Math 3001 Topology

Solutions to 2002 Exam

1. (i) (a) A is open in \((Y, d)\) if there is, for each \(a \in A\), an open ball \(B(a; \varepsilon)\) contained in A.

(b) \((0, 2]\) is not open in \(\mathbb{R}\), as any ball \(B(2; \varepsilon)\) must contain numbers \(> 2\), and hence is not contained in \((0, 2]\).
\(\mathbb{R} \setminus (0, 2] = (-\infty, 0] \cup (2, \infty)\), and this is not open as any open ball \(B(0; \varepsilon)\) will contain numbers in \((0, 2]\). Hence \((0, 2]\) is not closed in \(\mathbb{R}\).

\((1, 2) \cup \{3\}\) is not open in \(\mathbb{R}\) as any open ball \(B(3; \varepsilon)\) will not be contained in the set.
\(\mathbb{R} \setminus ((1, 2) \cup \{3\}) = (-\infty, 1] \cup [2, 3) \cup (3, \infty)\), which is not open as it does not contain any \(B(1; \varepsilon)\). Hence \((1, 2) \cup \{3\}\) is not closed in \(\mathbb{R}\).

\([4, \infty)\) is not open as \(B(4; \varepsilon)\) is not contained in \([4, \infty)\) for any \(\varepsilon\).
\(\mathbb{R} \setminus [4, \infty) = (-\infty, 4)\) is open in \(\mathbb{R}\) as for any \(a \in (-\infty, 4)\), there is an open ball \(B(a; \varepsilon) \subseteq (-\infty, 4)\).
(For example, take \(\varepsilon = 4 - a\).)

\([4, \infty)\) is closed in \(\mathbb{R}\).
(ii) (a) A is open in X if for all $a \in A$, there exists an open ball $B(a; \varepsilon)$ such that $B(a; \varepsilon)_0 \subseteq A$.

(b) (1) \[\text{A is not open in } X \]
\[\text{A is closed in } X \]

(2) \[\text{B is open in } X \]
\[\text{B is not closed in } X \]

(3) \[\text{C is not open in } X \]
\[\text{C is not closed in } X \]

2. (i) f is continuous if for every open set W in Y, the inverse image $f^{-1}[W]$ is open in X.

(ii) First, $\text{Int} A \subseteq A$, and so $f^{-1}[\text{Int} A] \subseteq f^{-1}[A]$.

Now f is continuous and $\text{Int} A$ is open in X, hence $f^{-1}[\text{Int} A]$ is open in X. Now $\text{Int}(f^{-1}[A])$ is the largest open set contained in $f^{-1}[A]$. Therefore $f^{-1}[\text{Int} A] \subseteq \text{Int}(f^{-1}[A])$.

(iii) (a) If \(f(x) = f(y) \) then \((\cos x, \sin x, x) = (\cos y, \sin y, y)\), which implies that \(x = y \).
Hence \(f \) is injective.

(b) We have \(g: S \rightarrow \mathbb{R}^3 \), \(g(x) = (\cos x, \sin x, x) \)
for all \(x \in S \). As \(g \) is injective,
\(g^{-1}: W \rightarrow S \) is the function
\[g^{-1}(\cos x, \sin x, x) = x. \]
\(g^{-1} \) is continuous (since each component function is continuous), so is it, restricting \(g^{-1} \).
Finally, since \(g^{-1} \) is a projection, it is also continuous. That is,
\(g: S \rightarrow W \) is a homeomorphism.

(c) The set \(\{ (\cos x, \sin x, x) \mid 0 \leq x \leq \pi/2 \} \) is
in fact equal to \(W \).
As \(W = g[S] \), \(W \) is the image
of the compact set \([0, \pi/2] \) under
\(g \), hence \(W \) is compact.

3. (i) In \(S \), \(\{ a, b \} \cap \{ b, c \} = \{ b \} \) is
not an element of \(S \), \(e \in S \) is
not closed under finite intersection
and is therefore not a topology for \(X \).
However, T is a topology for X as \emptyset, X are in T and the union and intersection of any number of elements of T are again in T.

(iii) $T_Y = \{\emptyset, \{b\}, \{c\}, \{b,c\}, Y\}$

(iv) Y, $\{c, e\}$, $\{b, e\}$, $\{e\}$, \emptyset are closed.

(v) No proper subset of Y is both open and closed, so Y is connected.

(vi) Checking the inverse images of the open sets in (Y, T_Y), we see that $f^{-1}[\{c\}] = \{c\}$, which is not open in (X, T). Hence f is not continuous.

4. (i) (a) A topological space is compact if every open covering has a finite subcover.

(b) The set $\bigcup_i A_i$, where

$$A_i = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 < i^2\}$$

for $i = 1, 2, \ldots$
is an open covering for \(\mathbb{R}^2 \), but no finite collection of \(A_i \) covers \(\mathbb{R}^2 \).

(c) For example, \(\{0\} \neq [0,1] \), although both are compact.

(d) (1) Not compact as not closed.
\[\mathbb{R} \setminus A = (-\infty,0) \cup (1,\infty) \cup X, \]
where \(X \) is the set of all irrational numbers between 0 and 1. But any open ball centred on such an irrational number \(x \) will not be contained in \(\mathbb{R} \setminus A \), as it will contain rational points arbitrarily close to \(x \). Thus \(\mathbb{R} \setminus A \) is not open and hence \(A \) is not compact.

(2) \(B \) is not bounded and hence \(B \) is not compact.

(ii) (a) \(X \neq Y \), as \(X \) is compact and \(Y \) is not compact (as it's not closed).

(b) \(X \cong Y \), as the function \(f: X \to Y \) given by \(f(x) = 6-x \), \(\forall x \in X \), is a continuous bijection with continuous inverse \(f^{-1}: Y \to X \), \(f^{-1}(y) = 6 - y \).

(c) \(X \neq Y \), as if we had a homeomorphism \(f: X \to Y \), then removing points 2 and 4 from \(X \) will leave a connected set \((2,4) \), whose image under a continuous
function must be connected. But removing f(2) and f(a) from Y would leave a disconnected set (2 points removed from a circle). Hence no such homeomorphism exists.

5 (i) (a) \[aba^{-1}c=1\]

(b) \[aba^{-1}b^{-1}=1\]

(c) \[aba^{-1}b^{-1}=1\]

(ii) Surface has a rim (edge d)
Surface is non-orientable, as c is paired with c.

(iv) The surface is homeomorphic to a sphere with one cross cap, C1, that is, the real projective plane, whose edge eqn is \[aa=1\].

(iii) \[26,61,12\] free edges
\[53,34,45\] free edges
Surface is a cylinder.
(v) \(bcd b^{-1} a^{-1} cad = 1 \)

Surface is non orientable, timless.

\[e = 4 \]
\[f = 1 \]
\[v = 1 \]

Euler char. = \(1 - 4 + 1 = -2 \)

\[= 2 - n, \]

So \(n = 4 \)

The surface is \(\cong C_4 \), sphere with 4 cross caps.

(vi) Torus with one cross cap is homeomorphic to sphere with handle and one cross cap. But if a surface has a cross cap, then each handle can be converted to 2 cross caps. So we have a sphere with 3 cross caps, \(C_3 \).

The edge equ. in canonical form is \(a a b b c c = 1 \)

and the Euler characteristic is \(2 - n = 2 - 3 = -1 \).

6. (i) (a) Since \(FrA = \overline{A} \cap X \setminus A \) we must prove that \(A \setminus FrA = \overline{A} \cap X \setminus A \).

Let \(x \in A \setminus FrA \). Then \(x \in \overline{A} \), so must show that \(x \in X \setminus A \). Now \(x \notin FrA \), and so for every open neighborhood \(U_x \) of \(x \), \(U_x \cap A \) \(\neq \) \(U_x \cap (X \setminus A) \) is not empty, so \(x \in X \setminus A \). Hence \(x \in FrA \).
Now let \(x \in \text{Fr } A \). Then \(x \in \overline{A} \) and \(x \in \overline{X \setminus A} \). We must show that \(x \in \text{Int } A \).

Now \(x \in \overline{X \setminus A} \), so every open neighborhood \(U_x \) of \(x \) has a non-empty intersection with \(X \setminus A \). Thus for each \(U_x \), \(U_x \cap A \neq \emptyset \). Therefore, \(x \in \text{Int } A \).

(b) Suppose \(\text{Fr } A = \emptyset \). We'll show that this implies that \(X \) is disconnected.

Now if \(\text{Fr } A = \emptyset \) then \(\overline{A} \subseteq \text{Int } A \) by (a).

But \(\text{Int } A \subseteq A \subseteq \overline{A} \), and so \(\overline{A} = \text{Int } A = A \).

Thus \(A \) is both open and closed, and as \(X = A \cup \overline{X \setminus A} \), we see that \(X \) is disconnected. This contradiction shows that \(\text{Fr } A \neq \emptyset \).

(ii) (a) Let \(W \) be any open set in \((Z, S)\). Then \(g^{-1}[W] \) is a subset of \(Y \), and since \(T \) is the discrete topology, \(g^{-1}[W] \) is open in \(Y \). Hence \(g \) is continuous.

(b) Let \(h : Z \to Y \) be a continuous function, and suppose that \(a \in Y \) is in \(h[Z] \), \(\exists a = h(x) \) for some \(x \in Z \). We'll show that \(h(x) = a \) for every \(x \in Z \), i.e., we'll show that \(h \) is a constant fn. First, \([a] \) is open in \(Y \) as \(T \) is the discrete topology.
Now \(h^{-1} \{ \{a\} \} \) is also open in \(Z \) as \(h \) is continuous. But \(Z \) has topology \(S = \{ \emptyset, Z \} \). If \(h^{-1} \{ \{a\} \} = \emptyset \) we have a contradiction, as \(h(x) = a \) so \(x \in h^{-1} \{ \{a\} \} \). Therefore \(h^{-1} \{ \{a\} \} = Z \), so everything in \(Z \) maps to \(a \); hence \(h \) is constant on \(Z \).