4 Systematic and Cluster Sampling.

4.1 Systematic Sampling

This is a quick and easy method for selecting a sample when the sampling frame is sequenced. Randomly select a start from the first k units where $k=\left[\frac{N}{n}\right]+1$, then select every k th unit thereafter.

The k possible samples will only be of equal size if N is a multiple of k. If $N=23$ and $n=5$ then the $k=\left[\frac{23}{5}\right]+1=5$ possible samples are units numbered:

S1	S2	S3	S4	S5
y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
y_{6}	y_{7}	y_{8}	y_{9}	y_{10}
y_{11}	y_{12}	y_{13}	y_{14}	y_{15}
y_{16}	y_{17}	y_{18}	y_{19}	y_{20}
y_{21}	y_{22}	y_{23}		

For simplicity we will restrict attention to the case $N=n k$. (If N is large then the following results will be approximately true.) Under systematic sampling only k of the possible $\binom{N}{n}$ samples under SRS are considered. We expect systematic sampling to be beneficial if the k samples are representative of the population.

This might be achieved by selecting the sequencing variable carefully. For example, suppose we have a list of businesses giving location, industry, and employment size. We want to estimate the amount of overtime wages paid and we expect such amount to be correlated with the employment size. Then sorting the list according to employment size before drawing the systematic sample allow small, medium and large values to be included in the sample and hence gives more efficient sample.

4.1.1 The Sample Mean and its Variance.

Denote the sample by y_{1}, \ldots, y_{n}. Then

$$
\bar{y}_{s y s}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

can take only one of k possible values:

$$
\begin{aligned}
\bar{Y}_{1} & =\left(Y_{1}+Y_{k+1}+. .+Y_{N-k+1}\right) / n \\
& : \\
\bar{Y}_{k} & =\left(Y_{k}+Y_{2 k}+. .+Y_{N}\right) / n .
\end{aligned}
$$

Thus

$$
E\left(\bar{y}_{s y s}\right)=\left(\bar{Y}_{1}+\ldots+\bar{Y}_{k}\right) / k=\bar{Y},
$$

so the systematic mean is unbiased for the population mean.
Let $Y_{i j}=Y_{i+k(j-1)}$, for $i=1,2, \ldots, k$ and $j=1,2, \ldots, n$.

$$
\operatorname{Var}\left(\bar{y}_{s y s}\right)=E\left(\bar{y}_{s y s}-\bar{Y}\right)^{2}=\frac{1}{k} \sum_{i=1}^{k}\left(\bar{Y}_{i}-\bar{Y}\right)^{2} .
$$

Recall

$$
\begin{aligned}
(N-1) S^{2} & =\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2} \\
& =\sum_{i=1}^{k} \sum_{j=1}^{n}\left(Y_{i j}-\bar{Y}\right)^{2} \\
& =\sum_{i=1}^{k} \sum_{j=1}^{n}\left(Y_{i j}-\bar{Y}_{i}\right)^{2}+n \sum_{i=1}^{k}\left(\bar{Y}_{i}-\bar{Y}\right)^{2} \\
& =k(n-1) S_{w}^{2}+k n \operatorname{Var}\left(\bar{y}_{s y s}\right)=(N-k) S_{w}^{2}+N \operatorname{Var}\left(\bar{y}_{s y s}\right)
\end{aligned}
$$

STAT3014/3914 Applied Stat.-Sampling C4-Sys. \& Cluster Sam.
since $N=n k$. Thus $\operatorname{Var}\left(\bar{y}_{\text {sys }}\right)$ is the between cluster variance and S_{w}^{2} is the within cluster variance.

$$
\operatorname{Var}\left(\bar{y}_{s y s}\right)=\frac{N-1}{N} S^{2}-\frac{N-k}{N} S_{w}^{2}
$$

Theorem: Systematic sampling leads to more precise estimators of \bar{Y} than SRS if and only if $S_{w}^{2}>S^{2}$.
Proof: The variance under SRS is $\left(1-\frac{n}{N}\right) \frac{S^{2}}{n}$. Since

$$
\begin{aligned}
& \operatorname{Var}(\bar{y})>\operatorname{Var}\left(\bar{y}_{\text {sys }}\right) \\
\Rightarrow & \left(1-\frac{n}{N}\right) \frac{S^{2}}{n}>\frac{N-1}{N} S^{2}-\frac{N-k}{N} S_{w}^{2} \\
\Rightarrow & \frac{N-k}{N} S_{w}^{2}>\left[\frac{N-1}{N}-\frac{N-n}{N n}\right] S^{2}
\end{aligned}=\frac{1}{n N}(N n-n-N+n) S^{2} .
$$

Hence Systematic sampling is most useful when the variability within systematic samples is larger than the population variance.

With one systematic sample, we cannot estimate S^{2}. Instead, we can draw n_{s} repeated systematic sample each of size n / n_{s} with a random start chosen from 1 to $k^{\prime}=n_{s} k=n_{s} N / n$ and the sampling interval is k^{\prime}. Suppose $\bar{y}_{i}, i=1, \ldots, n_{s}$ are the sample means, the mean estimator and its variance are

$$
\widehat{\bar{Y}}_{s y, r s}=\overline{\bar{y}}=\frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \bar{y}_{i} \quad \text { and } \quad \operatorname{var}\left(\widehat{\bar{Y}}_{s y, r s}\right)=\left(1-\frac{n}{N}\right) \frac{s_{\bar{y}}^{2}}{n_{s}}
$$

where

STAT3014/3914 Applied Stat.-Sampling C4-Sys. \& Cluster Sam.

$$
s_{\bar{y}}^{2}=\frac{1}{n_{s}-1} \sum_{i=1}^{n_{s}}\left(\bar{y}_{i}-\overline{\bar{y}}\right)^{2}=\frac{1}{n_{s}-1}\left(\sum_{i=1}^{n_{s}} \bar{y}_{i}^{2}-n_{s} \overline{\bar{y}}^{2}\right)
$$

Read Tutorial 12 Q3.

Systematic Sampling
Parameter

Point Estimate Estimated Variance

One systematic sample Mean \bar{Y} (Sampling interval $k=\frac{N}{n}$)	$\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$	$\begin{aligned} \operatorname{Var}\left(\widehat{\bar{Y}}_{s y}\right) & =\frac{1}{k} \sum_{j=1}^{k}\left(\bar{y}_{j}-\bar{y}\right)^{2} \\ = & \frac{N-1}{N} S^{2}-\frac{N-k}{N} S_{w}^{2} \\ \text { where } S_{w}^{2} & =\frac{1}{N-k}\left[\sum_{i=1}^{n} \sum_{j=1}^{k}\left(y_{i j}-\bar{y}_{i}\right)^{2}\right] \\ S^{2} & =\frac{1}{N-1}\left[\sum_{i=1}^{n} \sum_{j=1}^{k}\left(y_{i j}-\bar{y}\right)^{2}\right] \end{aligned}$ $\operatorname{Var}\left(\hat{\bar{Y}}_{s y}\right)<\operatorname{Var}\left(\hat{\bar{Y}}_{s r s}\right)$ if $S_{w}^{2}>S^{2}$
Repeated systematic samples Mean \bar{Y} (Sampling interval $\left.k^{\prime}=\frac{N}{n} n_{s}\right)$	$\overline{\bar{y}}=\frac{1}{n_{s}} \sum_{j=1}^{n_{s}} \bar{y}_{j}$	$\begin{aligned} & \operatorname{var}\left(\hat{\bar{Y}}_{s y, r s}\right)=\left(1-\frac{n}{N}\right) \frac{s_{\bar{y}}^{2}}{n_{s}} \\ & s_{\bar{y}}^{2}=\frac{1}{n_{s}-1} \sum_{j=1}^{n_{s}}\left(\bar{y}_{j}-\overline{\bar{y}}\right)^{2} \\ & \quad=\frac{1}{n_{s}-1}\left(\sum_{j=1}^{n_{s}} \bar{y}_{j}^{2}-n_{s} \overline{\bar{y}}^{2}\right) \end{aligned}$

4.2 Cluster Sampling

4.2.1 Introduction

If a population has a natural grouping of units into clusters one way of proceeding is to perform a SRS of the clusters and then include all units in the selected clusters in the sample. Systematic sampling has this structure but the distinct 'clusters' may not have any physical significance.

For cluster sampling we do not need a complete population list, just a list of clusters and then a list of elements for the selected clusters.

4.2.2 Notation

$N=$ Number of clusters in the population.
$M_{i}=$ Size of cluster $i, i=1, \ldots, N$.
$M=\sum_{i=1}^{N} M_{i}=$ Population size of elements.
$\bar{M}=\frac{M}{N}=\frac{\sum_{i=1}^{N} M_{i}}{N}=$ Population average cluster size.
$y_{i j}=y$-value for element j element in cluster $i, i=1, . ., N ; j=1, . ., M_{i}$.
$Y_{i}=y_{i}=\sum_{j=1}^{M_{i}} y_{i j}=y$-total for cluster $i, i=1, \ldots, N$.
$R_{i}=\bar{Y}_{i}=\frac{y_{i}}{M_{i}}=y$-mean per element for cluster $i, i=1, \ldots, N$.
$Y=\sum_{i=1}^{N} y_{i}=\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} y_{i j}=$ Population y-total.
$\bar{Y}=\frac{Y}{N}=$ Population mean per cluster.
$R=\bar{Y}=\frac{Y}{M}=$ Population mean per element.
$n=$ Number of clusters in the sample.

For 1-stage sampling

$m=\sum_{i=1}^{n} M_{i}=$ Sample size of elements.
$\bar{m}=\frac{1}{n} \sum_{i=1}^{n} M_{i}=$ Sample average cluster size.
$\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=$ Sample mean per cluster.
$r=\overline{\bar{y}}=\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} M_{i}}=$ Sample mean per element.
E.g. Sample of clusters in blue
$N=6, n=3$
$\underline{y_{1}=10}, \underline{y_{2}=12}, y_{3}=7, y_{4}=9, \underline{y_{5}=6}, y_{6}=7$
$\overline{M=20}, \overline{m=11}$
$\underline{M_{1}=4}, \underline{M_{2}=4}, M_{3}=3, M_{4}=2, \underline{M_{5}=3}, M_{6}=4$
$\bar{M}=\frac{20}{6}=3.33$
$\bar{m}=\frac{11}{3}=3.67$
$Y=51$

$\bar{Y}=\frac{51}{6}=8.50$
$R=\frac{51}{20}=2.55$
$\bar{y}=\frac{28}{3}=9.33$
$r=\frac{28}{11}=2.55$
$\bar{y}=\frac{28}{3}=9.33$
$r=\frac{28}{11}=2.55$

$\begin{array}{ll}y_{1}=10 & y_{3}=7 \quad M_{5}=3 \\ M_{1}=4 & M_{3}=3\end{array}$

SRS Cluster sampling

Pop. size of element $N \quad \rightarrow$ of cluster N
Pop. total of aux. var. $X \quad X \quad \rightarrow$ of element M
Sample unit element with $\quad y_{i} \quad \rightarrow$ cluster with cluster total $y_{i}=\sum_{j} y_{i j}$
Auxiliary var. value $\quad x_{i} \quad \rightarrow$ cluster size M_{i}
Mean mean per ele. $\bar{y} \quad \rightarrow$ mean per cluster \bar{y}
Estimator ordinary $\bar{y} \rightarrow$ ordinary \bar{y}
Estimator

$$
\text { ratio } r=\frac{\sum_{i} y_{i}}{\sum_{i} x_{i}} \rightarrow \text { ratio } r=\frac{\sum_{i} y_{i}}{\sum_{i} M_{i}}
$$

Relationship between estimates Mean/ele. Mean/cluster Total

R
$\stackrel{\times \bar{M}}{\longleftrightarrow} \bar{Y}$

Y

R

since $\bar{M} \times N=\frac{M}{N} \times N=M$.

STAT3014/3914 Applied Stat.-Sampling C4-Sys. \& Cluster Sam.
4.2.3 Estimators for cluster sampling

Ratio estimate \& variance
Mean/ele. $R \quad \widehat{R}_{c 1, r}=r=\frac{\bar{y}}{\bar{m}} \quad \operatorname{var}\left(\widehat{R}_{c 1, r}\right)=\frac{1}{\bar{M}^{2}}\left(1-\frac{n}{N}\right) \frac{s_{r}^{2}}{n}$
Mean/clus. $\bar{Y} \quad \widehat{\bar{Y}}_{c 1, r}=\bar{M} r \quad \mathrm{X} \quad \operatorname{var}\left(\widehat{\bar{Y}}_{c 1, r}\right)=\left(1-\frac{n}{N}\right) \frac{s_{r}^{2}}{n}$
Total Y

$$
\widehat{Y}_{c 1, r}=M r \quad \mathrm{X} \quad \operatorname{var}\left(\widehat{Y}_{c 1, r}\right)=N^{2}\left(1-\frac{n}{N}\right) \frac{s_{r}^{2}}{n}
$$

Ordinary estimate \& variance

Mean/ele. $R \quad \widehat{R}_{c 1}=\frac{\bar{y}}{\bar{M}} \quad \mathrm{X} \quad \operatorname{var}\left(\widehat{R}_{c 1}\right)=\frac{1}{\bar{M}^{2}}\left(1-\frac{n}{N}\right) \frac{s_{y}^{2}}{n}$
Mean/clus. $\bar{Y} \quad \widehat{\bar{Y}}_{c 1}=\bar{y}$

$$
\operatorname{var}\left(\hat{\bar{Y}}_{c 1}\right)=\left(1-\frac{n}{N}\right) \frac{s_{y}^{2}}{n}
$$

Total $Y \quad \widehat{Y}_{c 1}=N \bar{y} \quad \operatorname{var}\left(\widehat{Y}_{c 1}\right)=N^{2}\left(1-\frac{n}{N}\right) \frac{s_{y}^{2}}{n}$
Note that X indicates that the estimator cannot be applied when M or \bar{M} is unknown.

Remark:

The ratio estimators use the sample mean per element

$$
r=\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} M_{i}}=\frac{\sum_{i=1}^{n} \sum_{j=1}^{M_{i}} y_{i j}}{\sum_{i=1}^{n} M_{i}}
$$

and the variance estimates follow from the ratio estimators in SRS where

$$
s_{r}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-r M_{i}\right)^{2}}{n-1}=\frac{\sum_{i=1}^{n} y_{i}^{2}-2 r \sum_{i=1}^{n} y_{i} M_{i}+r^{2} \sum_{i=1}^{n} M_{i}^{2}}{n-1} .
$$

Read Tutorial 13 Q1(a).

STAT3014/3914 Applied Stat.-Sampling C4-Sys. \& Cluster Sam.

4.2.4 Equal Cluster Sizes

The analysis is simpler when the clusters are of equal size, that is, $M_{i}=$ $M / N=\bar{M}, \quad i=1,2, . ., N$ where M and N are the total number of elements and clusters respectively.
Recall from ANOVA

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{j=1}^{\bar{M}}\left(Y_{i j}-\overline{\bar{Y}}\right)^{2} & =\sum_{i=1}^{N} \sum_{j=1}^{\bar{M}}\left(Y_{i j}-\overline{\bar{Y}}_{i}\right)^{2}+\sum_{i=1}^{N} \sum_{j=1}^{\bar{M}}\left(\overline{\bar{Y}}_{i}-\overline{\bar{Y}}\right)^{2} \\
(M-1) S^{2} & =(M-N) S_{w}^{2}+(N-1) S_{b}^{2}
\end{aligned}
$$

where $\overline{\bar{Y}}_{i}=Y_{i} / M_{i}=R_{i}$ and $\overline{\bar{Y}}=Y / M=R$ are the mean per element for cluster i and overall respectively. The within cluster variance is

$$
S_{w}^{2}=\frac{1}{M-N} \sum_{i=1}^{N} \sum_{j=1}^{\bar{M}}\left(Y_{i j}-\bar{Y}_{i}\right)^{2}=\frac{1}{N(\bar{M}-1)} \sum_{i=1}^{N} \sum_{j=1}^{\bar{M}}\left(Y_{i j}-Y_{i} / M_{i}\right)^{2} .
$$

The between cluster variance is
$S_{b}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}(\overline{\bar{Y}}-\overline{\bar{Y}})^{2}=\frac{1}{\bar{M}(N-1)} \sum_{i=1}^{N} M_{i}\left(\frac{Y_{i}}{M_{i}}-\frac{\bar{Y}}{\bar{M}}\right)^{2}=\frac{1}{\bar{M}(N-1)} \sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}=\frac{S_{y}^{2}}{\bar{M}}$ since $\bar{M}=M_{i}$ and $R=Y / M=\bar{Y} / \bar{M}$. Based on a SRS of y_{i}, an unbiased estimator for S_{b}^{2} is

$$
s_{b}^{2}=\frac{1}{\bar{M}(n-1)} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

and an unbiased estimator for S_{w}^{2} is

$$
s_{w}^{2}=\frac{1}{n(\bar{M}-1)} \sum_{i=1}^{n} \sum_{j=1}^{\bar{M}}\left(y_{i j}-\overline{\bar{y}}_{i}\right)^{2} \text { where } \overline{\bar{y}}_{i}=y_{i} / M_{i}=r_{i} \text {. }
$$

Both components of S^{2} can be estimated under cluster sampling unlike systematic sampling where we only observe one 'cluster' and so cannot estimate the between cluster component.

STAT3014/3914 Applied Stat.-Sampling C4-Sys. \& Cluster Sam.

4.2.5 Comparing SRS and Cluster Sampling

A SRS of n clusters includes $n \bar{M}$ observations. An estimate of mean per element \bar{Y} based on one SRS of $y_{i j}$ of the same size has variance

$$
\operatorname{Var}(\hat{\bar{Y}})=\left(1-\frac{n \bar{M}}{N \bar{M}}\right) \frac{S^{2}}{n \bar{M}}=\left(1-\frac{n}{N}\right) \frac{S^{2}}{n \bar{M}} .
$$

This is compared to a SRS of cluster totals y_{i} from n clusters

$$
\operatorname{Var}\left(\hat{\bar{Y}}_{c 1}\right)=\frac{1}{\bar{M}^{2}}\left(1-\frac{n}{N}\right) \frac{S_{y}^{2}}{n}=\left(1-\frac{n}{N}\right) \frac{S_{b}^{2}}{n \bar{M}}
$$

where $\hat{\bar{Y}}_{c 1}=\widehat{R}$ is the mean per element estimate. Thus

$$
\frac{\operatorname{Var}\left(\hat{\bar{Y}}_{c 1}\right)}{\operatorname{Var}(\hat{\bar{Y}})}=\frac{S_{b}^{2}}{S^{2}},
$$

and so the cluster estimator is preferable when $S_{b}^{2}<S^{2}$. Note that

$$
S_{b}^{2}=\frac{1}{\bar{M}(N-1)} \sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}
$$

is minimised when all the cluster totals are equal, i.e. $Y_{i}=\bar{Y}, i=$ $1, . ., N$, which are then equal to the average cluster total.

In other words, it should be more homogeneous across clusters and more heterogeneous within each cluster. The worst case occurs when $S_{w}^{2}=0$ in which case each cluster consists of identical responses.

4.2.6 Two-stage cluster sampling

1. Description

In a single-stage cluster sampling, all the elements in the selected clusters are included in the sample. In practice, it may not be feasible

STAT3014/3914 Applied Stat.-Sampling C4-Sys. \& Cluster Sam.
to survey all the elements in the selected clusters when the cluster sizes are large. A natural way is to sub-sample elements from the selected clusters resulting in a 2 -stage cluster sampling where at

Stage 1: a SRS of clusters is drawn,
Stage 2: a SRS of elements is taken from each cluster selected at stage 1.

2. Further notation

For 2-stage sampling

$m_{i}=$ Sub-sample size of elements from M_{i} elements in cluster i.
$m=\sum_{i=1}^{n} m_{i}=$ Total sample size ($\sum_{i=1}^{n} M_{i}$ in 1-stage cluster sam.).
$\bar{m}=\frac{1}{n} \sum_{i=1}^{n} M_{i}=$ Average cluster size in the sample.
$\hat{y}_{i}=M_{i} \bar{y}_{i}=M_{i} \frac{\sum_{i=1}^{m_{i}} y_{i j}}{m_{i}}=$ Estimated y-total for cluster i.
$\bar{y}=\frac{1}{n} \sum_{i=1}^{n} \hat{y}_{i}=$ Sample mean per cluster.
$\hat{r}=\overline{\bar{y}}=\frac{\sum_{i=1}^{n} \hat{y}_{i}}{\sum_{i=1}^{n} M_{i}}=$ Sample mean per element.

STAT3014/3914 Applied Stat.-Sampling C4-Sys. \& Cluster Sam.

Comparing 1-stage cluster sample with 2 -stage cluster sample:

1-stage

Sample size in cluster: $\quad M_{i}$

Cluster total:

$$
y_{i}=\sum_{j=1}^{M_{i}} y_{i j} \text { is observed }
$$

Sample mean per cluster: $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$

2-stage

m_{i}
$\hat{y}_{i}=M_{i} \frac{\sum_{j=1}^{m_{i}} y_{i j}}{m_{i}}$ is estimated.
$\hat{\bar{y}}=\frac{1}{n} \sum_{i=1}^{n} \hat{y}_{i}$
Sample mean per element: $r=\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} M_{i}}$

$$
\hat{r}=\frac{\sum_{i=1}^{n} \hat{y}_{i}}{\sum_{i=1}^{n} M_{i}}
$$

E.g. Sample of clusters and their elements in blue
$N=6$
$n=3$
$M=20$
$m=6$
$\sum_{i=1}^{n} M_{i}=11$
$\bar{M}=\frac{20}{6}=3.33$
$\bar{m}=\frac{11}{3}=3.67$
$Y=51$
$\bar{Y}=\frac{51}{6}=8.50$
$R=\frac{51}{20}=2.55$
$\hat{y}=\frac{33}{3}=11$
$\hat{r}=\frac{33}{11}=3$

3. Estimation

The observed cluster totals $y_{i}=\sum_{j=1}^{M_{i}} y_{i j}$ are estimated by

$$
\begin{equation*}
\hat{y}_{i}=M_{i} \bar{y}_{i}=\frac{M_{i}}{m_{i}} \sum_{j=1}^{m_{i}} y_{i j} \tag{1}
\end{equation*}
$$

where \bar{y}_{i}. is the sample mean per elements for the elements $y_{i j}$ selected from cluster i at stage 2 and then replace y_{i} by \hat{y}_{i}.

The additional variance when the cluster total y_{i} is estimated by $\hat{y}_{i}=M_{i} \bar{y}_{i}$. is

$$
\operatorname{var}\left(\hat{y}_{i}\right)=M_{i}^{2} \operatorname{var}\left(\bar{y}_{i \cdot}\right)=M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}}
$$

where

$$
\begin{equation*}
s_{y i}^{2}=\frac{1}{m_{i}-1} \sum_{j=1}^{m_{i}}\left(y_{i j}-\bar{y}_{i .}\right)^{2}=\frac{1}{m_{i}-1} \sum_{j=1}^{m_{i}} y_{i j}^{2}-m_{i} \bar{y}_{i .}^{2} \tag{2}
\end{equation*}
$$

is the sample variance for m_{i} elements $y_{i j}$ selected from cluster i at stage 2. Then for $\widehat{Y}=\sum_{i=1}^{N} \hat{y}_{i}$ say, estimating the population total $Y=\sum_{i=1}^{N} y_{i}$, the additional variance, $\sum_{i=1}^{N}$ Add. $\operatorname{var}\left(\hat{y}_{i}\right)$ follows as $\sum_{i=1}^{n} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}}$: Additional var. due to \hat{y}_{i} for n selected clusters $\frac{1}{n} \sum_{i=1}^{n} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}}$: Average additional var. due to \hat{y}_{i} for each cluster $\frac{N}{n} \sum_{i=1}^{n} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}}$: Estimated additional var. due to \hat{y}_{i} for N clusters.

Hence the additional variance of $\operatorname{var}\left(\hat{\bar{Y}}_{c 2, r}\right)$ and $\operatorname{var}\left(\hat{\bar{Y}}_{c 2, r}\right)$ are obtained by dividing the additional variance of $\operatorname{var}\left(\widehat{Y}_{c 2, r}\right)$ with N^{2} and M^{2} respectively.

For ratio estimator:

$$
\begin{aligned}
& \operatorname{var}\left(\widehat{R}_{c 2, r}\right)=\frac{1}{\bar{M}^{2}}\left(1-\frac{n}{N}\right) \frac{s_{r}^{2}}{n}+\frac{N}{n M^{2}} \sum_{i=1}^{n} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}} \\
& \operatorname{var}\left(\widehat{\bar{Y}}_{c 2, r}\right)=\left(1-\frac{n}{N}\right) \frac{s_{r}^{2}}{n}+\frac{1}{n N} \sum_{i=1}^{n} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}} \\
& \operatorname{var}\left(\widehat{Y}_{c 2, r}\right)=N^{2}\left(1-\frac{n}{N}\right) \frac{s_{r}^{2}}{n}+\frac{N}{n} \sum_{i=1}^{n} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}}
\end{aligned}
$$

where $\widehat{R}=\hat{r}=\frac{\sum_{i=1}^{n} \hat{y}_{i}}{\sum_{i=1}^{n} M_{i}}=\widehat{\bar{Y}}_{c 2, r}$ is a mean per element estimate and

$$
\begin{equation*}
s_{r}^{2}=\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\hat{r} M_{i}\right)^{2}}{n-1}=\frac{\sum_{i=1}^{n} \hat{y}_{i}^{2}-2 \hat{r} \sum_{i=1}^{n} \hat{y}_{i} M_{i}+\hat{r}^{2} \sum_{i=1}^{n} M_{i}^{2}}{n-1} \tag{3}
\end{equation*}
$$

is obtained by substituting \hat{y}_{i} for y_{i} in s_{r}^{2} for 1-stage cluster sampling.

For ordinary estimator:

$$
\begin{aligned}
& \operatorname{var}\left(\widehat{R}_{c 2}\right)=\frac{1}{\bar{M}^{2}}\left(1-\frac{n}{N}\right) \frac{s_{y}^{2}}{n}+\frac{N}{n M^{2}} \sum_{i \in \mathcal{S}} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}} \\
& \operatorname{var}\left(\widehat{\bar{Y}}_{c 2}\right)=\left(1-\frac{n}{N}\right) \frac{s_{y}^{2}}{n}+\frac{1}{n N} \sum_{i \in \mathcal{S}} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}} \\
& \operatorname{var}\left(\widehat{Y}_{c 2}\right)=N^{2}\left(1-\frac{n}{N}\right) \frac{s_{y}^{2}}{n}+\frac{N}{n} \sum_{i \in \mathcal{S}} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}}
\end{aligned}
$$

STAT3014/3914 Applied Stat.-Sampling C4-Sys. \& Cluster Sam.
where

$$
s_{y}^{2}=\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\hat{\bar{y}}\right)^{2}}{n-1}=\frac{\sum_{i=1}^{n} \hat{y}_{i}^{2}-n \hat{\bar{y}}^{2}}{n-1}
$$

is obtained by substituting \hat{y}_{i} for y_{i} in s_{y}^{2} for 1 -stage cluster sampling and $\hat{\bar{y}}=\frac{1}{n} \sum_{i=1}^{n} \hat{y}_{i}$ is the sample mean of \hat{y}_{i}.

Note: It can be shown that $\widehat{R}_{c 2}, \widehat{\bar{Y}}_{c 2}$ and $\widehat{Y}_{c 2}$ are exactly unbiased while $\widehat{R}_{c 2, r}, \widehat{\bar{Y}}_{c 2, r}$ and $\widehat{Y}_{c 2, r}$ are approximately unbiased for large sample sizes.

Summary

	Ratio	Ordinary	Variance	Additional variance in
	Est. (S_{r}^{2})	Est. (S_{y}^{2})	in stage 1	in stage $2 \hat{y}_{i}=M_{i} \overline{\bar{y}}_{i} \rightarrow y_{i}$
Mean/ele. R	\hat{r},	$\frac{\hat{\bar{y}}}{\bar{M}} \quad \mathrm{X}$	$\frac{1}{\bar{M}^{2}}\left(1-\frac{n}{N}\right) \frac{S^{2}}{n}$	$\frac{N}{n M^{2}} \sum_{i=1}^{n} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}}$
Mean/clus. \bar{Y}	$\bar{M} \hat{r} \quad \mathrm{X}$	$\hat{\bar{y}}$,	$\left(1-\frac{n}{N}\right) \frac{S^{2}}{n}$	$\frac{1}{n N} \sum_{i=1}^{n} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}}$
Total Y	M ${ }^{\text {¢ }} \mathrm{X}$	$N \hat{\bar{y}}$,	$N^{2}\left(1-\frac{n}{N}\right) \frac{S^{2}}{n}$	$\frac{N}{n} \sum_{i=1}^{n} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}}$

Note:

(a) ' $\sqrt{ }$ ' or ' X ' indicates whether we can use the estimator when M is unknown. In the case when M is unknown, \bar{M} is replaced by the sample mean $\bar{m}=\frac{1}{n} \sum_{i=1}^{n} M_{i}$ and

STAT3014/3914 Applied Stat.-Sampling C4-Sys. \& Cluster Sam.

$$
\text { Add. var. for } \begin{aligned}
R & =\frac{N}{n M^{2}} \sum_{i=1}^{n} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}} \\
& =\frac{1}{n N \bar{M}^{2}} \sum_{i=1}^{n} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}} \\
& \simeq \frac{1}{n N \bar{m}^{2}} \sum_{i=1}^{n} M_{i}^{2}\left(1-\frac{m_{i}}{M_{i}}\right) \frac{s_{y i}^{2}}{m_{i}}
\end{aligned}
$$

(b) If we replace \bar{M} by $\bar{m}, \hat{\overline{\bar{Y}}}_{c 2}$ will become $\hat{\overline{\bar{Y}}}_{c 2, r}$ since

$$
\widehat{R}_{c 2}=\frac{\hat{\bar{y}}}{\bar{M}} \rightarrow \frac{\hat{\bar{y}}}{\bar{m}}=\frac{\sum_{i=1}^{n} \hat{y}_{i}}{\sum_{i=1}^{n} M_{i}}=\hat{r}=\widehat{R}_{c 2, r}
$$

and $\widehat{Y}_{c 2, r}$ will become $\widehat{Y}_{c 2}$ since

$$
\widehat{Y}_{c 2, r}=N \bar{M} \hat{r} \rightarrow N \bar{m} \hat{r}=N \bar{m} \frac{\hat{\bar{y}}}{\bar{m}}=N \hat{\bar{y}}=\widehat{Y}_{c 2} .
$$

Read Tutorial 13 Q1(b).

4.2.7 Stratified one-stage cluster sampling

Stratified cluster sampling can be performed by selecting a cluster sample from each of the L strata in the population. There are ordinary, separate ratio and combined ratio estimators. For the separate ratio estimator, the population size in each stratum N_{i} are usually unknown, we will investigate only the combined ratio form.

Let $y_{l i}$ represents the i-th cluster total in stratum l and \bar{y}_{l} the average cluster total in stratum l. The following table is the same as the table for stratified sample in P.60.

STAT3014/3914 Applied Stat.-Sampling C4-Sys. \& Cluster Sam.

Stratified one-stage cluster sample

Estimate Variance

Ordinary estimator: $\bar{y}_{l}=\frac{1}{n_{l}} \sum_{i=1}^{n_{l}} y_{l i}, \quad s_{l y}^{2}=\frac{1}{n_{l}-1} \sum_{i=1}^{n_{l}}\left(y_{l i}-\bar{y}_{l}\right)^{2}$

$$
\begin{array}{|lll|l}
\hline \widehat{R}_{s t c 1}=\frac{1}{\bar{M}} \sum_{l=1}^{L} W_{l} \bar{y}_{l} & \mathrm{X} & \operatorname{var}\left(\widehat{R}_{s t c 1}\right)=\frac{1}{\bar{M}^{2}} \sum_{l=1}^{L} W_{l}^{2}\left(1-\frac{n_{l}}{N_{l}}\right) \frac{s_{y l}^{2}}{n_{l}} \\
\widehat{\bar{Y}}_{s t c 1}= & \sum_{l=1}^{L} W_{l} \bar{y}_{l} & \sqrt{ } & \operatorname{var}\left(\widehat{Y}_{s t c 1}\right)= \\
\widehat{Y}_{s t c 1}=N \sum_{l=1}^{L} W_{l}^{2}\left(1-\frac{n_{l}}{N_{l}}\right) \frac{s_{y l}^{2}}{n_{l}} \\
W_{l} \bar{y}_{l} & \sqrt{ } & \operatorname{var}\left(\widehat{Y}_{s t c 1}\right)=N^{2} \sum_{l=1}^{L} W_{l}^{2}\left(1-\frac{n_{l}}{N_{l}}\right) \frac{s_{y l}^{2}}{n_{l}} \\
\hline
\end{array}
$$

Separate ratio estimator: $r_{l}=\frac{\sum_{i=1}^{n_{l}} y_{l i}}{\sum_{i=1}^{n_{l}} M_{l i}}, \quad s_{s r l}^{2}=s_{y l}^{2}-2 r_{l} s_{x y l}+r_{l}^{2} s_{x l}^{2}$

$$
\widehat{R}_{s t c 1, s r}=\frac{1}{\bar{M}} \sum_{l=1}^{L} W_{l} r_{l} \bar{M}_{l} \quad \mathrm{X} \quad \operatorname{var}\left(\widehat{R}_{s t c 1, s r}\right)=\frac{1}{\bar{M}^{2}} \sum_{l=1}^{L} W_{l}^{2}\left(1-\frac{n_{l}}{N_{l}}\right) \frac{s_{s r l}^{2}}{n_{l}}
$$

$$
\widehat{\bar{Y}}_{s t c 1, s r}=\sum_{l=1}^{L} W_{l} r_{l} \bar{M}_{l} \quad \mathrm{X} \quad \operatorname{var}\left(\hat{\bar{Y}}_{s t c 1, s r}\right)=\sum_{l=1}^{L} W_{l}^{2}\left(1-\frac{n_{l}}{N_{l}}\right) \frac{s_{s r l}^{2}}{n_{l}}
$$

$$
\widehat{Y}_{s t c 1, s r}=N \sum_{l=1}^{L} W_{l} r_{l} \bar{M}_{l} \quad \mathrm{X} \left\lvert\, \operatorname{var}\left(\widehat{Y}_{s t c 1, s r}\right)=N^{2} \sum_{l=1}^{L} W_{l}^{2}\left(1-\frac{n_{l}}{N_{l}}\right) \frac{s_{s r l}^{2}}{n_{l}}\right.
$$

$$
\text { Combine ratio estimator: } r_{c}=\frac{W_{1} \bar{y}_{1}+W_{2} \bar{y}_{2}}{W_{1} \bar{m}_{1}+W_{2} \bar{m}_{2}}, \quad s_{c r l}^{2}=s_{y l}^{2}-2 r_{c} s_{x y l}+r_{c}^{2} s_{x l}^{2}
$$

$$
\begin{array}{|l|l}
\hline \widehat{R}_{s t c 1, c r}=r_{c} \quad \sqrt{ } & \operatorname{var}\left(\widehat{R}_{s t c 1, c r}\right)=\frac{1}{\bar{M}^{2}} \sum_{l=1}^{L} W_{l}^{2}\left(1-\frac{n_{l}}{N_{l}}\right) \frac{s_{c r l}^{2}}{n_{l}}
\end{array}
$$

$$
\widehat{\bar{Y}}_{s t c 1, c r}=\bar{M} r_{c} \quad \mathrm{X}
$$

$$
\operatorname{var}\left(\hat{\bar{Y}}_{s t c 1, c r}\right)=\sum_{l=1}^{L=1} W_{l}^{2}\left(1-\frac{n_{l}}{N_{l}}\right) \frac{s_{c r l}^{2}}{n_{l}}
$$

$$
\widehat{Y}_{s t c 1, c r}=M r_{c} \quad \mathrm{X}
$$

$$
\operatorname{var}\left(\widehat{Y}_{s t c 1, c r}\right)=N^{2} \sum_{l=1}^{L=1} W_{l}^{2}\left(1-\frac{n_{l}}{N_{l}}\right) \frac{s_{c r l}^{2}}{n_{l}}
$$

' X ' indicates that the estimate cannot be applied if \bar{M} or M is unknown.

Example: (City income) Interviews are conducted in each of the 25 blocks sampled from 415 blocks in City 1 with $M_{1}=2500$ individuals and 10 blocks sampled from 168 blocks in City 2 with $M_{2}=850$ individuals. The data on incomes are presented in the table below.
(a) Estimate the overall average income per individual in the two cities and its standard error using
(i) ordinary estimator if M_{1} and M_{2} are known,
(ii) separate ratio estimator if M_{1} and M_{2} are known,
(iii) combined ratio estimator if M_{1} and M_{2} are unknown and
(b) Estimate the average income per household in the two cities combined and its standard error using the four estimators.
(c) Estimate the total income in the two cities combined and its standard error using the four estimators.

City 1							City 2				
$i \quad y_{1 i}$	$\begin{array}{cccl}M_{1 i} & z_{s r 1 i} & z_{\text {cr } 1 i}\end{array}$	i	$y_{1 i}$	$M_{1 i}$	$z_{s r 1 i}$	$z_{\text {cr } 1 i}$		$y_{2 i}$	$M_{2 i}$	$z_{s r 2 i}$	$z_{c r 2 i}$
196000	82558920918	14	49000	10	-39013	-44852		18000	2	-4327	-770
2121000	$\begin{array}{llll}12 & 15384 & 8377\end{array}$	15	53000	9	-26212	-31467		252000	5	-3816	5074
342000	$4 \begin{array}{lll}4 & 6795 & 4459\end{array}$	16	50000	3	23596	21844		38000	7	-10143	2303
465000	$5 \quad 2099318074$	17	32000	6	-20808	-24311		436000	4	-8653	-1541
552000	$6-808-4311$	18	22000	5	-22007	-24926		545000	3	11510	6844
640000	6 -12808-16311	19	45000	5	993	-1926		6 96000	8	6694	20918
775000	7133919303	20	37000	4	1795	-541		764000	6	-2980	7689
865000	52099318074	21	51000	6	-1808	-5311		8115000	10	3367	21148
945000	8 -25411-30082	22	30000	8	-40411	-45082		941000	3	7510	12844
1050000	32359621844	23	39000	7	-22609	-26697		012000	1	837	261
1185000	26739766230	24	47000	3	20596	18844					
1243000	$6-9808-13311$	25	41000	8	-29411	-34082					
1354000	$5 \quad 99937074$										
M			53160		0.00	-3526.90		54700		0.00	8712
S			21784	2.37	25189	25999		32342	2.85	7193	8656

Note: $z_{s r l i}=y_{l i}-r_{l} M_{l i}, z_{c r l i}=y_{l i}-r_{c} M_{l i}, \hat{\rho}_{1}=0.30315$ and $\hat{\rho}_{2}=0.97498$.

Solution: Note that

	$n N m M$ Mean	SD
Income for city $1, y_{1 i}$	$254151512500 \bar{y}_{1}=53,160$	$s_{y 1}=21,784.322$
Resident for city $1, M_{1 i}$	$\bar{m}_{1}=6.04$	$s_{M 1}=2.3714$
Col. $z_{s r 1 i}=y_{1 i}-r_{1} M_{1 i}$	$\bar{z}_{s r 1}=0$	$s_{s r 1}=25,189.308$
Col. $z_{c r 1 i}=y_{1 i}-r_{c} M_{1 i}$	$\bar{z}_{c r 1}=-3,526.90$	$s_{c r 1}=25,998.656$
Income for city 2, $y_{2 i}$	1016849	850
$\bar{y}_{2}=54,700$	$s_{y 2}=32,342.10$	
Resident for city $2, M_{2 i}$	$\bar{m}_{2}=4.90$	$s_{M 2}=2.846$
Col. $z_{s r 2 i}=y_{2 i}-r_{2} M_{2 i}$	$\bar{z}_{s r 2}=0$	$s_{s r 2}=7,192.970$
Col. $z_{c r 2 i}=y_{2 i}-r_{c} M_{2 i}$	$\bar{z}_{c r 2}=8,712.28$	$s_{c r 2}=8,656.483$
Total	355832003350	

(a) We have
$r_{1}=\frac{\bar{y}_{1}}{\bar{m}_{1}}=\frac{53,160}{6.04}=8,801.325 r_{2}=\frac{\bar{y}_{2}}{\bar{m}_{2}}=\frac{54,700}{4.90}=11,163.265 \mathrm{sep} . r .$, mean $/$ ele.
$r_{c}=\frac{N_{1} \bar{y}_{1}+N_{2} \bar{y}_{2}}{N_{1} \bar{m}_{1}+N_{2} \bar{m}_{2}}=\frac{415 \times 53,160+168 \times 54,700}{415 \times 6.04+168 \times 4.90}=9,385.248 \mathrm{comb} . \quad$ r., mean $/$ ele.
$\bar{M}_{1}=\frac{M_{1}}{N_{1}}=\frac{2,500}{415}=6.024 \quad \bar{M}_{2}=\frac{M_{2}}{N_{2}}=\frac{850}{168}=5.060 \quad$ pop. mean cluster size
$\bar{M}=\frac{M}{N}=\frac{3,350}{583}=5.7461 \quad$ overall pop. mean cluster size
$W_{1}=\frac{N_{1}}{N}=\frac{415}{583}=0.7118 \quad W_{2}=\frac{N_{2}}{N}=\frac{168}{583}=0.2882 \quad$ wt. prop. to no. of cluster

$$
\begin{aligned}
& s_{s r 1}^{2}=s_{y 1}^{2}-2 r_{1} \rho_{1} s_{y 1} s_{M 1}+r_{1}^{2} s_{M 1}^{2} \\
& \quad=21784.322^{2}-2(8801.325)(0.30315)(21784.322)(2.3714)+\left(8801.325^{2}\left(2.3714^{2}\right)\right. \\
& \quad=25189.308^{2} \\
& s_{c r 1}^{2}=s_{y 1}^{2}-2 r_{c} \rho_{1} s_{y 1} s_{M 1}+r_{c}^{2} s_{M 1}^{2} \\
& \quad=21784.322^{2}-2(9385.248)(0.30315)(21784.322)(2.3714)+9385.248^{2}\left(2.3714^{2}\right) \\
&=25998.656^{2} \\
& s_{s r 2}^{2}=s_{y 2}^{2}-2 r_{2} \rho_{2} s_{y 2} s_{M 2}+r_{2}^{2} s_{M 2}^{2} \\
&=32342.1^{2}-2(11163.265)(0.97498)(32342.1)(2.846)+11163.265^{2}\left(2.846^{2}\right) \\
&=7192.97^{2} \\
& s_{c r 2}^{2}=s_{y 2}^{2}-2 r_{c} \rho_{2} s_{y 2} s_{M 2}+r_{c}^{2} s_{M 2}^{2} \\
& \quad=32342.1^{2}-2(9385.248)(0.97498)(32342.1)(2.846)+9385.248^{2}\left(2.846^{2}\right) \\
&=8656.483^{2}
\end{aligned}
$$

(i) Estimate of the average income per individual in the two cities combined and its standard error using ordinary estimator are

$$
\begin{aligned}
& \widehat{R}_{s t c 1}=\frac{\text { sample average of income per block }}{\text { population average no. of residents per block }} \\
&=\frac{1}{\bar{M}}\left(W_{1} \bar{y}_{1}+W_{2} \bar{y}_{2}\right) \\
&=\frac{583}{3350}\left(\frac{415}{583} \times 53160+\frac{168}{583} \times 54700\right) \\
&=9328.66 \\
& \operatorname{var}\left(\widehat{R}_{s t c 1}\right)=\frac{1}{\bar{M}^{2}}\left[W_{1}^{2}\left(1-\frac{n_{1}}{N_{1}}\right) \frac{s_{y 1}^{2}}{n_{1}}+W_{2}^{2}\left(1-\frac{n_{2}}{N_{2}}\right) \frac{s_{y 2}^{2}}{n_{2}}\right] \\
&=\frac{583^{2}}{3350^{2}}\left[\frac{415^{2}}{583^{2}}\left(1-\frac{25}{415}\right) \frac{21784.322^{2}}{25}+\right. \\
&\left.\frac{168^{2}}{583^{2}}\left(1-\frac{10}{168}\right) \frac{32342.095^{2}}{10}\right] \\
& \operatorname{se}\left(\widehat{R}_{s t c 1}\right)=\sqrt{521168.3451} \\
& 521168.3451
\end{aligned}=721.92 .
$$

(ii) Estimate of the average income per individual in the two cities combined and its standard error using separate ratio estimator
are

$$
\begin{aligned}
\widehat{R}_{s t c 1, s r} & =\frac{\text { sample average of income per block }}{\text { population average no. of residents per block }} \\
& =\frac{1}{\bar{M}}\left(W_{1} \bar{M}_{1} r_{1}+W_{2} \bar{M}_{2} r_{2}\right) \\
& =\frac{583}{3350}\left(\frac{415}{583} \times \frac{2500}{415} \times \frac{53160}{6.04}+\frac{168}{583} \times \frac{850}{168} \times \frac{54700}{4.90}\right) \\
& =9,400.623
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{var}\left(\hat{\bar{Y}}_{s t c 1, s r}\right) & =\frac{1}{\bar{M}^{2}}\left[W_{1}^{2}\left(1-\frac{n_{1}}{N_{1}}\right) \frac{s_{r 1}^{2}}{n_{1}}+W_{2}^{2}\left(1-\frac{n_{2}}{N_{2}}\right) \frac{s_{r 2}^{2}}{n_{2}}\right] \\
& =\frac{583^{2}}{3350^{2}}\left[\frac{415^{2}}{583^{2}}\left(1-\frac{25}{415}\right) \frac{25189.308^{2}}{25}+\right. \\
& \left.=\frac{168^{2}}{583^{2}}\left(1-\frac{10}{168}\right) \frac{7192.970^{2}}{10}\right] \\
& =366938.7745 \\
\operatorname{se}\left(\widehat{\bar{Y}}_{s t c 1, s r}\right) & =\sqrt{366938.7745}=605.7547
\end{aligned}
$$

(iii) Since M is unknown, it is estimated by

$$
\widehat{M}=N_{1} \bar{m}_{1}+N_{2} \bar{m}_{2}=415 \times 6.04+168 \times 4.90=3,329.8
$$

Estimate of the average income per individual in the two cities combined and its standard error using combined ratio estimator
are

$$
\begin{aligned}
\widehat{R}_{s t c 1, c r} & =\frac{\text { sample estimate of total income }}{\text { sample estimate of total no. of residents }} \\
& =r_{c}=\frac{N_{1} \bar{y}_{1}+N_{2} \bar{y}_{2}}{N_{1} \bar{m}_{1}+N_{2} \bar{m}_{2}} \\
& =\frac{415 \times 53,160+168 \times 54,700}{415 \times 6.04+168 \times 4.90}=9,385.25 \\
\operatorname{var}\left(\widehat{R}_{s t c 1, c r}\right) & =\frac{1}{\widehat{M^{2}}}\left[N_{1}^{2}\left(1-\frac{n_{1}}{N_{1}}\right) \frac{s_{c r 1}^{2}}{n_{1}}+N_{2}^{2}\left(1-\frac{n_{2}}{N_{2}}\right) \frac{s_{c r 2}^{2}}{n_{2}}\right] \\
& =\frac{1}{3329.8^{2}}\left[415^{2}\left(1-\frac{25}{415}\right) \frac{25998.656^{2}}{25}+\right. \\
& =407060.1502 \\
\operatorname{se}\left(\widehat{R}_{s t c 1, c r}\right) & =\sqrt{407060.1502}=638.0127
\end{aligned}
$$

Note that if $M=3350$ is known, it should be used for $\widehat{M}=$ 3329.8 instead and $\operatorname{var}\left(\widehat{R}_{s t c 1, c r}\right)=402165.9266 \& \operatorname{se}\left(\widehat{R}_{s t c 1, c r}\right)=$ 634.1655 respectively.
(b) , (c) Left as exercise.

Note that

1. The 3 estimates, $\widehat{R}_{s t c 1}=9,328.66, \widehat{R}_{s t c 1, s r}=9,400.62$ and $\widehat{R}_{s t c 1, c r}=$ $9,385.25$ using respectively ordinary, separate ratio and combined ratio estimators are similar.
2. Since

$$
0.30315=\rho_{1}<\frac{\bar{y}_{1} s_{1 m}}{2 \bar{m}_{1} s_{1 y}}=\frac{53160(2.3714)}{2(6.04)(21784.322)}=0.479048
$$

$s_{1 s r}>s_{1 y}$. Also since $\operatorname{se}\left(\widehat{\bar{Y}}_{s t c 1, s r}\right)=605.755<\operatorname{se}\left(\widehat{R}_{s t c 1, c r}\right)=$ $638.013<\operatorname{se}\left(\widehat{R}_{s t c 1}\right)=721.92$, the ratio estimate is better than the ordinary estimate because the block sizes $M_{2 j}$ are highly and positively related to the total incomes $y_{2 j}$ for block j of city 2 .
3. Between the two ratio estimates, the separate ratio estimate $\widehat{R}_{s t c 1}$ is again better because there is great difference between the two ratios of average income per residents $r_{1}=8,801.3245$ and $r_{2}=11,163.265$ in the 2 cities and their sample sizes of blocks, $n_{1}=25$ and $n_{2}=10$ are not too small. Hence the assumption of a common ratio in the combined ratio estimator is not appropriate.

