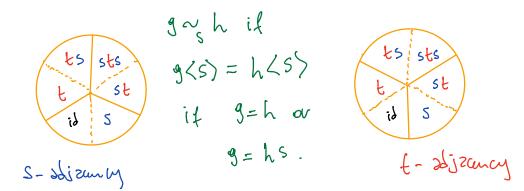
Chambers and the Correter complex References: . M. Ronan, 1989 Lectures on Buildings · A. Thomas, 2018 ' becaustry and Topological expects of Gxeter groups and Buildings' Plan for Today: § 1. Chamber systems. \$2. Gxeter groups and complexes. §1. Chamber systems let I be a set. A chamber system over I is a set C with su equivalence vetation v; ou it for each it I. · Elements of C me called charbers. · Two chambers x and y are called i-adjacent if Xn; y. \mathcal{C} ieI je I Example () let us take & a group, BC & subgroup and I a set. Suppose for every it I there is a subgroup Pi such that RCPiCE.

We can begine a chamber system on
$$G/B := \{gB \mid g \in G\}$$

with the i-adjacency given by:
 $gB \sim_i hB \quad if \quad gP_i = hP_i$
Then G/B is a chamber system over I
(2) As in (1) but $B = 1$ and $G = \langle s \in S \rangle (st)^{mst} = iJ$,
 $s^2 = iJ$, $\forall s, t \in S \rangle$. For $s \in S$, we define $P_S = \langle s \rangle$.
(3) As in (2) but $G = \langle s, t | (st)^3 = iJ$, $s^2 = t^2 = iJ \rangle$.

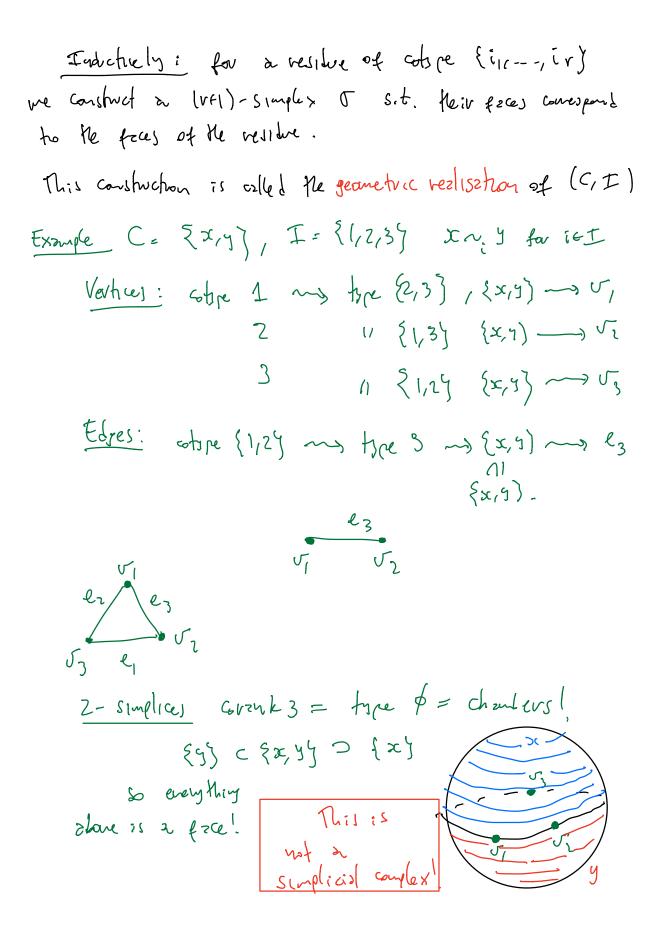
Here S= {Sit}



A galleng is a finite sequence of drankers $(Co, C_1, ..., C_K)$ such that $\forall j$, $C_j \neq C_{j-1}$, $C_j \sim i_j (j-1)$ for some $i_j \in I$. The type of such salleng is $(i_1, i_2, ..., i_K)$. let $J \subset I$, if $i_j \in J$ $\forall j$, we say the salleng is a J-salleng or salleng of type J. We say two chambers x, y, are J-connected if there is a J-salleng $(x=C_0, C_1, ..., C_K=y)$.

The S-connected components (interviewal J-connected sets)
we colled J-residues or relibues of type J.
The vark of a J-residue is cord (J).
Permit / Definition:
• The residues of rank O we the same as the chambers.
• The ii ii ii i are called pomels.
es In (3), (tits, tst, ts, tst, st) is a galling
of type (S,t, t, t, s)
A morphism
$$\phi: (C, T) \longrightarrow (D, T)$$
 of two
chamber bystems over I is a map $C \longrightarrow D$ such that
 $\forall i \in T \propto n; \forall \implies \phi(x) \sim i \phi(y)$.
es In (3). It (N (C/B by left multiplication.
The map $l_{2}: t_{2}/B \longrightarrow t_{2}/B$ is an altomorphism
 $\sigma B \longmapsto z \sigma B \longrightarrow z \sigma B = t(t_{2}/B, T)$.
The geometric realisation fix (C, T) = chamber system.
For I finite (C, T) \longrightarrow by residues of type Jand
K respectively. Say S is a face of R if :

· SOR. KDJ. & Say cotype I for type I-J. lemma: let R re residue of cotype J. (i) For each KCJ Neve is a unique face of R of cotype K. (ii) If S, and Sz we two faces of R of cotype, KI and KZ, then SI and Sz Share the same fre of cotype KINKZ. Definition An N-Simplex is the conex portion of not varhus in IR" in gueric position. Each subset of hose verties spons à foce. let (C,I) be a chamber system. Vertices: One for each sorruk 1 residue. Edges: One edge E for each residue Kof Grank 2, Such that the faces of E are identified with the verties constructed before associated to the faces of R.



82. Coxeter groups and complexies Set. let M= {msky mste 20 200} s.t. s.tes, MSEZ for SFE ms, s = l y seS. The Sixeter should of type M is $W = \langle S \in S | S^2 = i J, (St)^m = i J, \forall S, t \in S \rangle$ W:s 2 chamber system over S. Ne s-2djzancy is sum by ω~,ως. The Correter complex associated to (WIS) is the serve Wie verlisstion of this chamber system. Examples: () A1: W= < \$1 s= id> = {id, s} S= {S}. Vertres Cotope s -> type \$ = {:1,5} Edges: where { S, E}? No edges.

(2) A1,
$$W = \langle S_1 t | (St)^3 = id, S^2 = t^3 = id \rangle$$
S = $\{S_1 t \}$.
Varhus:
above $S = \{id, t\} = V_1$ above $t = \{id, s\} = W_1$
 $f = \{s, st\} = V_1$ above $t = \{id, s\} = W_2$
by $t = \{ts, ts\} = V_2$ by $t = \{ts, ts\} = V_2$
by $t = \{ts, ts\} = V_3$ by $t = \{s, ts\} = V_3$
Edges: counch $2 = tore \neq$
 $is = \frac{4rw_1}{S} = V_1 + W_2$
 $st = V_1 + W_2$
 $st = V_2 + V_3$
 $ts = V_3 + V_3$

Thank you !____