Solution to Tutorial 10

1. We have $N=5$ and $n=2$.
(a) The population mean μ and population variance σ^{2} are

$$
\begin{aligned}
\mu & =\frac{1}{5}(0+3+3+4+5)=3 \\
\sigma^{2} & =\frac{1}{5}\left[(0-3)^{2}+(3-3)^{2}+(3-3)^{2}+(4-3)^{2}+(5-3)^{2}\right]=2.8
\end{aligned}
$$

(b) We have 10 different samples:

$\left\{y_{i}, y_{j}\right\}$	$\{0,3\}$	$\{0,3\}$	$\{0,4\}$	$\{0,5\}$	$\{3,3\}$	$\{3,4\}$	$\{3,5\}$	$\{3,4\}$	$\{3,5\}$	$\{4,5\}$
\bar{y}	1.5	1.5	2	2.5	3	3.5	4	3.5	4	4.5

The mean and variance of the sample mean \bar{y} are

$$
\begin{aligned}
E(\bar{y}) & =\frac{1}{10}(1.5+\cdots+4.5)=3 \\
\operatorname{Var}(\bar{y}) & =\frac{1}{10}\left[(1.5-3)^{2}+\cdots+(4.5-3)^{2}\right]=1.05
\end{aligned}
$$

Moreover

$$
\begin{aligned}
& \begin{aligned}
\left(1-\frac{n}{N}\right) \frac{S^{2}}{n} & =\left(1-\frac{2}{5}\right) \frac{3.5}{2}=1.05 \\
\text { where } & S^{2}
\end{aligned} \\
& =\frac{N}{N-1} \sigma^{2}=\frac{5}{4}(2.8)=3.5
\end{aligned}
$$

2. We have $N=1000, S \approx \sigma=6, \delta_{\mu}=0.5$ and $z_{0.05}=1.645$.
(a) With replacement or ignoring fpc,

$$
n \geq \frac{z_{\alpha / 2}^{2} S^{2}}{\delta_{\mu}^{2}}=\frac{1.645^{2} 6^{2}}{0.5^{2}}=389.6676
$$

Take $n=390$.
(b) Without replacement,

$$
n \geq \frac{N S^{2}}{N \delta_{\mu}^{2} / z_{\alpha / 2}^{2}+S^{2}}=\frac{1000\left(6^{2}\right)}{1000\left(0.5^{2}\right) / 1.645^{2}+6^{2}}=280.4035
$$

Take $n=281$. It is smaller because sampling without replacement produces more informative samples and hence more precise estimates.
(c) For large sample size $n \quad(n=40)$, and small to moderate sampling fraction $f=\frac{40}{1000}$, we have the approximation

$$
(\bar{y}-\mu) / \sqrt{\operatorname{Var} \bar{y}} \sim \mathcal{N}(0,1)
$$

Now $S^{2}=\frac{N}{N-1} \sigma^{2}, \bar{y}-\mu=-1$ and

$$
\operatorname{Var}(\bar{y})=\left(1-\frac{n}{N}\right) \frac{S^{2}}{n}=\left(\frac{N-n}{N} \frac{N}{N-1}\right) \frac{\sigma^{2}}{n}=\left(\frac{1000-40}{1000-1}\right) \frac{6^{2}}{40}=0.864865
$$

Hence

$$
\operatorname{Pr}\left(z<\frac{\bar{y}-\mu}{\sqrt{\operatorname{Var}(\bar{y})}}\right)=\operatorname{Pr}\left(z<\frac{-1}{\sqrt{0.864865}}\right)=\operatorname{Pr}(z<-1.07529)=0.1411225
$$

3. Let Y_{i} denote the number of decayed teeth and C_{1} the subpopulation of children who have at least one decayed teeth. Let

$$
Y_{i}^{\prime}=\left\{\begin{array}{lll}
Y_{i} & \text { if } i \in C_{1} \\
0 & \text { if } i \notin C_{1}
\end{array}\right.
$$

We have $N=200, N_{1}=140, N_{2}=60, n=20, n_{1}=12, n_{2}=8$,

$$
\begin{aligned}
& Y_{i}=Y_{i}^{\prime}, \quad \sum_{i=1}^{n} y_{i}^{2}=\sum_{i \in C_{1}} y_{i}^{2}=4\left(1^{2}\right)+2\left(2^{2}\right)+\cdots+1\left(10^{2}\right)=252, \\
& \bar{y}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\frac{42}{20}=2.1, \quad \bar{y}_{1}=\frac{1}{n_{1}} \sum_{i \in C_{1}} y_{i}=\frac{n}{n_{1}} \bar{y}^{\prime}=\frac{42}{12}=3.5 .
\end{aligned}
$$

The sample variances are

$$
\begin{aligned}
& {s_{1}^{\prime 2}}^{2}=\left[\sum_{i=1}^{n} y_{i}^{2}-\left(\sum_{i=1}^{n} y_{i}\right)^{2} / n\right] /(n-1)=\left[252-20 \times 2.1^{2}\right] / 19=8.621 \\
& s_{1}^{2}=\left[\sum_{i \in C_{1}} y_{i}^{2}-\left(\sum_{i \in C_{1}} y_{i}\right)^{2} / n_{1}\right] /\left(n_{1}-1\right)=\left[252-12 \times 3.5^{2}\right] / 11=9.545
\end{aligned}
$$

The estimates of the total number of decayed teeth are respectively

$$
\begin{aligned}
\widehat{Y} & =N \bar{y}^{\prime}=200(2.1)=420 \\
\widehat{Y}_{p s t, 1 m 1} & =N_{1} \frac{N}{N_{1}} \bar{y}^{\prime}=140(3)=420 \quad\left(3 \text { is mean est. in } C_{1}\right) \\
\widehat{Y}_{p s t, 1 m 2} & =N_{1} \frac{n}{n_{1}} \bar{y}^{\prime}=N_{1} \bar{y}_{C_{1}}=140(3.5)=490
\end{aligned}
$$

which are done in lecture. The first two estimates $\widehat{Y}=\widehat{Y}_{p s t, 1 m 1}=420$ because there are no decayed teeth in the other subpopulation defined by C_{2}.

We have

$$
\begin{aligned}
& \operatorname{var}\left(\widehat{Y}_{p s t, 1 m 1}\right)=N^{2}\left(1-\frac{n}{N}\right) \frac{s_{1}^{\prime 2}}{n}=200^{2}\left(1-\frac{20}{200}\right) \frac{8.621}{20}=15517.89 \\
& \operatorname{var}\left(\widehat{Y}_{p s t, 1 m 2}\right)=N^{2} W_{l}\left(1-\frac{n}{N}\right) \frac{s_{1}^{2}}{n}=200^{2} \frac{140}{200}\left(1-\frac{20}{200}\right) \frac{9.545}{20}=12027.27
\end{aligned}
$$

4. (a) Annual profit: $N_{1}=480, N_{2}=320, S_{1}=211$ and $S_{2}=708$.

$$
\begin{aligned}
\sum_{l=1}^{L} \frac{N_{l} s_{l}}{\sqrt{C_{l}}} & =\frac{480 \times 211}{\sqrt{0.08}}+\frac{320 \times 708}{\sqrt{0.1}}=1,074,524.5 \\
n_{1} & =n\left(\frac{\frac{N_{1} s_{1}}{\sqrt{C_{1}}}}{\sum_{i=1}^{L} \frac{N_{i} s_{i}}{\sqrt{C_{i}}}}\right)=n\left[\frac{358,078.9}{1,074,524.5}\right]=0.333 n \\
n_{2} & =n\left(\frac{\frac{N_{2} s_{2}}{\sqrt{C_{2}}}}{\sum_{i=1}^{L} \frac{N_{i} s_{i}}{\sqrt{C_{i}}}}\right)=n\left[\frac{716,445.6}{1,074,524.5}\right]=0.667 n
\end{aligned}
$$

(b) Cost constraint:

$$
\begin{aligned}
n_{1} C_{1}+n_{2} C_{2} \leq 9.3 & \Rightarrow 0.333 n \times 0.08+0.667 n \times 0.1 \leq 9.3 \\
& \Rightarrow 0.09334 n \leq 9.3 \\
& \Rightarrow n \leq 99.6
\end{aligned}
$$

Take $n=99 . n_{1}=0.333 \times 99=33$ and $n_{2}=0.667 \times 99=66$.
(c) The estimate of the mean annual profit of trading firms and the 95% confidence interval of the estimate are

$$
\begin{aligned}
\widehat{\bar{Y}}_{s t} & =\sum_{l=1}^{3} \frac{N_{1}}{N} \bar{y}_{l} \\
& =\frac{480}{800} \times 540+\frac{320}{800} \times 1,730=1,016 \text { thousands. } \\
\operatorname{Var}\left(\widehat{\bar{Y}}_{s t}\right) & =\sum_{l=1}^{L} \frac{N_{l}^{2}}{N}\left(1-\frac{n_{l}}{N_{l}}\right) \frac{S_{l}^{2}}{n_{l}} \\
& =\left(\frac{480}{800}\right)^{2}\left(1-\frac{33}{480}\right) \frac{211^{2}}{33}+\left(\frac{320}{800}\right)^{2}\left(1-\frac{66}{320}\right) \frac{708^{2}}{66} \\
& =452.293+964.553=1,416.846 \\
\mathrm{SE}\left(\hat{\bar{Y}}_{s t}\right) & =\sqrt{1416.846}=37.64
\end{aligned}
$$

$95 \% \mathrm{CI}$ for $\bar{Y}_{s t}=(1,016-1.96 \times 37.64,1,016+1.96 \times 37.64)=(942.22,1,089.77)$.

Extra exercise

1. (a) $p=0.18+0.19+0.04+0.22=0.63, n=82$ and $N=1400$. The population proportion having at least 50-50 chance of advertising in the future:

$$
\begin{aligned}
\widehat{P} & =p=0.63 \\
\operatorname{var}(\widehat{P}) & =\left(1-\frac{n}{N}\right) \frac{p(1-p)}{n-1}=\left(1-\frac{82}{1400}\right) \frac{0.63 \times 0.37}{81}=0.002709222 \\
\operatorname{se}(\widehat{P}) & =\sqrt{0.002709222}=0.052050189 \\
95 \% \text { CI for } P & =\left(\widehat{P}-z_{0.025} \times \operatorname{se}(\widehat{P}), \widehat{P}+z_{0.025} \times \operatorname{se}(\widehat{P})\right. \\
& =(0.63-1.96 \times 0.052,0.63+1.96 \times 0.052)=(0.528,0.732)
\end{aligned}
$$

(b) $p=0.15+0.35+0.05+0.35=0.90, n=46$ and $N=1400$. The population proportion having at least 50-50 chance of advertising again:

$$
\begin{aligned}
\widehat{P} & =p=0.90 \\
\operatorname{var}(\widehat{P}) & =\left(1-\frac{n}{N}\right) \frac{p(1-p)}{n-1}=\left(1-\frac{46}{1400}\right) \frac{0.90 \times 0.10}{45}=0.001934286 \\
\operatorname{se}(\widehat{P}) & =\sqrt{0.001934286}=0.04398052
\end{aligned}
$$

(c) $p=0.63, n=82$ and $N=1400$. The total number of accountants out of the $N=1400$ accountants having at least 50-50 chance of advertising in the future

$$
\begin{aligned}
N \widehat{P} & =N p=1400 \times 0.63=882 \\
\operatorname{var}(N \widehat{P}) & =N^{2}\left(1-\frac{n}{N}\right) \frac{p(1-p)}{n-1}=1400^{2}\left(1-\frac{82}{1400}\right) \frac{0.63 \times 0.37}{81}=5310.07512 \\
\operatorname{se}(\widehat{P}) & =\sqrt{5310.07512}=72.87026225
\end{aligned}
$$

2. (a) We have $n=4, N=10, \sum_{i} y_{i}^{2}=5.5^{2}+8^{2}+12^{2}+13^{2}=407.25$.

$$
\begin{aligned}
\widehat{\bar{Y}}_{1} & =\bar{y}=\frac{1}{4}(5.5+8+12+13)=9.625 \\
s_{y}^{2} & =\frac{1}{n-1}\left(\sum_{i} y_{i}^{2}-n \bar{y}^{2}\right)=\frac{1}{3}\left(407.25-4 \times 9.625^{2}\right)=12.22916667 \\
\operatorname{var}\left(\widehat{\bar{Y}}_{1}\right) & =\left(1-\frac{n}{N}\right) \frac{s_{y}^{2}}{n}=\left(1-\frac{4}{10}\right) \frac{12.22916667}{4}=1.834375001
\end{aligned}
$$

(b) Now we have y_{3} included and $n=3, N=9, \bar{y}=\frac{1}{3}(8+12+13)=11$ and

$$
\begin{aligned}
\sum_{i} y_{i}^{2}=8^{2} & +12^{2}+13^{2}=377 \\
\hat{\bar{Y}}_{2} & =\frac{1}{4}\left(y_{3}+3 \bar{y}\right)=\frac{1}{4}(5.5+3 \times 11)=9.625 \\
s_{y}^{\prime 2} & =\frac{1}{n^{\prime}-1}\left(\sum_{i} y_{i}^{2}-n \bar{y}^{\prime 2}\right)=\frac{1}{2}\left(377-3 \times 11^{2}\right)=7 \\
\operatorname{var}\left(\hat{\bar{Y}}_{2}\right) & =\left(\frac{1}{4}\right)^{2} \operatorname{var}\left(y_{3}\right)+\left(\frac{3}{4}\right)^{2} \operatorname{var}(\bar{y}) \\
& =\frac{9}{16}\left(1-\frac{n}{N}\right) \frac{s_{y}^{2}}{n}=\frac{9}{16}\left(1-\frac{3}{9}\right) \frac{7}{3}=0.875<1.834375001=\operatorname{var}\left(\hat{\bar{Y}}_{1}\right)
\end{aligned}
$$

because one point is fixed and hence the variability is less.
(c) We have $n_{l}=2, n_{h}=2, N_{l}=2, N_{h}=5, \bar{y}_{l}=\frac{1}{2}(5.5+8)=6.75, \bar{y}_{h}=\frac{1}{2}(12+13)=$ 12.5 , and $\sum_{i} y_{i}^{2}=8^{2}+12^{2}+13^{2}=377$.

$$
\begin{aligned}
\bar{y}_{l} & =\frac{1}{2}(5.5+8)=6.75 \\
s_{l}^{2} & =\frac{1}{n_{l}-1}\left(\sum_{i} y_{l i}^{2}-n_{l} \bar{y}_{l}^{2}\right)=\frac{1}{1}\left(5.5^{2}+8^{2}-2 \times 6.75^{2}\right)=3.125 \\
\bar{y}_{h} & =\frac{1}{2}(12+13)=12.5 \\
s_{h}^{2} & =\frac{1}{n_{h}-1}\left(\sum_{i} y_{h i}^{2}-n_{h} \bar{y}_{h}^{2}\right)=\frac{1}{1}\left(12^{2}+13^{2}-2 \times 12.5^{2}\right)=0.5 \\
\widehat{\bar{Y}}_{3} & =\frac{1}{3} \bar{y}_{l}+\frac{2}{3} \bar{y}_{h}=\frac{1}{3} \times 6.75+\frac{2}{3} \times 12.5=10.583 \\
\operatorname{var}\left(\hat{\bar{Y}}_{3}\right) & =\left(\frac{1}{3}\right)^{2} \operatorname{var}\left(\bar{y}_{l}\right)+\left(\frac{2}{3}\right)^{2} \operatorname{var}\left(\bar{y}_{h}\right) \\
& =\frac{1}{9}\left(1-\frac{n_{l}}{N_{l}}\right) \frac{s_{l}^{2}}{n_{l}}+\frac{4}{9}\left(1-\frac{n_{h}}{N_{h}}\right) \frac{s_{h}^{2}}{n_{h}} \\
& =\frac{1}{9}\left(1-\frac{2}{5}\right) \frac{3.125}{2}+\frac{4}{9}\left(1-\frac{2}{5}\right) \frac{0.5}{2} \\
& =0.1042+1.0667=0.1709<1.834375001=\operatorname{var}\left(\hat{\bar{Y}}_{1}\right)
\end{aligned}
$$

because the variability in each subsample is less.
3. (a) The estimate of the total number of female students $N_{1} P_{1}$ who regard 'clothing'
as important is

$$
\begin{aligned}
N_{1} \widehat{P}_{1} & =N_{1} p_{1}=4800 \times \frac{9}{15}=2880 \\
\operatorname{se}\left(N_{1} \widehat{P}_{1}\right) & =N \sqrt{\left(1-\frac{n_{1}}{N_{1}}\right) \frac{p_{1}\left(1-p_{1}\right)}{n_{1}-1}} \\
& =4800 \sqrt{\left(1-\frac{15}{4800}\right) \frac{9}{15} \frac{6}{16}}=627.484775
\end{aligned}
$$

(b) The estimate of the average amount spent on clothing by male students \bar{Y}_{1} and the standard error estimate are

$$
\begin{aligned}
\hat{\bar{Y}}_{1} & =\bar{y}_{1}=\frac{\sum_{i} y_{1 i}}{n_{1}}=\frac{412}{12}=34.33 \\
s_{y 1}^{2} & =\frac{\sum_{i} y_{1 i}^{2}-n_{1} \bar{y}_{1}^{2}}{n_{1}-1}=\frac{16390-12 \times 34.33^{2}}{11}=204.0606 \\
\operatorname{se}\left(\widehat{Y}_{1}\right) & =\sqrt{\left(1-\frac{n_{1}}{N_{1}}\right) \frac{s_{y 1}^{2}}{n_{1}}}=\sqrt{\left(1-\frac{12}{4400}\right) \frac{204.0606}{12}}=4.118091
\end{aligned}
$$

The estimate of the average amount spent on clothing by female students \bar{Y}_{2} and the standard error estimate are

$$
\begin{aligned}
\hat{\bar{Y}}_{2} & =\bar{y}_{2}=\frac{\sum_{i} y_{2 i}}{n_{2}}=\frac{824}{12}=54.93 \\
s_{y 2}^{2} & =\frac{\sum_{i} y_{2 i}^{2}-n_{2} \bar{y}_{2}^{2}}{n_{2}-1}=\frac{47604-15 \times 54.93^{2}}{14}=167.0667 \\
\operatorname{se}\left(\widehat{Y}_{2}\right) & =\sqrt{\left(1-\frac{n_{2}}{N_{2}}\right) \frac{s_{y 2}^{2}}{n_{2}}}=\sqrt{\left(1-\frac{15}{4800}\right) \frac{167.0667}{15}}=3.337331
\end{aligned}
$$

(c) The estimate of the gender difference in the average amount spent on clothing $\bar{Y}_{1}-\bar{Y}_{2}$ and the standard error estimate are

$$
\begin{aligned}
\hat{\bar{Y}}_{2}-\widehat{\bar{Y}}_{1} & =\bar{y}_{2}-\bar{y}_{1}=54.93-34.33=20.6 \\
\operatorname{se}(\widehat{Y}) & =\sqrt{\left(1-\frac{n_{1}}{N_{1}}\right) \frac{s_{y 1}^{2}}{n_{1}}+\left(1-\frac{n_{2}}{N_{2}}\right) \frac{s_{y 2}^{2}}{n_{2}}}=\sqrt{\operatorname{var}\left(\widehat{Y}_{1}\right)+\operatorname{var}\left(\widehat{Y}_{1}\right)} \\
& =\sqrt{4.118091^{2}+3.337331^{2}}=5.30061 \\
95 \% \text { CI for } \bar{Y}_{1}-\bar{Y}_{2} & =(20.6-1.96 \times 5.30061,20.6+1.96 \times 5.30061) \\
& =(10.21081,30.98919)
\end{aligned}
$$

Since the CI for $\bar{Y}_{1}-\bar{Y}_{2}$ does not contain 0 , there is a significant gender difference in the average amount spent on clothing for the students in a certain university.
(d) The estimate the overall average amount spent on clothing \bar{Y} using the stratified random sample estimator and the standard error estimate are

$$
\begin{aligned}
\widehat{\bar{Y}}_{s t} & =\frac{N_{1}}{N} \bar{y}_{1}+\frac{N_{1}}{N} \bar{y}_{2}=\frac{4400}{9200} \times \frac{412}{12}+\frac{4800}{9200} \times \frac{824}{15}=45.08116 \\
\operatorname{se}\left(\widehat{\bar{Y}}_{s t}\right) & =\sqrt{\frac{N_{1}^{2}}{N^{2}}\left(1-\frac{n_{1}}{N_{1}}\right) \frac{s_{y 1}^{2}}{n_{1}}+\frac{N_{2}^{2}}{N^{2}}\left(1-\frac{n_{2}}{N_{2}}\right) \frac{s_{y 2}^{2}}{n_{2}}} \\
& =\sqrt{\frac{4400^{2}}{9200^{2}}\left(1-\frac{12}{4400}\right) \frac{204.0606}{12}+\frac{4800^{2}}{9200^{2}}\left(1-\frac{15}{4800}\right) \frac{167.0667}{15}} \\
& =2.627047
\end{aligned}
$$

4. (a) $\delta_{p}=0.03$. Take $s_{p}^{2}=p(1-p)=0.3(1-0.3)=0.21$. Note that $s_{p}^{2}=0.2(1-0.2)=$ 0.16 will give a smaller n. Hence

$$
n=\frac{z_{\alpha / 2}^{2} s_{p}^{2}}{\delta_{p}}=\frac{1.96^{2} \times 0.21}{0.03^{2}}=896.37
$$

Take $n=897$.
(b) For a more conservative estimate, take $s_{p}^{2}=0.5(1-0.5)=0.25$.

$$
n=\frac{z_{\alpha / 2}^{2} s_{p}^{2}}{\delta_{p}}=\frac{1.96^{2} \times 0.25}{0.03^{2}}=1067.11
$$

Take $n=1068$.
(c) $\delta_{p}=1.96 \times \mathrm{se}(p)=1.96 \times 0.015=0.0294$.

$$
n=\frac{z_{\alpha / 2}^{2} s_{p}^{2}}{\delta_{p}}=\frac{1.96^{2} \times 0.25}{0.0294^{2}}=1111.11
$$

Take $n=1112$.
(d) $\delta_{p}=0.03$. Take $s_{p^{\prime}-p}^{2}=s_{p^{\prime}}^{2}+s_{p}^{2}=0.3 \times 0.7+0.4 \times 0.6$.

$$
n=\frac{z_{\alpha / 2}^{2} s_{p^{\prime}-p}^{2}}{\delta_{p^{\prime}-p}}=\frac{1.96^{2} \times(0.3 \times 0.7+0.4 \times 0.6)}{0.03^{2}}=1922.3
$$

Take $n=1923$. A more conservative estimate is

$$
n=\frac{z_{\alpha / 2}^{2} s_{p^{\prime}-p}^{2}}{\delta_{p^{\prime}-p}}=\frac{1.96^{2} \times 2 \times 0.5 \times 0.5}{0.03^{2}}=2134
$$

