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Abstract

This chapter describes a collection of four R packages for ex-
ploratory analysis and normalization of two–color cDNA microarray
fluorescence intensity data. R’s object–oriented class/method mech-
anism is exploited to allow efficient and systematic representation
and manipulation of large microarray datasets of multiple types.
The marrayClasses package contains class definitions and associated
methods for pre– and post–normalization intensity data for batches
of arrays. The marrayInput package provides functions and tcltk

widgets to automate data input and the creation of microarray spe-
cific R objects for storing these data. Functions for diagnostic plots of
microarray spot statistics, such as boxplots, scatter–plots, and spatial
color images are provided in marrayPlots. Finally, the marrayNorm

package implements robust adaptive location and scale normaliza-
tion procedures, which correct for different types of dye biases (e.g.
intensity, spatial, plate biases) and allow the use of control sequences
spotted onto the array and possibly spiked into the mRNA samples.
The four new packages were developed as part of the Bioconductor
project, which aims more generally to produce an open source and
open development statistical computing framework for the analysis
of genomic data.
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1.1 Introduction

1.1.1 Overview of packages

Microarray experiments generate large and complex multivariate datasets.
Careful statistical design and analysis are essential to improve the effi-
ciency and reliability of microarray experiments, from the early design and
pre–processing stages to higher–level analyses. Access to an efficient and
portable statistical computing environment is a related and equally critical
aspect of the analysis of gene expression data. This chapter describes a
collection of four R (Ihaka and Gentleman, 1996) packages for exploratory
analysis and normalization of two–color cDNA microarray fluorescence in-
tensity data. An earlier version of these packages can be found in the sma
package which was written in the Fall of 2000. The four new packages were
developed as part of the Bioconductor project, which aims more generally to
produce an open source and open development statistical computing frame-
work for the analysis of genomic data (http://www.bioconductor.org).
Particular emphasis is placed on facilitating access to the powerful statis-
tical methodology implemented in the R language and on enhancing its
effectiveness within a biological context. Like most Bioconductor packages,
these four packages rely on R’s object–oriented class/method mechanism
(John Chambers’ methods package) to allow efficient and systematic repre-
sentation and manipulation of large microarray datasets of multiple types.
Efforts to reduce the barrier of entry into R include providing widgets,
i.e., small–scale graphical interfaces, for data input and basic analysis
procedures. A brief description of the four marray packages is given next.

marrayClasses. This package contains class definitions and associated
methods for pre– and post–normalization intensity data for batches
of arrays. Methods are provided for the creation and modification
of microarray objects, basic computations, printing, subsetting, and
class conversions.

marrayInput. This package provides functionality for reading microarray
data into R, such as intensity data from image processing output
files (e.g. .spot and .gpr files for the Spot and GenePix packages,
respectively) and textual information on probes and targets (e.g. from
gal files and god lists). tcltk widgets are supplied to facilitate and
automate data input and the creation of microarray specific R objects
for storing these data.

marrayPlots. This package provides functions for diagnostic plots of
microarray spot statistics, such as boxplots, scatter–plots, and spa-
tial color images. Examination of diagnostic plots of intensity data
is important in order to identify printing, hybridization, and scan-
ning artifacts which can lead to biased inference concerning gene
expression.

http://www.bioconductor.org�
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marrayNorm. This package implements robust adaptive location and scale
normalization procedures, which correct for different types of dye
biases (e.g. intensity, spatial, plate biases) and allow the use of con-
trol sequences spotted onto the array and possibly spiked into the
mRNA samples. Normalization is needed to ensure that observed dif-
ferences in intensities are indeed due to differential expression and
not experimental artifacts; fluorescence intensities should therefore
be normalized before any analysis which involves comparisons among
genes within or between arrays.

Bioconductor packages are distributed under an open source license,
such as GPL or LGPL, and may be downloaded from the project web-
site, http://www.bioconductor.org, for Linux, Unix, MS Windows, and
Mac OS X operating systems. Sources, binaries, and documentation for
R and other R packages can be obtained from the ”Comprehensive R
Archive Network” (CRAN), http://cran.r-project.org/. As with any
other Bioconductor R package, detailed information on the functions and
their arguments and values can be obtained in the help files. For in-
stance, to view the help file for the function maNorm in a browser, use
help.start() followed by help(maNorm) or ?maNorm. In addition, each
Bioconductor package contains step–by–step tutorials in the /doc sub-
directory. These tutorials are generated using the Sweave function from
the R 1.5.0 package tools (Leisch, 2002). They form integrated statis-
tical documents intermixing text, R code, and code output (numerical,
textual, and graphical). Within this framework, documents can be regen-
erated automatically whenever data or analyses are modified. The present
document was also generated using Sweave; the .Rnw source file is available
at http://www.stat.berkeley.edu/~sandrine/. In addition, a demon-
stration script is provided for the marrayPlots package in the /demo
subdirectory, and can be run using demo(marrayPlots).

The chapter is organized as follows. The remainder of this section gives
background on two–color cDNA microarray experiments. Section 1.2 pro-
vides an overview of the statistical and computational methodology for
exploratory analysis and normalization of cDNA microarray data. Sec-
tion 1.3 describes the Swirl microarray experiment, which serves as a case
study for illustrating the statistical methods and software implementation.
Section 1.4 discusses the four R packages, marrayClasses, marrayInput,
marrayPlots, and marrayNorm, in greater details and provides a demon-
stration of package functionality using the swirl dataset. Finally, Section
1.5 summarizes our findings and outlines ongoing efforts as part of the
Bioconductor project.

http://www.bioconductor.org�
http://cran.r-project.org/�
http://www.stat.berkeley.edu/~sandrine/�
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1.1.2 Two-color cDNA microarray experiments

DNA microarrays consist of thousands of individual DNA sequences printed
in a high–density array on a glass microscope slide using a robotic printer
or arrayer. The relative abundance of these spotted DNA sequences in two
DNA or RNA samples may be assessed by monitoring the differential hy-
bridization of the two samples to the sequences on the array. For mRNA
samples, the two samples or targets are reverse–transcribed into cDNA,
labeled using different fluorescent dyes (usually a red–fluorescent dye, Cya-
nine 5 or Cy5, and a green–fluorescent dye, Cyanine 3 or Cy3), then mixed
in equal proportions and hybridized with the arrayed DNA sequences or
probes (following the definition of probe and target adopted in “The Chip-
ping Forecast”, a January 1999 supplement to Nature Genetics). After this
competitive hybridization, the slides are imaged using a scanner and fluo-
rescence measurements are made separately for each dye at each spot on the
array. The ratio of the red and green fluorescence intensities for each spot is
indicative of the relative abundance of the corresponding DNA probe in the
two nucleic acid target samples. See Brown and Botstein, 1999 and Schena,
2000, for a more detailed introduction to the biology and technology of
cDNA microarrays.

The term array layout refers to the layout of DNA probe sequences on the
array, as determined by the printing process. In general, probe sequences
are spotted on a glass microscope slide using an arrayer which has an
ngr×ngc print–head, that is, a regular array of ngr rows and ngc columns
of print–tips or pins. The resulting microarrays are thus partitioned into
an ngr × ngc grid matrix. The terms grid, sector, pin–group, and print–
tip–group are used interchangeably in the microarray literature. Each grid
consists of an nsr×nsc spot matrix that was printed with a single print–tip.
DNA probes are usually printed sequentially from a collection of 384–well
plates (or 96–well plates), thus, in some sense, plates are proxies for time of
printing. In addition, a number of control probe sequences may be spotted
on the array for normalization or other calibration purposes. The term
array batch is used to refer to a collection of arrays with the same layout.

The raw data from a microarray experiment are the image files produced
by the scanner; these are typically pairs of 16–bit tagged image file format
(TIFF) files, one for each fluorescent dye (images usually range in size from
a few megabytes (MB) to 10 or 20 MB for high resolution scans). Image
analysis is required to extract foreground and background fluorescence in-
tensity measurements for each spotted DNA sequence. Image processing is
beyond the scope of this chapter, and the reader is referred to Yang et al.,
2002a, for a detailed discussion of microarray image analysis, a description
of the image processing R package Spot, and additional references.
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1.2 Methods

1.2.1 Standards for microarray data

There is still much debate regarding standards for storing and report-
ing microarray–based gene expression data. Significant progress toward
the definition of such standards is found in the Minimum Information
About a Microarray Experiment – MIAME documents produced by the
Microarray Gene Expression Database – MGED group (Brazma et al.,
2001, http://www.mged.org/Workgroups/MIAME/miame.html). The MI-
AME documents focus on the content and structure of the necessary
information, rather than the technical format for representing and stor-
ing the data. The standards apply to different microarray platforms, such
as cDNA spotted microarrays and Affymetrix oligonucleotide chips.

A description of a microarray experiment should contain information
about the genes whose expression has been measured (gene annotation)
and about the nature and preparation of the target samples hybridized
to the arrays (sample annotation), in addition to the quantitative gene
expression measurements. At least three levels of expression data are rel-
evant: (i) the microarray scanned images, or raw data; (ii) the microarray
image quantification data, i.e., output files from image analysis software
packages; and (iii) the gene expression matrix of derived expression levels,
where rows correspond to spots and columns to target samples. Reliability
information and a detailed description of how the expression values were
obtained should also be stored (e.g. record of image analysis, normalization,
and quality–based filtering procedures, etc.).

Here, we begin our analysis of microarray data with the output files of im-
age processing packages such as GenePix or Spot (intermediate expression
data, level (ii), above). In what follows, red and green background intensi-
ties are denoted by Rb and Gb, respectively, and red and green foreground
intensities by Rf and Gf , respectively. Background–corrected red and green
fluorescence intensities are denoted by R = (Rf −Rb) and G = (Gf −Gb),
and M denotes the corresponding base 2 log–ratio, M = log2 R/G. We
use R’s object–oriented class/method mechanism for representation and
manipulation of microarray data. Microarray specific object classes were
defined as described next to keep track of the three main types of mi-
croarray data (gene annotation, sample annotation, and expression data)
at different stages of the analysis process.

1.2.2 Object–oriented programming: microarray classes and
methods

Microarray experiments generate large and complex multivariate datasets,
which contain textual information on probe sequences (e.g. gene names, an-
notation, layout parameters) and mRNA target samples (e.g. description

http://www.mged.org/Workgroups/MIAME/miame.html�
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of samples, protocols, hybridization and scanning conditions), in addition
to the primary fluorescence intensity data. Efficient and coordinated access
to these various types of data is an important aspect of computing with
microarray data. The marray packages rely on the class/method mechanism
provided by John Chambers’ R methods package, which allows object–
oriented programming in R. To facilitate the management of microarray
data at different stages of the analysis process, a collection of microar-
ray specific data structures or classes were defined (see also Chapter 2 for
a discussion of the Bioconductor packages Biobase and annotate, which
provide basic structures and methods for microarray and annotation data).
Broadly speaking, classes reflect how we think of certain objects and what
information these objects should contain. Classes are defined in terms of
slots which contain the relevant data for the application at hand. Methods
define how a particular function should behave depending on the class of its
arguments and allow computations to be adapted to particular classes, that
is, data types. For example, a microarray object should contain intensity
data as well as information on the probe sequences spotted on the array and
the target samples hybridized to it. Useful methods for microarray classes
include specializations of printing, subsetting, and plotting functions for the
types of data represented by these classes. The use of classes and methods
greatly reduces the complexity of handling large and varied datasets associ-
ated with microarray experiments, by automatically coordinating different
sources of information.

1.2.3 Diagnostic plots

Before proceeding to normalization or any higher–level analysis, it is in-
structive to look at diagnostic plots of spot statistics, such as red and
green foreground and background log–intensities, intensity log–ratio, area,
etc. Stratifying spot statistics according to layout parameters such as print–
tip or plate is useful for the purpose of identifying printing, hybridization,
and scanning artifacts as demonstrated in Section 1.4.3.

2D spatial images. In a 2D spatial image, shades of gray or colors are
used to represent the value of a statistic for each spot on the array. Each
rectangle in the grid corresponds to a particular spot and its coordinates
reflect the location of the spot on the array. The statistic can be the inten-
sity log–ratio M , a spot quality measure (e.g. spot size or shape), or a test
statistic. These pseudo images may be used to explore spatial dependen-
cies in the values of a particular statistic due to, for example, print–tip or
cover–slip effects.

Boxplots. Boxplots, also called box–and–whisker plots, were first pro-
posed by John Tukey in 1977 as simple graphical summaries of the
distribution of a variable. The summary consists of the median, the upper
and lower quartiles, the range, and, possibly, individual extreme values. The
central box in the plot represents the inter–quartile range (IQR), which is
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defined as the difference between the upper quartile and lower quartile, i.e.,
the difference between the 75th and 25th percentiles. The line in the middle
of the box represents the median or 50th percentile; a measure of central
location of the data. Extreme values greater than 1.5 IQR above the 75th
percentile and less than 1.5 IQR below the 25th percentile are typically
plotted individually.

Scatter–plots. Single–slide expression data are typically displayed by
plotting the log–intensity log2 R in the red channel vs. the log–intensity
log2 G in the green channel. Such plots tend to give an unrealistic sense
of concordance between the red and green intensities and can mask
interesting features of the data. We thus prefer to plot the intensity
log–ratio M = log2 R/G = log2 R − log2 G vs. the mean log–intensity
A = log2

√
RG = (log2 R+log2 G)/2. An MA–plot amounts to a 45o coun-

terclockwise rotation of the (log2 G, log2 R)– coordinate system, followed by
scaling of the coordinates. It is thus another representation of the (R, G)
data in terms of the log–ratios M which directly measure differences be-
tween the red and green channels and are the quantities of interest to most
investigators. We have found MA–plots to be more revealing than their
log2 R vs. log2 G counterparts in terms of identifying spot artifacts and for
normalization purposes (Dudoit et al., 2002; Yang et al., 2001; Yang et al.,
2002b). Applications of MA–plots are also discussed in Chapters 4, 7, 9,
and 14.

1.2.4 Normalization using robust local regression

The purpose of normalization is to identify and remove the effects of
systematic variation, other than differential expression, in the measured
fluorescence intensities (e.g. different labeling efficiencies and scanning
properties of the Cy3 and Cy5 dyes; different scanning parameters, such as
PMT (photo multiplier tube) settings; print–tip, spatial, or plate effects).
It is necessary to normalize the fluorescence intensities before any anal-
ysis which involves comparing expression levels within or between slides
(e.g. classification, multiple testing), in order to ensure that differences in
intensities are indeed due to differential expression and not experimental
artifacts. The need for normalization can be seen most clearly in self–self
experiments, in which two identical mRNA samples are labeled with differ-
ent dyes and hybridized to the same slide (Dudoit et al., 2002). Although
there is no differential expression and one expects the red and green in-
tensities to be equal, the red intensities often tend to be lower than the
green intensities. Furthermore, the imbalance in the red and green inten-
sities is usually not constant across the spots within and between arrays,
and can vary according to overall spot intensity A, location on the array,
plate origin, and possibly other variables.

Location normalization. We have developed location normalization
methods which correct for intensity, spatial, and other dye biases using
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robust locally–weighted regression (Cleveland, 1979; Cleveland and Devlin,
1988; Yang et al., 2001; Yang et al., 2002b). Local regression is a smoothing
method for summarizing multivariate data using general curves and sur-
faces. The smoothing is achieved by fitting a polynomial function of the
predictor variables locally to the data, in a fashion that is analogous to
computing a moving average. Robust fitting guards against deviant points
distorting the smoothed points. For the lowess and loess procedures, polyno-
mials are fitted locally using iterated weighted least squares. In the context
of microarray experiments, robust local regression allows us to capture the
non–linear dependence of the intensity log–ratio M = log2 R/G on the
overall intensity A = log2

√
RG, while ensuring that the computed normal-

ization values are not driven by a small number of differentially expressed
genes with extreme log–ratios. The marrayNorm and marrayPlots pack-
ages rely on the R loess (modreg package) and lowess functions; greater
details can be found in the help files for these functions.

Scale normalization. For scale normalization, a robust estimate of
scale, such as the median absolute deviation (MAD), may be used (Yang
et al., 2001; Yang et al., 2002b). For a collection of numbers, x1, . . . , xn,
the MAD is the median of their absolute deviations from the median
m = median{x1, . . . , xn}, that is, MAD = median{|x1−m|, . . . , |xn−m|}.
The R function for MAD is mad.

Location and scale normalized intensity log–ratios Mnorm are given by

Mnorm =
M − l

s
,

where l and s denote the location and scale normalization values, re-
spectively. The location value l can be obtained, for example, by robust
local regression of M on A within print–tip–group. The scale value s
could be the within–print–tip–group MAD of location normalized log–
ratios. Note that related approaches to normalization are implemented
in the software package SNOMAD, described in Chapter 9 and available at
http://pevsnerlab.kennedykrieger.org/snomadinput.html.

1.3 Application: Swirl microarray experiment

We demonstrate the functionality of the four marray R packages using gene
expression data from the Swirl experiment. These data were provided by
Katrin Wuennenberg–Stapleton from the Ngai Lab at UC Berkeley. (The
swirl embryos for this experiment were provided by David Kimelman and
David Raible at the University of Washington.) This experiment was car-
ried out using zebrafish as a model organism to study early development
in vertebrates. Swirl is a point mutant in the BMP2 gene that affects the
dorsal/ventral body axis. Ventral fates such as blood are reduced, whereas

http://pevsnerlab.kennedykrieger.org/snomadinput.html�
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dorsal structures such as somites and notochord are expanded. A goal of
the Swirl experiment is to identify genes with altered expression in the
swirl mutant compared to wild–type zebrafish. Two sets of dye–swap ex-
periments were performed, for a total of four replicate hybridizations. For
each of these hybridizations, target cDNA from the swirl mutant was la-
beled using one of the Cy3 or Cy5 dyes and wild–type target cDNA was
labeled using the other dye. Target cDNA was hybridized to microarrays
containing 8,448 probes, including 768 control spots (e.g. negative, positive,
and normalization controls). Microarrays were printed using 4 × 4 print–
tips and are thus partitioned into a 4 × 4 grid matrix. Each grid consists
of a 22 × 24 spot matrix that was printed with a single print–tip. Here,
spot row and plate coordinates coincide, as each row of spots corresponds
to probe sequences from the same 384–well plate (384 = 16× 24).

Each of the four hybridizations produced a pair of 16–bit images, which
were processed using the image analysis software package Spot (Buckley,
2000; Yang et al., 2002a). Raw images of the Cy3 and Cy5 fluorescence
intensities for all four hybridizations are available at http://fgl.lsa.
berkeley.edu/Swirl/index.html. The dataset includes four output files,
swirl.1.spot, swirl.2.spot, swirl.3.spot, and swirl.4.spot, from
the Spot package. Each of these files contains 8,448 rows and 30 columns;
rows correspond to spots and columns to different statistics from the Spot
image analysis output. The file fish.gal, a Gene Array List file (or .gal
file) for the GenePix package, was generated by the program GalFileMaker,
version 1.2 (http://www.microarrays.org/software.html). It contains
information on individual probe sequences, such as gene names, spot IDs,
spot coordinates. Hybridization information for the mutant and wild–type
target samples is stored in SwirlSample.txt. All fluorescence intensity
data from processed images are included in the marrayInput package. The
function data is used to load the swirl dataset into R. To view a description
of the experiments and dataset, type ?swirl.

R> data(swirl)

1.4 Software

1.4.1 Package marrayClasses – Classes and methods for
cDNA microarray data

The following microarray classes were defined to represent pre–and post–
normalization fluorescence intensity data, and data on probes and targets
for batches of arrays. Here, a batch of arrays refers to a set of arrays with
the same layout, as described in Section 1.1.2.

http://fgl.lsa.berkeley.edu/Swirl/index.html�
http://fgl.lsa.berkeley.edu/Swirl/index.html�
http://www.microarrays.org/software.html�
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Microarray classes

I Class marrayLayout. Keeping track of array layout information is
essential for quality assessment of fluorescent intensity data and for nor-
malization purposes. Important layout parameters are the dimensions of the
spot and grid matrices, and, for each probe on the array, its grid matrix
and spot matrix coordinates. In addition, it is useful to keep track of gene
names, plate origin of the probes, and information on the spotted control
sequences (e.g. probe sequences which should have equal abundance in the
two target samples, such as housekeeping genes). The class marrayLayout
was designed to keep track of these various layout parameters and contains
the following slots (the classes of the slots are listed below the slot names)

R> getClassDef("marrayLayout")

Slots:

Name: maNgr maNgc maNsr maNsc
Class: numeric numeric numeric numeric

Name: maNspots maSub maPlate maControls
Class: numeric logical factor factor

Name: maNotes
Class: character

Here, maNgr and maNgc store the dimensions of the grid matrix, maNsr
and maNsc store the dimensions of the spot matrices, naNspots refers to
the total number of spots on the array, maSub keeps track of the subset
of spots currently being considered, maPlate is a vector of plate labels,
maControls is a vector of spot control labels, and maNotes can be used
to store any character string describing the array. In addition, a number
of methods were defined to compute other important layout parameters,
such as print–tip, grid matrix and spot matrix coordinates: maPrintTip,
maGridRow, maGridCol, maSpotRow, and maSpotCol (see discussion below).
No slots were defined for these quantities for memory management reasons.
For details on slots and methods associated with the marrayLayout class,
type ?marrayLayout.

I Class marrayInfo. Information on the target mRNA samples co–
hybridized to the arrays is stored in objects of class marrayInfo. Such
objects may include the names of the arrays, the names of the Cy3– and
Cy5–labeled samples, notes on the hybridization and scanning conditions,
and other textual information. Descriptions of the spotted probe sequences
(e.g. gene names, annotation, notes on printing conditions) are also stored
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in objects of class marrayInfo. The marrayInfo class is not specific to the
microarray context and has the following definition

R> getClassDef("marrayInfo")

Slots:

Name: maLabels maInfo maNotes
Class: character data.frame character

I Class marrayRaw. Pre–normalization intensity data for a batch
of arrays are stored in objects of class marrayRaw, which contain slots
for the matrices of Cy3 and Cy5 background and foreground intensities
(maGb, maRb, maGf, maRf), spot quality weights (maW), layout parame-
ters of the arrays (maLayout), description of the probes spotted onto the
arrays (maGnames) and mRNA target samples hybridized to the arrays
(maTargets).

R> getClassDef("marrayRaw")

Slots:

Name: maRf maGf maRb
Class: matrix matrix matrix

Name: maGb maW maLayout
Class: matrix matrix marrayLayout

Name: maGnames maTargets maNotes
Class: marrayInfo marrayInfo character

I Class marrayNorm. Post–normalization intensity data are stored in
similar objects of class marrayNorm. These objects store the normalized in-
tensity log–ratios maM, the location and scale normalization values (maMloc
and maMscale), and the average log–intensities (maA). In addition, the mar-
rayNorm class has a slot for the function call used to normalize the data,
maNormCall. For more details on the creation of normalized microarray
objects, the reader is referred to Section 1.4.4.

R> getClassDef("marrayNorm")

Slots:

Name: maA maM maMloc
Class: matrix matrix matrix

Name: maMscale maW maLayout
Class: matrix matrix marrayLayout
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Name: maGnames maTargets maNotes
Class: marrayInfo marrayInfo character

Name: maNormCall
Class: call

I Class marraySpots. This class is used to store information on the
spotted probe sequences for a batch of arrays. The class contains slots for
the layout of the arrays, maLayout, and a description of the probe sequences
spotted onto the arrays, maGnames.

R> getClassDef("marraySpots")

Slots:

Name: maGnames maLayout
Class: marrayInfo marrayLayout

I Class marrayTwo. The marrayTwo class can be viewed as a leaner
version of the marrayRaw and marrayNorm classes. It contains slots for
only two types of spot statistics (maX and maY), the layout of the arrays
(maLayout), and a description of the target samples hybridized to the arrays
(maTargets). The two spot statistics can be, for example, the unnormalized
green and red foreground intensities, or the normalized log–ratios M and
average intensities A = log2

√
RG.

R> getClassDef("marrayTwo")

Slots:

Name: maX maY maLayout
Class: matrix matrix marrayLayout

Name: maTargets
Class: marrayInfo

Most microarray objects contain an maNotes slot which can be used to
store any string of characters describing the experiments, for example, notes
on the printing, hybridization, or scanning conditions.

Creating and accessing slots of microarray objects

I Creating new objects. The function new from the methods package
may be used to create new objects from a given class. For example, to
create an instance of the class marrayInfo describing the target samples
in the Swirl experiment, one could use the following code

R> zebra.RG <- as.data.frame(

+ cbind(c("swirl", "WT", "swirl", "WT"),
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+ c("WT", "swirl", "WT", "swirl")))

R> dimnames(zebra.RG)[[2]] <- c("Cy3", "Cy5")

R> zebra.samples <- new("marrayInfo",

+ maLabels = paste("Swirl array ", 1:4, sep = ""),

+ maInfo = zebra.RG,

+ maNotes = "Description of targets for Swirl experiment")

R> zebra.samples

Object of class marrayInfo.

maLabels Cy3 Cy5
1 Swirl array 1 swirl WT
2 Swirl array 2 WT swirl
3 Swirl array 3 swirl WT
4 Swirl array 4 WT swirl

Number of labels: 4
Dimensions of maInfo matrix: 4 rows by 2 columns

Notes:
Description of targets for Swirl experiment

Slots which are not specified in new are initialized to the prototype for the
corresponding class. This is usually an ”empty”object, e.g. matrix(0,0,0).
In most cases, microarray objects can be created automatically using the
input functions and their corresponding widgets in the marrayInput pack-
age (Section 1.4.2). These were used to create the object swirl of class
marrayRaw.

I Accessing slots. Different components or slots of the microarray
objects may be accessed using the operator @, or alternately, the function
slot, which evaluates the slot name. For example, to access the maLayout
slot in the object swirl and the maNgr slot in the layout object L

R> L <- slot(swirl, "maLayout")

R> L@maNgr

The function slotNames can be used to get information on the slots of
a formally defined class or an instance of the class. For example, to get
information on the slots for the marrayLayout class and on the slots for
the object swirl use

R> slotNames("marrayLayout")

R> slotNames(swirl)

Basic microarray methods



14 Dudoit and Yang

The following basic methods were defined to facilitate manipulation of
microarray data objects. To see all methods available for a particular class,
e.g. marrayLayout, or just the print methods

R> showMethods(classes = "marrayLayout")

R> showMethods("print", classes = "marrayLayout")

I Printing methods for microarray objects. Since there is usually
no need to print out fluorescence intensities for thousands of genes, the
print method was overloaded for microarray classes by simple report gen-
erators. For an overview of the available microarray printing methods, type
methods?print. For example, summary statistics for an object of class
marrayRaw, such as swirl, can be obtained by print(swirl) or simply
swirl.

R> swirl

Pre-normalization intensity data: Object of class marrayRaw.

Number of arrays: 4 arrays.

A) Layout of spots on the array:
Array layout: Object of class marrayLayout.

Total number of spots: 8448
Dimensions of grid matrix: 4 rows by 4 cols
Dimensions of spot matrices: 22 rows by 24 cols

Currently working with a subset of 8448 spots.

Control spots:
There are 2 types of controls :
Control N

768 7680

Notes on layout:
No Input File

B) Samples hybridized to the array:
Object of class marrayInfo.

maLabels # of slide Names experiment Cy3
1 81 81 swirl.1.spot swirl
2 82 82 swirl.2.spot wild type
3 93 93 swirl.3.spot swirl
4 94 94 swirl.4.spot wild type
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experiment Cy5 date comments
1 wild type 2001/9/20 NA
2 swirl 2001/9/20 NA
3 wild type 2001/11/8 NA
4 swirl 2001/11/8 NA

Number of labels: 4
Dimensions of maInfo matrix: 4 rows by 6 columns

Notes:
C:/GNU/R/rw1041/library/marrayInput/data/SwirlSample.txt

C) Summary statistics for log-ratio distribution:
Min. 1st Qu. Median Mean 3rd Qu. Max.

swirl.1.spot -2.73 -0.79 -0.58 -0.48 -0.29 4.42
swirl.2.spot -2.72 -0.15 0.03 0.03 0.21 2.35
swirl.3.spot -2.29 -0.75 -0.46 -0.42 -0.12 2.65
swirl.4.spot -3.21 -0.46 -0.26 -0.27 -0.06 2.90

D) Notes on intensity data:

I Subsetting methods for microarray objects. In many instances,
one is interested in accessing only a subset of arrays in a batch and/or spots
in an array. Subsetting methods "[" were defined for this purpose. For an
overview of the available microarray subsetting methods, type methods?"["
or to see all subsetting methods for the session showMethods("["). When
using the "[" operator, the first index refers to spots and the second to
arrays in a batch. Thus, to access the first 100 probe sequences in the
second and third arrays in the batch swirl use

R> swirl[1:100, 2:3]

I Methods for accessing slots of microarray objects. A number
of simple accessor methods were defined to access slots of the microarray
classes. Using such methods is more general than using the slot function or
@ operator. In particular, if the class definitions are changed, any function
which uses the @ operator will need to be modified. When using a method
to access the data in the slot, only that particular method needs to be mod-
ified. Accessor methods are named after the slot, thus, to access the layout
information for the array batch swirl one may also use maLayout(swirl).

In addition, various methods were defined to compute basic statistics
from microarray object slots. For instance, for memory management rea-
sons, objects of class marrayLayout do not store the spot coordinates of
each probe. Rather, these can be obtained from the dimensions of the grid
and spot matrices by applying methods maGridRow, maGridCol, maSpotRow,
and maSpotCol to objects of class marrayLayout. Print–tip–group coor-
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dinates are given by maPrintTip. Similar methods were also defined to
operate directly on objects of class marrayRaw, marrayNorm, marraySpots,
and marrayTwo. The commands below may be used to display the num-
ber of spots on the array, the dimensions of the grid matrix, and the
print–tip–group coordinates.

R> swirl.layout <- maLayout(swirl)

R> maNspots(swirl)

[1] 8448

R> maNspots(swirl.layout)

[1] 8448

R> maNgr(swirl)

[1] 4

R> maNgc(swirl.layout)

[1] 4

R> maPrintTip(swirl[525:534, 3])

[1] 1 1 1 1 2 2 2 2 2 2

I Methods for assigning slots of microarray objects. A number of
methods were defined to replace slots of microarray objects, without explic-
itly using the @ operator or slot function. These assignment methods make
use of the setReplaceMethod function from the R methods package. Like
the accessor methods just described, the assignment methods are named
after the slots. For example, to replace the maNotes slot of swirl.layout

R> maNotes(swirl.layout)

[1] "No Input File"

R> maNotes(swirl.layout) <- "New value"

R> maNotes(swirl.layout)

[1] "New value"

To initialize slots of an empty marrayLayout object

R> L <- new("marrayLayout")

R> maNgr(L) <- 4

Similar methods were defined to operate on objects of class marrayInfo,
marrayRaw, marrayNorm, marraySpots, and marrayTwo.

I Methods for coercing microarray objects. To facilitate navi-
gation between different classes of microarray objects, we have defined
methods for converting microarray objects from one class into another.
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These coercing methods make use of the setAs function from the R meth-
ods package. A list of such methods can be obtained by methods?coerce.
For example, to coerce an object of class marrayRaw into an object of class
marrayNorm

R> swirl.norm <- as(swirl, "marrayNorm")

It is also possible to convert objects of class marrayRaw or marrayNorm
into objects of class exprSet (see definition in the Biobase package)

R> as(swirl, "exprSet")

Expression Set (exprSet) with
8448 genes
4 samples

phenoData object with 6 variables and 4 cases
varLabels

: # of slide
: Names
: experiment Cy3
: experiment Cy5
: date
: comments

I Functions for computing layout parameters. In some cases, plate
information is not stored in marrayLayout objects when the data are first
read into R. We have defined a function, maCompPlate, which computes
plate indices from the dimensions of the grid matrix and number of wells
in a plate. For example, the zebrafish arrays used in the Swirl experiment
were printed from 384–well plates, but the plate IDs were not stored in
the fish.gal file. To generate plate IDs (arbitrarily labeled by integers
starting with 1) and store these in the maPlate slot of the maLayout slot
for swirl use

R> maPlate(swirl) <- maCompPlate(swirl, n = 384)

Similar functions were defined to generate and manipulate spot coordi-
nates: maCompCoord, maCompInd, maCoord2Ind, maInd2Coord. The function
maGeneTable produces a table of spot coordinates and gene names for
objects of class marrayRaw, marrayNorm, and marraySpots.

1.4.2 Package marrayInput – Data input for cDNA
microarrays

We begin our analysis of microarray data with the fluorescence inten-
sities produced by image processing of the microarray scanned images.
Microarray image quantification data are typically stored in tables whose
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rows correspond to the spotted probe sequences and columns to differ-
ent spot statistics, e.g. grid row and column coordinates, spot row and
column coordinates, red and green background and foreground intensi-
ties for different segmentation and background adjustment methods, spot
morphology statistics, etc. For the GenePix image processing software,
these are the .gpr files, and for Spot, these are the .spot files. We
also consider probe and target textual information stored, for example, in
.gal and .gdl (god list) files. The marrayInput package provides func-
tionality for reading such microarray data into R. The main functions
are read.marrayLayout, read.marrayInfo, and read.marrayRaw, which
create objects of classes marrayLayout, marrayInfo, and marrayRaw, re-
spectively. In addition, widgets are provided for each of these functions to
facilitate data entry.

Textual information and fluorescence intensity data from processed im-
ages for the Swirl experiment were included as part of the marrayInput
package and can be accessed as follows (here, datadir is the name of the
R package sub–directory containing the data files)

R> datadir <- system.file("data", package = "marrayInput")

R> dir(datadir)

[1] "00Index" "fish.gal"
[3] "swirl.1.spot" "swirl.2.spot"
[5] "swirl.3.spot" "swirl.4.spot"
[7] "swirl.RData" "SwirlSample.txt"

Main input functions

I read.marrayLayout. This function may be used to read in and store
layout information for a batch of arrays. The following commands store
layout parameters for the Swirl experiment in the object swirl.layout of
class marrayLayout. The location of the control spots is extracted from the
fourth (ctl.col=4) column of the file fish.gal.

R> swirl.layout <- read.marrayLayout(fname = file.path(datadir,

+ "fish.gal"), ngr = 4, ngc = 4, nsr = 22, nsc = 24,

+ skip = 21, ctl.col = 4)

R> ctl <- rep("Control", maNspots(swirl.layout))

R> ctl[maControls(swirl.layout) != "control"] <- "N"

R> maControls(swirl.layout) <- factor(ctl)

I read.marrayInfo. This function creates objects of class marrayInfo,
which store, for example, textual information on probe sequences and target
samples for a batch of arrays. The following commands create such objects
for the Swirl experiment, by reading in text files SwirlSample.txt and
fish.gal supplied by the experimenter.
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R> swirl.targets <- read.marrayInfo(

+ file.path(datadir, "SwirlSample.txt"))

R> swirl.gnames <- read.marrayInfo(

+ file.path(datadir, "fish.gal"),

+ info.id = 4:5, labels = 5, skip = 21)

I read.marrayRaw. This function creates objects of class marrayRaw for
a batch of arrays. It takes as its main arguments a list of filenames for the
intensity data (e.g. GenePix output files, .gpr), and the names of already
created layout, probe, and target description objects, e.g. swirl.layout,
swirl.gnames, and swirl.targets for the Swirl experiment. The following
commands read in all the .spot files residing in the datadir directory. The
arguments further specify that the red and green foreground intensities are
stored under the headings Rmean and Gmean, and that the red and green
background intensities are stored under the headings morphR and morphG,
respectively.

R> fnames <- dir(path = datadir,

+ pattern = paste("*", "spot", sep = "."))

R> swirl.raw <- read.marrayRaw(fnames, path = datadir,

+ name.Gf = "Gmean", name.Gb = "morphG",

+ name.Rf = "Rmean", name.Rb = "morphR",

+ layout = swirl.layout, gnames = swirl.gnames,

+ targets = swirl.targets)

Widgets for input functions

To facilitate data input and automate the creation of microarray
objects, each of the above three input functions has a correspond-
ing tcltk widget, which provides a point–and–click graphical interface:
widget.marrayLayout, widget.marrayInfo, and widget.marrayRaw. A
screen–shot of the marrayRaw widget is shown in Figure 1.1; the command
to launch the widget and read in Spot image output files is

R> widget.marrayRaw(path = datadir, ext = "spot")

Wrapper input functions

The functions read.Spot, read.GenePix, and read.SMD automate the
creation of marrayRaw objects from Spot (.spot) and GenePix (.gpr) im-
age analysis files, and from the Stanford Microarray Database (SMD) raw
data files (.xls). The main arguments to these functions are a list of file-
names and the directory path for these files. The following commands read
in two specific files from the datadir directory.
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R> fnames <- dir(path = datadir,

+ pattern = paste("*", "spot", sep = "."))[1:2]

R> swirl <- read.Spot(fnames, path = datadir,

+ layout = swirl.layout, gnames = swirl.gnames,

+ targets = swirl.targets)

Alternatively, without specifying any arguments, the functions read.spot
and read.GenePix by default will read in all Spot or GenePix files within a
current working directory. One has the option of setting the layout, probe,
and target information manually at a later stage.

R> swirl <- read.Spot()

R> test.raw <- read.GenePix()

R> slot(swirl, "maLayout") <- swirl.layout

R> slot(swirl, "maGnames") <- swirl.gnames

R> slot(swirl, "maTargets") <- swirl.targets

1.4.3 Package marrayPlots – Diagnostic plots for cDNA
microarray data

Three main functions were defined to produce boxplots, scatter–plots, and
2D spatial images of spot statistics for pre– and post–normalization inten-
sity data. The main arguments to these functions are microarray objects of
classes marrayRaw, marrayNorm, or marrayTwo, and arguments specifying
which spot statistics to display (e.g. Cy3 and Cy5 background intensities,
intensity log–ratios M), and which subset of spots to include in the plots.
Default graphical parameters are chosen for convenience using the function
maDefaultPar (e.g. color palette, axis labels, plot title), but the user has
the option to overwrite these parameters at any point. Note that by default
the plots are done for the first array in a batch, that is, the first array in
a microarray object of class marrayRaw, marrayNorm, or marrayTwo. Data
stored in such objects were generated from microarrays with the same lay-
out as described in Section 1.1.2. To produce plots for other arrays in a
batch, subsetting methods may be used. For example, to produce diagnos-
tic plots for the second array in the batch of zebrafish arrays swirl, the
argument swirl[,2] should be passed to the plot functions.

Spatial plots of spot statistics – maImage

The function maImage uses the R base function image to create 2D spatial
images of shades of gray or colors that correspond to the values of a statistic
for each spot on an array. Details on the arguments of the function are given
in the help file ?maImage. In addition to existing color palette functions,
such as rainbow and heat.colors, a new function maPalette was defined
to generate color palettes from user supplied low, middle, and high color
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values. To create white–to–green, white–to–red, and green–to–white–to–red
palettes for microarray images

R> Gcol <- maPalette(low = "white", high = "green", k = 50)

R> Rcol <- maPalette(low = "white", high = "red", k = 50)

R> RGcol <- maPalette(low = "green", high = "red",

+ mid = "white", k = 50)

Useful diagnostic plots are spatial images of the Cy3 and Cy5 back-
ground intensities; these images may reveal hybridization artifacts such as
scratches on the slides and cover–slip effects. The following commands pro-
duce spatial images of the Cy3 and Cy5 background intensities for the Swirl
93 array using white–to–green and white–to–red color palettes, respectively
(Swirl 93 refers to the third array in the batch swirl, with label "93", as
given by maLabels(maTargets(swirl))).

R> tmp <- maImage(swirl[, 3], x = "maGb", subset = TRUE,

+ col = Gcol, contours = FALSE, bar = FALSE)

R> tmp <- maImage(swirl[, 3], x = "maRb", subset = TRUE,

+ col = Rcol, contours = FALSE, bar = FALSE)

Note that the same images can be obtained using the default arguments
of the function by the shorter commands

R> maImage(swirl[, 3], x = "maGb")

R> maImage(swirl[, 3], x = "maRb")

If bar=TRUE, a calibration color bar is displayed to the right of the images.
Other options include displaying contours, and altering graphical param-
eters such as axis labels and plot title. The maImage function returns the
values and corresponding colors used to produce the color bar, as well as a
six number summary of the spot statistics.

The 2D spatial images of background intensities for the Swirl 93 array
are shown in Figure 1.2. It can be noted that the Cy3 and Cy5 background
intensities are not uniform across the slide and are higher in the top right
corner, perhaps due to cover slip effects or tilt of the slide during scan-
ning. Such patterns were not as clearly visible in the individual Cy3 and
Cy5 TIFF images. Similar displays of the Cy3 and Cy5 foreground inten-
sities do not exhibit such strong spatial patterns. For the Swirl 81 array,
background images uncovered the existence of a scratch with very high
background in print–tip–groups (3,2) and (3,3). Note that spatial images
of background intensities revealed a bug (since then fixed) in the image
processing package Spot, whereby the morphological opening background
estimate was sometimes set to a constant and artificially large value for the
last row of spots on the array.

The maImage function may also be used to generate an image of the pre–
normalization log–ratios M , using a green–to–red color palette. Figure 1.3
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panel (b) displays such an image for the Swirl 93 array, highlighting only
those spots with the highest and lowest 10% pre–normalization log–ratios
M . The image suggests the existence of spatial dye biases in the intensity
log–ratio, with higher values in grid (3,3) and lower values in grid column
1 of the array.

R> tmp <- maImage(swirl[, 3], x = "maM", bar = FALSE,

+ main = "Swirl 93 array: image of pre-normalization M")

R> tmp <- maImage(swirl[, 3], x = "maM",

+ subset = maTop(maM(swirl[,3]), h = 0.1, l = 0.1),

+ col = RGcol, contours = FALSE, bar = FALSE,

+ main = "Swirl 93 array: image of pre-normalization

+ M for % 10 tails")

Note that the maImage function (and the functions maBoxplot and
maPlot to be described next) can be used to plot other statistics than flu-
orescence intensities, for example, spot quality data or layout parameters
such as plate IDs (maPlate slot).

Boxplots of spot statistics – maBoxplot

Boxplots of spot statistics by plate, print–tip–group, or slide can also be
useful to identify spot or hybridization artifacts. The function maBoxplot,
based on the R base function boxplot, produces boxplots of microarray
spot statistics for the classes marrayRaw, marrayNorm, and marrayTwo (see
details in ?maBoxplot). The function maBoxplot has three main arguments

m: Microarray object of class marrayRaw, marrayNorm, or marrayTwo.

x: Name of accessor method for the spot statistic used to stratify the
data, typically a slot name for the microarray layout object such as
maPlate or a method such as maPrintTip. If x is NULL, the data are
not stratified.

y: Name of accessor method for the spot statistic of interest, typically a
slot name for the microarray object m, such as maM.

Figure 1.4 panel (a) displays boxplots of pre–normalization log–ratios M
for each of the 16 print–tip–groups for the Swirl 93 array. This plot was
generated by the following commands

R> maBoxplot(swirl[, 3], x = "maPrintTip", y = "maM",

+ main = "Swirl 93 array: pre-normalization")

The boxplots clearly reveal the need for normalization, since most log–
ratios M are negative in spite of the fact that only a small proportion of
genes are expected to be differentially expressed in the mutant and wild–
type zebrafish. As is often the case, this corresponds to higher signal in
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the Cy3 channel than in the Cy5 channel, even in the absence of differen-
tial expression. In addition, the boxplots uncover spatial dye biases in the
log–ratios. In particular, print–tip–group (3,3) clearly stands out from the
remaining ones, as suggested also in the images of Figure 1.3. The func-
tion maBoxplot may also be used to produce boxplots of spot statistics
for all arrays in a batch. Such plots are useful when assessing the need for
between array normalization, for example, to deal with scale differences
among different arrays. The following command produces a boxplot of the
pre–normalization intensity log–ratios M for each array in the batch swirl.
Figure 1.5 panel (a) suggests that different normalizations may be required
for different arrays, including possibly scale normalization.

R> maBoxplot(swirl, y = "maM",

+ main = "Swirl arrays: pre-normalization")

Scatter–plots of spot statistics – maPlot

The function maPlot produces scatter–plots of microarray spot statistics
for the classes marrayRaw, marrayNorm, and marrayTwo. It also allows the
user to highlight and annotate subsets of points on the plot, and display
fitted curves from robust local regression or other smoothing procedures
(see details in ?maPlot). It relies on the R base functions plot, text, and
legend. The function maPlot has seven main arguments

m: Microarray object of class marrayRaw, marrayNorm, or marrayTwo.

x: Name of accessor function for the abscissa spot statistic, typically a slot
name for the microarray object m, such as maA.

y: Name of accessor function for the ordinate spot statistic, typically a
slot name for the microarray object m, such as maM.

z: Name of accessor method for the spot statistic used to stratify the
data, typically a slot name for the microarray layout object such as
maPlate or a method such as maPrintTip. If z is NULL, the data are
not stratified.

lines.func: Function for computing and plotting smoothed fits of y as
a function of x, separately within values of z, e.g. maLoessLines. If
lines.func is NULL, no fitting is performed.

text.func: Function for highlighting a subset of points, e.g. maText. If
text.func is NULL, no points are highlighted.

legend.func: Function for adding a legend to the plot, e.g. maLegend-
Lines. If legend.func is NULL, there is no legend.

As usual, optional graphical parameters may be supplied and these will
overwrite the default parameters set in the plot functions. A number of
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functions for computing and plotting the fits can be used, such as maL-
owessLines and maLoessLines for robust local regression using the R
functions lowess and loess, respectively. Functions are also provided for
highlighting points (e.g. maText) and adding a legend to the plot (e.g.
maLegendLines).

Figure 1.6 panel (a) displays the pre–normalization MA–plots for the
Swirl 93 array, with the sixteen lowess fits for each of the print–tip–groups
(using a smoother span f = 0.3 for the lowess function). The figure was
generated with the following commands

R> defs <- maDefaultPar(swirl[, 3],

+ x = "maA", y = "maM", z = "maPrintTip")

R> legend.func <- do.call("maLegendLines", defs$def.legend)

R> lines.func <- do.call("maLowessLines",

+ c(list(TRUE, f = 0.3), defs$def.lines))

R> maPlot(swirl[, 3], x = "maA", y = "maM", z = "maPrintTip",

+ lines.func, text.func = maText(), legend.func,

+ main = "Swirl 93 array: pre-normalization MA-plot")

The same plots can be obtain using the default arguments of the function
by the command

R> maPlot(swirl[, 3])

Figure 1.6 illustrates the non–linear dependence of the log–ratio M on
the overall spot intensity A and thus suggests that an intensity or A–
dependent normalization method is preferable to a global one (e.g. median
normalization). Also, the lowess fits vary among print–tip–groups, again
revealing the existence of spatial dye biases. To highlight, say, the spots
with the highest and lowest 5% log–ratios using purple symbols "O", set

text.func=maText(subset=maTop(maM(swirl[,3]),
h=0.05,l=0.05),labels="O",col="purple")}.

Wrapper functions for basic sets of diagnostic plots

Three wrapper functions are provided to automatically generate a stan-
dard set of diagnostic plots: maDiagnPlots1, maRawPlots, and maNormPlots.
For example, maDiagnPlots1 produces eight plots of pre– and post–
normalization cDNA microarray data: 2D spatial images of Cy3 and Cy5
background intensities, and of pre– and post–normalization log–ratios M ;
boxplots of pre– and post–normalization log–ratios M by print–tip–group;
MA–plots of pre– and post–normalization log–ratios M by print–tip–group.
All three functions provide options for saving the figures to a file, in
postscript or jpeg format.
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R> maDiagnPlots1(swirl[,2],

+ title="Swirl 93 array: Diagnostic plots", save=TRUE,

+ fname="swirl93.jpeg", dev="jpeg")

1.4.4 Package marrayNorm – Location and scale
normalization for cDNA microarray data

General normalization function maNormMain

The main function for location and scale normalization of cDNA mi-
croarray data is maNormMain. It has eight arguments described in details
in the help file ?maNormMain. The main arguments are: mbatch, an object
of class marrayRaw or marrayNorm, containing intensity data for the batch
of arrays to be normalized; f.loc and f.scale, lists of location and scale
normalization functions; and a.loc and a.scale, functions for computing
the weights used in composite normalization (Yang et al., 2002b). Other
arguments mainly deal with controlling output. Normalization is performed
simultaneously for each array in the batch using the location and scale nor-
malization procedures specified by the lists of functions f.loc and f.scale.
Typically, only one function is given in each list, otherwise composite nor-
malization is performed using the weights given by a.loc and a.scale.
The maNormMain function returns objects of class marrayNorm.

The marrayNorm package contains functions for median (maNormMed),
intensity or A–dependent (maNormLoess), and 2D spatial (maNorm2D) loca-
tion normalization. The R robust local regression function loess is used
for intensity dependent and 2D spatial normalization. The package also
contains a function for scale normalization using the median absolute devi-
ation or MAD (maNormMAD). The functions allow normalization to be done
separately within values of a layout parameter, such as plate or print–tip–
group, and using different subsets of probe sequences (e.g. dilution series of
control probe sequences). Arguments are available for controlling the local
regression, when applicable.

Simple normalization function maNorm

A simple wrapper function maNorm is provided for users interested in ap-
plying a standard set of normalization procedures using default parameters.
This function returns an object of class marrayNorm and has seven argu-
ments described in details in the help file ?maNorm. The main arguments
are: mbatch, an object of class marrayRaw or marrayNorm, containing inten-
sity data for the batch of arrays to be normalized; norm, a character string
specifying the normalization procedure, e.g. "p" or "printTipLoess" for
within–print–tip–group intensity dependent location normalization using
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the loess function; and subset, a logical or numeric vector indicating the
subset of points used to compute the normalization values.

Simple scale normalization function maNormScale

A simple wrapper function maNormScale is provided for users interested
in applying a standard set of scale normalization procedures using default
parameters. This function returns an object of class marrayNorm and has
six arguments described in details in the help file ?maNormScale. The main
arguments are: mbatch, an object of class marrayRaw or marrayNorm, con-
taining intensity data for the batch of arrays to be normalized; norm, a
character string specifying the normalization procedure; and subset, a log-
ical or numeric vector indicating the subset of points used to compute the
normalization values. This function performs in particular between slide
scale normalization using the MAD (norm = "g" or "globalMAD").

Normalization for the Swirl experiment

The pre–normalization MA–plot for the Swirl 93 array in Figure 1.6
panel (a) illustrates the non–linear dependence of the log–ratio M on the
overall spot intensity A and the existence of spatial dye biases. Only a
small proportion of the spots are expected to vary in intensity between
the two channels. We thus perform within–print–tip–group loess location
normalization using all 8, 448 probes on the array.

I Using main function maNormMain. The following command normal-
izes all four arrays in the Swirl experiment simultaneously and stores the
results in the object swirl.norm of class marrayNorm. A summary of the
normalized data can be viewed using the print method, that is, by typing
print(swirl.norm) or simply swirl.norm.

R> swirl.norm <- maNormMain(swirl,

+ f.loc = list(maNormLoess(x = "maA", y = "maM",

+ z = "maPrintTip", w = NULL, subset = TRUE, span = 0.4)),

+ f.scale = NULL, a.loc = maCompNormEq(),

+ a.scale = maCompNormEq())

This is the default normalization procedure in maNormMain, thus the same
results could be obtained by calling

R> swirl.norm <- maNormMain(swirl)

I Using simple function maNorm. Alternately, the simple wrapper
function could be used to perform the same normalization

R> swirl.norm <- maNorm(swirl, norm = "p")

I Using simple function maNormScale. The maNormScale function
may be used to perform scale normalization separately from location
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normalization. The following examples do not necessarily represent a rec-
ommended analysis but are simply used for demonstrating the software
functionality. Within–print–tip–group intensity dependent location normal-
ization followed by within–print–tip–group scale normalization using the
median absolute deviation, could be performed in one step by

R> swirl.norms <- maNorm(swirl, norm = "s")

or sequentially by

R> swirl.norm1 <- maNorm(swirl, norm = "p")

R> swirl.norm2 <- maNormScale(swirl.norm1, norm = "p")

For between slide scale normalization using MAD scaled by the geometric
mean of MAD across slides (Yang et al., 2001; Yang et al., 2002b)

R> swirl.normg <- maNormScale(swirl.norm, norm = "g")

I Plots for normalized intensity data. The diagnostic plot functions
of Section 1.4.3 may also be applied to objects of class marrayNorm, using
the same commands as with objects of class marrayRaw. For example, the
post–normalization boxplots and MA–plots in panels (b) of Figures 1.4,
1.5, and 1.6 were produced by

R> maBoxplot(swirl.norm[, 3], x = "maPrintTip",

+ y = "maM", main = "Swirl 93 array: post-normalization")

R> maBoxplot(swirl.norm, y = "maM",

+ main = "Swirl arrays: post-normalization")

R> maPlot(swirl.norm[, 3],

+ main = "Swirl 93 array: post-normalization MA-plot")

Note that normalization was performed using the loess function, but
the fitted lines in the MA–plots were produced using lowess. To see the
effect of within–print–tip–group location normalization, compare panels (a)
and (b) in each of these figures. Normalized log–ratios M are now evenly
distributed about about zero across the range of intensities A for each
print–tip–group. Furthermore, the non–linear location normalization seems
to have eliminated, to some extent, the scale differences among print–tip–
groups and arrays.

1.5 Discussion

Access to portable, extensible, and interoperable statistical software is an
essential aspect of the analysis of microarray data. We have described four
packages for exploratory analysis and normalization of cDNA microarray
data, and illustrated their functionality using gene expression data from
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the Swirl experiment. This case study highlighted the importance of ex-
ploratory data analysis using diagnostic plots of various spot statistics.
Spatial color images (function maImage) of foreground and background in-
tensities and log–ratios of intensities may be used to reveal hybridization
(e.g. scratches and cover slip effects) and printing artifacts (e.g. small spots
with little probe material). Boxplots may assist in identifying spatial or
other types of dye biases in the fluorescence intensities, in addition to scale
differences within and between arrays (function maBoxplot). Scatter–plots
such as MA–plots (function maPlot) are useful in revealing intensity de-
pendent biases and experimental artifacts. For instance, examination of
the range of intensities A may reveal saturation due to improper scanner
settings.

Normalization is a key step in the pre–processing of cDNA microarray
data; one that can have a large impact on the results of downstream anal-
yses, such as classification or the identification of differentially expressed
genes. Normalization is required to ensure that observed differences in flu-
orescence intensities are indeed reflecting differential gene expression, and
not some printing, hybridization, or scanning artifact. The simplest ap-
proach to within–slide location normalization is to subtract a constant from
all intensity log–ratios, typically their mean or median. Such global nor-
malization methods are still widely used in spite of the evidence of spatial
and intensity dependent dye biases in numerous experiments, including the
Swirl experiment. We thus recommend more flexible normalization meth-
ods, based on robust locally–weighted regression, which take into account
the effects of predictor variables such as spot intensity A, location, and
plate origin (e.g. using the lowess or loess procedures). We are currently
investigating the application of single channel normalization methods ini-
tially developed for the analysis of Affymetrix chip data (see Chapter 4 for
a discussion of the Bioconductor package affy). The design of microarray
classes and methods in Bioconductor packages should facilitate the sharing
of code between packages.

Normalized microarray data consist primarily of pairs (M, A) of inten-
sity log–ratios and average log–intensities for each spot in each of several
slides, in addition to probe and target textual information, and possibly
spot quality weights. We are now in a position to address the main ques-
tion for which the Swirl microarray experiment was designed, that is, the
identification of genes that are differentially expressed between swirl mu-
tant and wild–type zebrafish. The Bioconductor packages Biobase, edd,
genefilter, multtest, ROC, and sma may be used to address this ques-
tion. In general, appropriate methods for the main statistical analysis will
depend largely on the question of interest to the investigator and can span
the entire discipline of Statistics (e.g. linear modeling, time series analysis,
multiple testing, classification). The implementation of suitable statistical
methodology will require the development of question specific R packages; a
number of such packages are already available on the Bioconductor website.
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We envisage two main classes of users for these and other Bioconductor
packages. The first class, primarily biologists, will be interested in applying
a standard set of procedures from the packages. Researchers in the second
group will likely be interested in writing their own functions and packages,
in addition to using existing functions. To accommodate these two types of
users, the packages were designed at two levels. Regarding the first group,
particular emphasis is placed on facilitating access to the statistical method-
ology implemented in R. The definition of microarray specific classes and
methods for storing and manipulating different types of microarray data
greatly reduces the complexity associated with handling microarray data
(see also Biobase and annotate for classes and methods for microarray
and annotation data). Other steps have been taken to reduce the barrier of
entry into R and allow biologists to readily exploit its power and versatil-
ity for the analysis of genomic data. New developments include: the design
of widgets, or small–scale graphical interfaces for basic input and analysis
procedures, and providing seamless access within R to biological informa-
tion resources such as the National Center for Biotechnology Information
(NCBI) Entrez system (http://www.ncbi.nlm.nih.gov/Entrez/) or the
Gene Ontology (GO) Consortium (http://www.geneontology.org). Bio-
conductor packages AnnBuilder and annotate already provide browser
access to LocusLink, GenBank, and PubMed. Regarding the second class
of users, the R language allows the design of functions and packages that
are extensible and interoperable.
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Figure 1.1. Screen–shot of the widget for creating objects of class marrayRaw from
image processing output files.
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Figure 1.2. 2D spatial images of background intensities for the Swirl 93 array.
Panel (a): Cy3 background intensities using white–to–green color palette. Panel
(b): Cy5 background intensities using white–to–red color palette.
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Figure 1.3. 2D spatial images of the pre–normalization intensity log–ratios M for
the Swirl 93 array, using a green–to–red color palette. Panel (a): All spots are
displayed. Panel (b): Only spots with the highest and lowest 10% log–ratios are
highlighted.
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Figure 1.4. Boxplots by print–tip–group of the pre– and post–normalization
intensity log–ratios M for the Swirl 93 array.



1. Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data 35

81 82 93 94

−
2

0
2

4
Swirl arrays: pre−normalization

M

81 82 93 94

−
2

0
2

4

Swirl arrays: post−normalization

M
(a) (b)

Figure 1.5. Boxplots of the pre–and post–normalization intensity log–ratios M
for the four arrays in the Swirl experiment.
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Figure 1.6. Pre– and post–normalization MA–plots for the Swirl 93 array, with
the lowess fits for individual print–tip–groups. Different colors are used to repre-
sent lowess curves for print–tips from different rows, and different line types are
used to represent lowess curves for print–tips from different columns.


