STAT 3014/3914

Semester 2 Applied Statistics 2015

Solution to Tutorial 13

1. Note that y; is the total mileage for branch 1.

(a) 1-stage cluster sample

Cluster — branches (N =12; n =4)
Element — cars (M = 810; m = 240)

_ M 810
Population mean no. of cars per branch M = N1 67.5
. AV 63400
Sample mean mileage per branch § = = = 1585.225
n
. ZY 63409
Sample mean mileage per car r = — =20 - 26.4204.
> M

=1

The sampling method is a single-stage cluster sampling and the quantity to be
estimated is R, the average mileage per car.

The ordinary estimate of mean mileage per car is

. y  1585.225
Ry = 2L = 2222272 _ 93 4848
YT 67.5

with estimated variance

~ 1 ny s2 1 4\ 1083221.642
R :_—(1——)—y: 1= — ) 2222202 39 64,
var(Rer) = N)n 675 12 1

The ratio estimate of mean mileage per car is
~ P ~6340.9

Ra,=r=—; = 26.4204
S0, 240
=1




with estimated variance

n

1 1 n n n
2 _ M) = (ST STy 42 S A2
s ”_1;@ rMy)? = —— Zly Tizly +T; :
_ 13301418.13 — 2 - 26.4204 - 496751 + 26.4204218600  36195.885
B 3 3
~ 1 ny s
wrlfan) = 3 (1-5) 3
1 4\ 136195.883
- 1—— ) 222020 441,
67.52 ( 12) i3

Note: The ordinary estimate has a much larger variance (39.624) than the ra-
tio estimate (0.441). This is due to the great variability in cluster sizes (M; =

60, 110, 20, 50 for the selected clusters).

(b) 2-stage cluster sample

Cluster

Element

branches (N = 12; n = 4)
cars (M = 810; m = 240)
M 810

Mean no. of car per branch M = N-o1 - 67.5
. "9 6,521.58
Estimated sample mean mileage per branch y = 2izt ¥ = 1 = 1,630.395
n
o Ui 6,521.58
Estimated sample mean mileage per car 7 = gll:l]\% =S - 27.17325.
1 60 1459.2 1585.225  -126.025 15882.301
2 110 3036.0 2906.246  129.754 16836.144
3 20  568.2  528.408 39.792 1583.377
4 50  1277.5 1321.021  -43.521 1894.063
Sum 240 6340.9 36195.885
Variance due to estimated y; is
N < N m;\ S
0) = M1 - =)=
ar o) = > (1- 5
12 10\ 4.90684 10\ 13.42161
= 60° (1 — — 502 (1 - — |
4 - 8102 [ < 60) 10 L ( 50) 10
12
= I 80 (1,472.052 + 13,811.743 + 121.8964 + 2, 684.322)
~54,270.04
- 8102

|



We also have

1 - — 1
52 = ( T ngf) = g[14, 161, 800.33—4(1,630.395)] = 1,176, 349.635.

1
= 5(14,161,800.33 — 2 x 27.173 x 512,461.2 + 27.173% x 18, 600)
= 15,099.44.

The ordinary estimate of the average mileage per car R is

7 1,630.395

o= 2 — — 94154
T M 67.5

)

with estimated variance:

1 (1 n) s2 122 (1 4) 1,176,349.635 28,232, 391.24

var(Re2) = o N T 12 1 8102

n o 8102

Thus

var(Re) = var(Ry) + - ;var(yi)
28,232,391.24 + 54, 270.04
= — 43.0306 + 0.0827 = 43.1133.

The ratio estimate of the average mileage per car R is

Rey =17 = gn;l]\% = 6’52241)'58 = 27.173
with estimated variance
var(Bu,) = — (1-2) s 122 <1 4 ) 15,099.44 _ 362,386,544
’ M? N/ n 8102 12 4 8102
Thus

~

~ N & .
var(Re,) = var(Re,) + —ye ZZI var(y;)

544 + 54,270.04
_ 362,386.544 4 54,270.04 _ ) o031 .0827 = 0,635,

8102

Note:



1. The ordinary estimate has a much larger variance (43.1133) than the ratio
estimate (0.635). This is due to the great variability in cluster sizes (N; =
60, 110, 20, 50 for the selected clusters).

2. Both estimates of ordinary and ratio in 2-stage sampling have larger variance
than the corresponding estimates in singe-stage sampling due to the increase
in variability in estimating ¢; in the 2-stage sampling. However the increase
(0.0837) is not great since the subsample sizes of 10 in each selected cluster
are not too small.

2. 2-stage cluster sample

’Plant\Mi\mi‘@ ‘Qz‘:Mz@z“Sz

yi ‘

1 50 | 10 | 5.40 | 270.00 11.38
2 65 | 13 | 4.00 | 260.00 10.67
3 45 | 9 | 5.67 | 255.15 16.75
4 48 | 10 | 4.80 | 230.40 13.29
5 52 | 10 | 4.30 | 223.60 11.12
6 o8 | 12 | 3.83 | 222.14 14.88
7 42 | 8 |5.00 | 210.00 5.14
8 66 |13 | 3.85 | 254.10 4.31
9 40 | 8 | 4.88 | 195.20 6.13
10 56 | 11 | 5.00 | 280.00 11.80

1

D G =240059, > M; =522, Y {7 =583,198.6721, > §;M; = 126,530.87, Y _ M] = 27978

Cluster — plant (N =90; n = 10)
Element — machine (M = 4,500; m = 522)

— M 4,500
M . of hi lant M = — =-"—— =150
ean no. of machine per plan N 90
—cUi  2,400.59
Mean downtime per plant j = Lics! =0 = 240.059
n

Y ies Ui ~2,400.59

= 4.5988.
S Mi 522

Mean downtime per machine 7

(a) The ordinary estimate of the average downtime per machine Y is

= 9 240.059
J - = 4.80118
T M 50

with estimated variance for stage 1 as

2

var(Y,) = = (1 — ﬁ) S _ 1 (1 10) 768-38 _ ) 027320246

e N)n 502\ 90/ 10

4



where

N =\9 ~9 =2
2= Liesld : 9" _ Liesd : o (583, 198.6721 - 10(240.059)7] = 768.38
n — n —

Variance due to estimated g; is

N ~ N 9 m; 532‘
ar 2 = a3 (1-5) 5

ieS t

90 10 11.38 13\ 10.67
= ————|50*(1— 652 (1 — — ) ——
10~45002{ < 50) o ' ( 65) 3

11 11.80

2
1 =) /=
o (1-5)

90
= ——(26,285.475) = 0.01168243.
10 - 45002( 7 )
Hence
Var(? 9) = var(Y : M2 Zvar (i)

= 0.02732025 + 0.01168243 = 0.03900268
Error bOUHd(?Cg) = 1.96 v0.03900268 = 1.96(0.19749096) = 0.38708228

The ratio estimate of the average downtime per machine Y is

Sl 2,400.59
L, = e Y — 4.5088
T Yies Mi 522

~<Ib

with estimated variance for stage 1:

= 1 s2 1 10 1,236.01328
var(Ver,) = — (1- %) - (1 90) S = 0.043047188,
M n
where
= = :2
2 Zies(@i - MzQ)Q _ Zies ?212 - 2@ Zz gzMz + ?] Zz Mi2
n—1 n—1

1
= 5(583, 198.6721 — 2 x 4.5988 x 126, 530.87 + 4.5988% x 27,978) = 1,236.01328

~

var(?cg,r) = var(_cl ) M2 Zvar Ui)

= 0.043947138 + 0.01168243 = 0.05562957
1.96 v/0.05562957 = 1.96(0.23585922) = 0.46228407

Error bound (?CQ,T)



Note that s? > s2 because p = 0.54316681 < 0.74687872 = =L

254

3. (a) HH estimator:

(i) Six-digit random numbers are generated, ignoring 000000 and any numbers
greater than 186030. If the list are 001052, 185953, 000600, 000987 say, the
selected hospitals are 2, 1158, 1 and 2 such that hospital 2 appears twice in
the sample.

2
Y
ii) We have n =4, N =1, 158, = 563, 602, =179,470,194, 284,
(i) z z@)

i
Z Yi _ 399,62 y@
— and Z =91, 336.32
i
=1
. v 1/ 350 1,100 500 350
Yy = — - — 140, 900.5
HH Z i 4 (0.0024 *0.0031 " 0.0036 T 0.0024 ’
= 1 Yi
Yy = 2
HH nx N —'p

1 350 . 1,100+ 500 . 350
4 x 1,158 \ 0.0024 ~ 0.0081  0.0036 = 0.0024

1 n n 2 gg
2 1
T =
n—11=\p p

1
= 5(79,470,194,284 — 4 x 140, 900.5%) = 19, 463, 561

> = 121.6757 ($000)

= 152, 1 19,463,561
var(Ypy) = N 11582 1 = 3.628651

se(Ypy) = V/3.628651 = 1.904902

P 1 “ y!
HH = 2,
1 0 1 1 0
— = 0.086274
4 x 1,158 (0.0024 + 0.0081 + 0.0036 + 0.0024)

1 n y, 2 ?2
2 _ Ji _ T
%mwlgg)np

1
= 5(91, 336.32 — 4 x 99.905%) = 17,137.43

~ 1 82 1 17,137.43
Y - v ) — 0.003195
var(Ysn) N2 1,158 4

nr) = V0.003195 = 0.056524

n
2,
=<



The total estimates are respectively (1,158)(121.6757) = 140,900.5 ($000)
and (1,158)(0.086274) = 100.

(b) With IPPS and n = 3:
(i) The HT estimate is:

= 1 < 1 (/500 350 1100

Yur = =3 %= < b > — 120.5849 ($000)
N Zl o 1158 \ &2 o5 o

The total estimate of hospital purchases and count for product Y is (1, 158)(120.5849) =

139,637.3 ($000) It is hard to find their s.e. unless we know m;;. If we can as-

sume the usual the draw-by-draw p; for sampling with replacement, the second
order inclusion probabilities are

15 15 \'/*
mo=1-1-p)P=—=p=1- (1 > = 0.003641693

1378 1378
, 5 5\ /3
- 1-(1— - - =1—-(1=-—=— = 0.00242484
e (1 =p2)° = o5 = 2 ( 689) 0.002424840
50 50 \'*
= 1-(1- - = =1—(1—-—= = 0.008129119
1158 ( p1158) 2067 P1158 ( 2067)
T = m+m—[1-(1-m —p2)3]
15 5
=~ 1378 + 639 [1—(1—0.003641693 — 0.002424840)3} = 0.00005282242
N—_—— T
12,12,12,12 12,12, 12
T1,1158 = 71+ 1158 — [1 - (1 —pP1— P1158)3]
15 50
= — 4+ —— —[1—(1-0.003641693 — 0.008129119)3] = 0.0001765771
1378 * 2067 [ ( ]
To1158 = M2+ T8 — [L— (1 —pa — p1158)3]
5 50
= — 4+ —— —[1—(1—=0.002424840 — 0.008129119)3] = 0.0001176468
689 + 2067 [ ( ]
Note that the draw-by-draw sampling is a required assumption when cal-
15
culating the second order inclusion probabilities. We have m = 378 =
5 50
0.01088534 = — = 0.007256894 = —— =0.024189647.
» ™27 689 » TS = 9067



T2y Ny mjmj;r;ﬁj yiyj>

= 1
V&I‘(YHTJ) = m (

€S Z 1<j
1 [1-0.01088534 — 0.007256894 1 —0.024189647
= 5002 3502 11002
11582 { 0.010885342 + 0.0072568942 * 0.0241896472 +

500 x 350+

(0.00005282242 — 0.01088534 x 0.007256894

0.01088534 x 0.007256894 x 0.00005282242
0.0001765771 — 0.01088534 x 0.024189647

0.01088534 x 0.024189647 x 0.0001765771
0.0001176468 — 0.007256894 x 0.024189647

0.007256894 x 0.024189647 x 0.0001176468
se(Yyry) = V6.080117 = 2.465789

500 x 1100+

350 x 1100)} = 6.080117

(ii) With systematic IPPS sampling and n = 3, Y g5 pps = 120.269, same as (i)
but the se estimate is

~ 2
Var(Ysy&pps) ~ N2 Z ( ,L) (; — Ty>

€S

1 2 500 139.637.3\ 2
= [(1— Z0.010885 ( — ’ ) +

1,1582 3 0.010885 3
2 350 139, 637.3\ °
1—20.0072 _ 2%
( 5 0007 57) (0.007257 3 )
2 1100 139, 637.3\ 2
1—20.0241 _ 2
( 3 00 90) (0.024190 3 ) ]
— 3.225613

~

so(Vayapps) = V/3.225613 = 1.795999

4. The second order inclusion probabilities are

(iv ]) Tij sum (Z, ]) 5 Sum
(1.2) | JBJS | 5-1-5 (4.9) [ ALDE [3-5-3
(23) [ MBJS | 5-1-5 | 5 |[(59) | PIDE |3-3-5] §
ip | dose | LLLL | Gol e 11 4
(478) AJ7MC tit.d
58 | pane | 1158

? ? 2 3 2 3 6




Note that this sampling scheme defines a set of m; and 7;; but it is not an inclusion
probability proportional to size (IPPS) sampling as there is no X variable which defines

7 . . . .
T = 5 even though 7; varies across individuals.

3 Yi 60
Yur = = — ) =36.67
HT ZE:WZ (1/6+1/3>
var(Vrs) = (1 - 7T1)y1 +(1—m)=5 Vo +2 (7r12 — M2 Y1Y2
m 3 T2 MM

= (1 — é) (Qli; + <1 — é) (630)2 +2 <1 %) 25(60) = 594.4444

6

se(Yyr:) = V/594.4444 = 24.38
= 1 7Ty — 1.2 Y1 Y2 2 1 %%_% 25 60 2
Y — - (T2 S 2 iR N N
Var( HT72) N2 ( 71,2 ) (’7’(’2 o 92 12 1/6 1/3 ve

Formula one can be applied to any sampling scheme which defines a set of m; and ;;
but formula two can only be applied to sampling schemes without replacement.

Extra exercise

. 2-stage cluster sample. We have N = 30 and n = 3.

1 M; m; Sample data y;; Sample mean y;, Sample var. sfﬂ. Ui = My,

1 10 4 1,3,3,4 2.75 1.5833 27.50

2 12 4 3,4,0, 1 2.00 3.3333 24.00

3 9 4 4,2,0,1 1.75 2.1875 15.75
Total 31 12 67.25

S OM;=31; ) M7 =325 ) § =67.25 » {7 =1,580.3125; » §;M; = T04.75
Additional variance due to those households of size > 4:

N m;

— MP(1——2) 2L =" M2 (11—

n Z ! ( Mz) Z ( Z) m;

30 4\ 1.5833 4\ 3.3333 4\ 2.1875
= 102 (1 - — 122 (1 - — 21— =
3{0( 10) 4 + ( 12) 4 +9< 9) 4 ]

= 10 x 128.358075 = 1, 283.58075




Ratio estimator of total:

_ N s 67.25
Voo = Mxro M x 2V g5 6725 a0 o 160354830 — 683.3467743
: S os M, 31
-~ ~2
si = 2 —25 Y M+ Y MP)
€S €S €S

1
= 5(1, 580.3125 — 2 - 2.169354839 - 704.75 + 2.169354839% - 325)
= 26.04474505

~ 2 3\ 26.04474505
var(Yi,) = N (1 - %) % = 30° (1 - %> = = 7.032.081163

~

var(Ye,) = Var(}?cljr)—l— Add. variance
= 7,032.081163 + 1,283.5807 = 8,315.661913

var(Yeo,) = +/8,315.661913 = 91.1902512

Naive estimator of total:

A~ A Z -2
V. = ny:Nx&:30me5:672.5

n

2 _
Sy—

1
(1 580.3125 — 3 - 22.4167%) = 36.3958334

ZES

var(Vg) = N2 (1 ) ZMQ( ) i

Z

3\ 36.3958334
= 30? <1 — %) — 1,283.5807

= 9,826.875017 4 1,283.58075 = 11, 110.45577

var(Y) = +/11,110.45577 = 105.4061467

The s.e. of ordinary estimate is slightly larger but the two s.e. are quite close to each
other because the cluster total g; is not highly correlated to the cluster size M; and
also the cluster sizes M; are all close to 10. We still prefer ratio estimator to ordinary
estimator as it uses the information of cluster size M;. The two estimators will be the
same if the cluster sizes M; are all equal.

Z Y;
M 426 279
. We have M = — — = 10.3902439 and §j = ——— = — 69.75.
N 41 n 4

(a) 1l-stage cluster sampling:

10



(i) Ordinary estimator for mean per element:

69.75

= —————— = (.713028169
10.3902439

<y

1
= X
M

1
5(20.009 —4-69.75) = 182.916

~ 1 2 1 4\ 182.916
var(Ye,) = —(1—1) Sy:—(l__>

V2)
< N
I
MM

e N/ n ~ 10.39024392 41 4

0.382260716
se(?al) = v0.382260716 = 0.618272363

(ii) Ordinary estimator is preferred because the cluster size differs only slightly
and it is easier to compute. The ratio and ordinary estimates should be close
as the cluster sizes are similar.

(b) 2-stage cluster sampling:
(i) Calculation:
mi Markyy = M, = M;x =52 M, 82,

2 ; yi
1 5 17,6,4,8,10 10 x 35/5 = 70 10 5

2 6 8,910,977 11 x 50/6 = 91.6 11 1.47
3 5  7,6,4,8 9 9 x 34/5 = 61.2 9 3.7
4 5 7,897 2 10 x 33/5 = 66 10 7.3
5 5  6,7,4,5 4 9 x 26/5 = 46.8 9 1.7
6 6 5,25 4,1,0 11 x 17/6 = 31.16 11 4.57
7 6 4,6,4,3,9,2 11 x 28/6 = 51.3 11 6.27
8 5 817,579 9 x 36/5 = 64.8 9 22

We have

D M;=80; Y M?=806; » g =482.96; Y 47 =31,399.97; Y §iM; = 4,831.03

(ii) Ordinary estimator for mean per element:

. 0, 482.96 :
5 = 2 _ — 60.37083
n 8 ‘
e 1.  60.37083
Y62 - :y =
M 10.3902439
1
sg = — ny?) (31 399.97 — 8 x 60.37083%) = 320.5249714

11



(iii)

2

1 m;\ s2. 1 1 $2.
v nNM; ’ ( Mz) m;  nNM ( 2) Z b m;

1 5 1.47 3.7 7.3
- 1022 +112—— + 922 1 10°—=
2><8><41><10.39024392< 51 ¢ "7 T 5
1.7 4.57 6.27 2.2
492 4112 4112 1 9222 ) = 0.00871748824
5 6 6 5
V&I‘(?CQ) = Var(?d) + Add. var. due to ¥;
1 n 3;2/ 1 9 m; s2
= — (1-—=) = N1 )
() (-5
1 8\ 320.5249714
= (11— — ) = 4 0.00871748824
10.39024392 ( 41) 8 +

~

— 0.298710495 + 0.00871748824 = 0.307427983
se(Yer) = V0.307427983 = 0.554461886

The first sample of 4 classes consist mainly classes of high marks. As a result,

Y .1 will overestimate the true mark. Also the s.e. se(Y ;) based on mainly
classes of large total marks will underestimate the true s.e.. This is the result
of sampling error.

Since the additional 4 classes are mainly classes of low marks, this shows great
variability of marks across classes. The two-stage cluster sampling is preferred
as more classes can be selected from the classes with more variability in class
totals.

When the variability in cluster size M; is large, 2-stage cluster sampling is
preferred as we can subsample from those large cluster. As a result, the total
sample size is easier to control.

When the variability of Y, the variable of interest within the cluster is rela-
tively less than that between clusters, the 2-stage cluster sampling is preferred
as it enables the selection of more clusters for a given total sample size of el-
ements. The selection of more cluster is necessary as the variability between
clusters is high.

(b) We have n =6, N =48, M = 5,200 and M = & = 220 — 108.3.

(i)

My vy Ui =yi/M;
161 334 2.0745
148 356 2.4054
83 245 2.9518
157 412 2.6242
96 207 2.1563

6 103 315 3.0583
Total 748 1869 15.2705

T W N | .

12



> M =748 > M?=99,188; Y g =1,869; » 37 =610,135; » 5 M; = 243,798

_ 5 15.2705
We have Y. 4; = 15.2705, >, 97 = 39.6919 and y = 21 Y = =

_ n 6

2.545083.

Y, = 7=2545083

1 _ =2 1 .
55 = — (Z G-y ) = =(39.6919 — 6 x 2.545083%) = 0.165436365

~ 2

= ny 52 6\ 0.165436365

Y) = (1——>—y: 1 — ) 22RO ,0241261
var(Y) ~) ( 48) 5 0.0 6136

se(?l) = v0.024126136 = 0.155325904

Ly, 1869 . .
(ii)) We havey = 2iY =5 = 311.5. Ordinary estimate for mean per element:

n

= 1 311.5

Yo = —j=——- =2875384815
M 108.3

1
$2 = 610 135 — 6 x 311.5%) = 5, 588.3
Y
= 1 n\ s 1 6\ 5,588.3
Y, = — (1 _ —) v~ (1= — 0.069440414
varlVe) = == 17 §) % = 1 ( 48) 6

se(Ys) = v0.069440414 = 0.263515491

—

(iii) Ratio estimate of mean per element:

L S VAR T

s; = Z—QrZMiyi+r2ZMi2)
= %(610, 135 — 2 x 2.498663102 x 243, 798 + 2.4986631022 x 99, 183)
= 2211.804441
var(Ys) = % (1-%) %2 = 1081.32 <1 - %) w — 002748396
se(i) = 1/0.02748396 = 0.165782871

(iv) 1. ?3 is preferred when M is unknown, the variation of M; is high and
M; is highly and positively correlated to y; because M is not required in

the estimation of Y. Moreover the strong and positive relationship between
M; and y; is accounted for in the ratio estimate. Moreover Y, is a biased
estimator similar to the ratio estimator Y5 but Y5 is an unbiased estimator.

13



2. ?2 is preferred when M is known and the variation of ‘M; is low because
M is required but M; is not required in the estimation of Y.

4. One-stage cluster sampling is preferred to 2-stage cluster sampling when

1.

3.

The cluster size is small so that sub-sampling is unnecessary and result in too
small the sample size.

The variability of elements within cluster is high so that we would like to include
all units within cluster into the sample. The usual rule is to have a higher sampling
fraction from cluster of higher variability between elements in the cluster.

Easier to implement.

Two-stage cluster sampling is preferred to 1-stage cluster sampling when

1.

The cluster size is large so that it is infeasible to include all units within cluster
into the sample.

If the cluster size varies a lot across clusters, it would be difficult to control the
total sample size for a 1-stage cluster sampling.

If the variability of elements within cluster is low, it is unnecessary to include all
elements within a cluster into the sample.

If the variability across clusters is high, a 2-stage cluster sample enables a sample
of more clusters than a 1-sate cluster sample given the same sample size.
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