THE UNIVERSITY OF SYDNEY

Faculties of Arts, Economics, Education, Engineering & Science

MATH 3001 TOPOLOGY

June 2003

Time allowed: Two hours

Lecturer: Jenny Henderson

There are 4 pages and 6 questions in this examination.
All 6 questions may be attempted.
The exam is worth 75 marks.
No notes, calculators or books are allowed in the examination.
All working must be shown unless otherwise indicated.
1. [13 marks]

(i) Give the definition of an open set U in a metric space (X, d).

(ii) Classify the following sets as open or not open in \mathbb{R}, and closed or not closed in \mathbb{R}. No reasons need be given.

(a) $(-1, 1]$
(b) $(-1, 1] \cup [0, 2)$
(c) $(-1, 1] \cap [0, 2)$

(iii) A is defined to be the set

$$A = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq 1\}.$$ Sketch each of the following subsets of A and classify them as open or not open in A, and closed or not closed in A. No reasons need be given.

(a) $\{(x_1, x_2) \in A \mid x_1 x_2 = 0\}$
(b) $\{(x_1, x_2) \in A \mid 0 < x_1 \leq 1\}$

(iv) Sketch each of the following subsets of \mathbb{R}^2. Classify each one as compact or not compact, and connected or disconnected, giving brief reasons for your answers.

(a) $\{(x_1, x_2) \in \mathbb{R}^2 \mid |x_1| \geq 1\}$
(b) $\{(x_1, x_2) \in \mathbb{R}^2 \mid |x_1| < 1 \text{ and } |x_2| < 1\} \cup \{(1, 1)\}$
(c) $\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq 1\} \cup \{(1, 1)\}$

2. [13 marks]

(i) Let x and y be any two points in \mathbb{R}. Define $d_1(x, y) = |x| + |y|$ if $x \neq y$ and $d_1(x, y) = 0$ if $x = y$.

(a) Show that d_1 is a metric on \mathbb{R}.
(b) Find the 5-neighbourhood of the point 2 in (\mathbb{R}, d_1).
(c) Find the 1-neighbourhood of the point 2 in (\mathbb{R}, d_1).
(d) Are the two neighbourhoods you found open sets in \mathbb{R} with the usual metric?

(ii) For each of the parts below, either give a brief explanation of why X is not homeomorphic to Y or find a homeomorphism $f : X \to Y$.

(a) $X = [0, 1] \subseteq \mathbb{R}, \quad Y = \mathbb{R}$.
(b) $X = (0, 3] \subseteq \mathbb{R}, \quad Y = [1, 7) \subseteq \mathbb{R}$.
(c) $X = \mathbb{R}^2, \quad Y = \mathbb{R}$.
(d) $X = [0, 1] \subseteq \mathbb{R}, \quad Y = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1\}$.

...
3. [13 marks]

(i) Let \(f : \mathbb{R} \to \mathbb{R}^3 \) be the function \(f(t) = (t, t^2, t^4) \).

(a) Show that \(f \) is injective.

(b) Let \(B = [1, 2] \subseteq \mathbb{R} \), let \(g \) be the restriction of \(f \) to \(B \) and let \(W = g[B] \). Find a formula for \(g^{-1} : W \to B \).

(c) Prove that \(g \) is a homeomorphism.

(d) Explain why the set

\[\{(t, t^2, t^4) \in \mathbb{R}^3 \mid 1 \leq t \leq 2\} \]

is compact and connected.

(ii) (a) Give the definition of a disconnected set \(A \) in a topological space \(X \).

(b) Suppose that \(X \) is a topological space, \(A \subseteq X \), and \(S \) is the set \(\{0, 1\} \) with the discrete topology. Prove that if

\[f : A \to S \]

is a continuous surjection then \(A \) is disconnected.

4. [12 marks] Let \(X = \{a, b, c, d, e\} \) and let \(T \) be a topology on \(X \), where

\[T = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}, X\} \]

(i) Draw the Hasse diagram for \(T \).

(ii) List the closed subsets of \((X, T)\) and explain why \((X, T)\) is connected.

(iii) If \(Y = \{a, b, e\} \), find \(\text{Int} \ Y \) and \(\overline{Y} \) in \((X, T)\).

(iv) Write down the induced topology \(T_Y \) on the set \(Y \).

(v) Consider \(f : (Y, T_Y) \to (Y, T_Y) \) given by

\[f(a) = b, \quad f(b) = e, \quad f(e) = e \]

Is \(f \) continuous or not continuous? Give reasons.
5. [12 marks]

(i) Draw polygonal representations of and give edge equations for
(1) a Mobius strip (2) a Klein bottle

(ii) Which surface is represented by the following triangulation?

\begin{verbatim}
124 145 125 235 345 234
\end{verbatim}

(iii) A surface has edge equation

\[aba^{-1}cd^{-1}b^{-1}d^{-1}e = 1. \]

(a) Does the surface have a rim or is it rimless? Is it orientable or non-orientable? Give your reasoning.
(b) Draw a polygonal representation of the surface.
(c) Find the Euler characteristic of the surface.
(d) Determine the standard surface which is homeomorphic to this surface.

(iv) For each surface \(M \) given in (1) and (2) below,

(a) state which standard surface is homeomorphic to \(M \),
(b) write down an edge equation in canonical form for \(M \).

(1) \(M \) is a torus with 1 handle.
(2) \(M \) is a sphere with 2 crosscaps and 1 handle.

6. [12 marks]

(i) Show that in any topological space, every set containing a finite number of elements is compact.

(ii) Show that in a topological space with the discrete topology, every set containing infinitely many elements is not compact.

(iii) Find a homeomorphism from the set

\[X = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + 4x_2^2 = 4, -2 \leq x_1 < 2\} \]

to the set

\[Y = (-\pi/2, \pi/2) \subseteq \mathbb{R}, \]

justifying your answer.

THIS IS THE END OF THE EXAMINATION PAPER