1. Let $X = (0, 1] \cup (2, 3)$ be a subset in \mathbb{R} and $A = (0, 1]$.

Determine whether A is

(a) open in X; (b) closed in X; (c) open in \mathbb{R}; (d) closed in \mathbb{R}.

Solution.

(a) Since $A = (0, 2) \setminus X$ and $(0, 2)$ is open in \mathbb{R}, it follows that A is open in X.

Or: For every point $x \in A$ (including $x = 1$), there is an open ball of x such that the intersection of the open ball with X is contained in A. (The open interval $(0, 2)$, for example, is an open ball of 1, and its intersection with X is contained in A.)

(b) We have $A = [0, 1] \cap X$ and $[0, 1]$ is closed in \mathbb{R} so that A is closed in X.

Or: $X \setminus A = (2, 3)$ is open in X, and so A is closed in X.

(c) Since no open ball of 1 in \mathbb{R} can be totally contained in A, A is not open in \mathbb{R}.

(d) The complement of A in \mathbb{R} is

$$\mathbb{R} \setminus A = (-\infty, 0] \cup (1, \infty)$$

which is not open in \mathbb{R} and so A is not closed in \mathbb{R}.

2. Determine whether the following subsets A of the unit sphere

$$S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1\}$$

are (a) open in S; (b) open in \mathbb{R}^3; (c) closed in S.

(i) $A = \{(x_1, x_2, x_3) \in S \mid x_3 > 0\}$;

(ii) $A = \{(x_1, x_2, x_3) \in S \mid x_3 \geq 0\}$;

(iii) $A = \{(x_1, x_2, x_3) \in S \mid x_3 = 0\}$;

(iv) $A = \{(x_1, x_2, x_3) \in S \mid x_3 = 1\}$;

(v) $A = \{(x_1, x_2, x_3) \in S \mid x_3 = 0, x_1 > 0, x_2 > 0\}$.

Solution.

(i) (a) The set A is the northern hemisphere of S, excluding the equator. If $a \in A$, then $B(a; \epsilon) \cap S$ is a portion of the sphere, bounded by a circle. For sufficiently small ϵ, this portion of S is entirely contained in A. Hence A is open in S.

Or: $A = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 > 0\} \cap S$

and $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 > 0\}$ is open in \mathbb{R}^3.

(b) Clearly no open ball of \mathbb{R}^3 can be contained in A (which is only a “surface”). Hence A is not open in \mathbb{R}^3.

(c) The complement $S \setminus A$ is the southern hemisphere, including the equator. If a is a point on the equator, then for all $\epsilon > 0$, $B(a; \epsilon) \cap S$ clearly contains points which are not in $S \setminus A$. Hence $S \setminus A$ is not open in S so that A is not closed in S.

(ii) The set A is the northern hemisphere, including the equator.

(a) A is not open in S. (See part (i) (c).)

(b) A is not open in \mathbb{R}^3. (See part (i) (b).)

(c) A is closed in S, since $S \setminus A$ is open in S. (See part (i) (a).)

(iii) The set A is just the equator.

(a) Any open ball of a point on the equator clearly contains points in S which are not in A, so A is not open in S.

(b) Similarly, A is not open in \mathbb{R}^3.

(c) The set $S \setminus A$ consists of the northern hemisphere without the equator and the southern hemisphere without the equator. As $S \setminus A$ is the union of two open sets, it follows that $S \setminus A$ is open in S. Hence A is closed in S.

(iv) The set A is just the north pole (a single point).

(a) A is not open in S. (Same argument as in part (iii) (a).)

(b) A is not open in \mathbb{R}^3.

(c) Since A (a singleton set) is clearly closed in \mathbb{R}^3 and $A = A \cap S$, we see that A is closed in S.

(v) The set A is an open arc on S.

(a) A is not open in S.

(b) A is not open in \mathbb{R}^3.

(c) $S \setminus A$ is not open in S, since any open ball of the point $(1,0,0)$ will contain points in A. So A is not closed in S.

3. Let $X = \{a, b, c, d, e\}$ and τ the topology on X given by

\[\tau = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,c,d\}, \{a,b,c,e\}, X\}. \]

Find the induced topology on each of the following subsets of X:

\[\begin{align*}
(i) & \quad A = \{d, e\} & (ii) & \quad B = \{b, d, e\} & (iii) & \quad C = \{a, b, c\}
\end{align*} \]

Solution.

(i) Let τ_A be the induced topology on A. Then, for any $U \in \tau$, $U \cap A$ is in τ_A. Therefore $\tau_A = \{\emptyset, \{d\}, \{e\}, A\}$.

(ii) $\tau_B = \{\emptyset, \{b\}, \{b, d\}, \{b, e\}, B\}$.

(iii) $\tau_C = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, C\}$.

4. Let Y be a topological space and let $H \subseteq X \subseteq Y$.
Prove that H is closed in X if and only if $H = C \cap X$, where C is closed in Y.

Solution.
Suppose that H is closed in X. So $X \setminus H$ is open in X, and hence there is an open set U in Y such that $X \setminus H = U \cap X$. Then $Y \setminus U$ is closed in Y, and
\[H = X \setminus (X \setminus H) = X \setminus (U \cap X) = X \setminus U = (Y \setminus U) \cap X. \]

Now suppose that $H = C \cap X$, where C is closed in Y.
Then $X \setminus H = X \setminus (C \cap X) = X \setminus C = (Y \setminus C) \cap X$, where $Y \setminus C$ is open in Y.
So $X \setminus H$ is open in X, and hence H is closed in X.

5. (i) Let X be an open subset of a topological space Y, and $G \subseteq X$ be open in X. Prove that G is open in Y.
(ii) Let X be a closed subset of a topological space Y, and $H \subseteq X$ be closed in X. Prove that H is closed in Y.

Solution.
(i) Since G is open in X, $G = G' \cap X$, where G' is open in Y. Since G' and X are both open in Y, G is open in Y.
(ii) Since H is closed in X, $H = H' \cap X$, where H' is closed in Y. Since H' and X are both closed in Y, H is closed in Y.