ch.2)

Parameter

Estimator

Variance

Ordinary/naive estimator

= %(%yﬁ—nz?ﬁ),

W, =24

L 2
~ 1 ~ yl
Ratio R Ry == Wiy ar(Rst) w212
t= X 1221: 1Y v X2 Z ! ( ) ny
Mean V|V =3 Wi Z e (1o ) S
ean st = var(Y —— | =
t & 1Y I N, )
% L 2 Sf/z
Total YV = N> Wiy var(Yy) = N w? (1 — —) —
=N Z z P
Separate ratio estimator szrl = sy — 2710818y + 7“5 sxl, r = L3
x]
2
. Ssr,l
Ratio R Ryt o = Z Wi Xy |var( R o) = X2 Z VVZ (1 — —) "
_ -~ _ 82 l
Mean Y Yo => W Xmr var(Y g o) w? (1 — —) S
‘ 1221 : Z j ”
> L 7, 2 Szrl
Total Y |Yyo =N WXy |var(Ye) = N Z W2(1—— )=
=1 n
L —
Combine ratio estimator s’ | = s? 1 — 27ePSg1Sy1 + r?s? 1y Tster = M
cr, Y c°x ; S L Wi
L
lz: VVZQZ 1 L ny 82 l
. Y =1 . EN 2 cr,
Ratio R Rt or = - = rstor | Var(Rsicor) %2 Z W, (1 — E) "
Z Wiz =1
=1
M Y Ys cr:X st,cr s cr W2 1__ ol
ean t, Tst, VaI' t Z l ( ) n
~ _ cr,l
Total Y Ystor = NX7Tgter var(Yst.cr) = N? Z VVZ <1 — E) .
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