Appendix (A)

The Symmetric Matrix S

Description:
This function calculates the symmetric matrix S.

Usage:
$\text{Smatrix}(s, \text{pix})$

Arguments:
s: a vector of variables containing the six free parameters in the S matrix.
pix: a vector giving the stationary probabilities for the four nucleotides A, C, G and T.

Details:
This function calculates the matrix S, which we used to calculate the rate matrix R.

See Chapter 2 Section 2.1.1 for more details.

Value:
A 4×4 symmetric matrix.

See Also:
Pt, Fmatrix, gn, gn2.
Example:

\[
s = c(1, 2, 3, 4, 5, 6) \\
\pi = c(1, 1, 1, 7) \\
\text{Smatrix}(s, \pi)
\]

\[
\begin{array}{cccc}
[1,] & -2.4 & 0.1 & 0.2 & 0.3 \\
[2,] & 0.1 & -4.0 & 0.4 & 0.5 \\
[3,] & 0.2 & 0.4 & -4.8 & 0.6 \\
[4,] & 0.3 & 0.5 & 0.6 & -0.2 \\
\end{array}
\]
The Transition Probability Function

Description:
This function calculates the transition probability function for a process during a period of time.

Usage:
Pt(S, Pi, t)

Arguments:
S: a 4×4 symmetric matrix.
Pi: a diagonal matrix containing the stationary distribution for the process.
t: a period of time describing the length of the process.

Details:
This function needs the 4×4 symmetric matrix S, Π and the process length t in order to find the transition probability over that process, where $P_{ij}(t)$ is the probability that the i^{th} nucleotide changes to the j^{th} nucleotide during the period of t.
See Chapter 2 Section 2.1 for more details.

Value:
A 4×4 matrix containing the transition probabilities for a process.

See Also:
Smatrix.

Example:
Pi=diag(c(.1,.1,.1,.7)), S=Smatrix(c(.3,.3,.3,.3,.3,.3,.3,.3),diag(Pi)), t=1
Pt(S, Pi, t)

\[
\begin{bmatrix}
[1,.] & 0.76673640 & 0.02591818 & 0.02591818 & 0.1814272 \\
[2,.] & 0.02591818 & 0.76673640 & 0.02591818 & 0.1814272 \\
[3,.] & 0.02591818 & 0.02591818 & 0.76673640 & 0.1814272 \\
[4,.] & 0.02591818 & 0.02591818 & 0.02591818 & 0.9222455
\end{bmatrix}
\]
Joint Distribution for Two Matched Sequences

Description:
This function calculates the joint distribution function for two edge tree.

Usage:
Fmatrix(t1, t2, f0, Sx, Sy, Pix, Piy)

Arguments:
t1: represents the length from the tree root to the first node.
t2: represents the length from the tree root to the second node.
f0: the initial distribution for the four nucleotides.
Sx: a 4×4 symmetric matrix related to the first edge.
Sy: a 4×4 symmetric matrix related to the second edge.
Pix: a diagonal matrix for the stationary distribution of the first edge.
Piy: a diagonal matrix for the stationary distribution of the second edge.

Details:
This function calculates the joint distribution function for a two edge tree with different edge lengths, stationary distributions and different S matrices.
See Chapter 2 Example 2.1 for more details.

Value:
A 4×4 matrix containing the joint edges.

See Also:
gn, Smatrix.
Example:

\[f_0 = c(0.25, 0.25, 0.25, 0.25) \]
\[\Pi_1 = \text{diag}(c(0.2, 0.2, 0.2, 0.4)) \]
\[\Pi_2 = \text{diag}(c(0.1, 0.1, 0.1, 0.7)) \]
\[S_1 = \text{Smatrix}(c(0.2, 0.2, 0.2, 0.2, 0.2, 0.2), \text{diag}(\Pi_1)) \]
\[S_2 = \text{Smatrix}(c(0.3, 0.3, 0.3, 0.3, 0.3, 0.3), \text{diag}(\Pi_2)) \]
\[\text{Fmatrix}(1, 0.5, f_0, S_1, S_2, \Pi_1, \Pi_2) \]

\[
\begin{array}{cccc}
[1,] & [2,] & [3,] & [4,] \\
[1,] & 0.18732907 & 0.01115705 & 0.01115705 & 0.03129337 \\
[2,] & 0.01115705 & 0.18732907 & 0.01115705 & 0.03129337 \\
[3,] & 0.01115705 & 0.01115705 & 0.18732907 & 0.03129337 \\
[4,] & 0.01946303 & 0.01946303 & 0.01946303 & 0.21880130 \\
\end{array}
\]
Joint Distribution for K Matched Sequences

Description:
This function calculates the joint distribution array for K matched sequences.

Usage:
$\text{gn}(\theta, \text{merge2})$

Arguments:
θ: a vector of variables containing the following parameters in this order:
1. the first three parameters from π_X vector,
2. the first three parameters from π_Y vector,
3. the first three parameters from f_0 vector,
4. the six off-diagonal free parameters in the S matrix,
5. a scalar ρ,
6. a vector of lengths containing $K - 2$ values.

merge2: a $(K - 1) \times 2$ matrix describing the tree topology.

Details:
This function calculates the joint distribution array for a tree with K matched sequences. It uses the following functions: P_t, F_{matrix} and S_{matrix}.

See Chapter 2 Section 2.6.2 for more details.

Value:
A 4^K array containing the joint distribution for the K edges.

See Also:
F_{matrix}, P_t, S_{matrix}.
Example:
merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)
theta=c(rep(.25,3), rep(.25,3),rep(.25,3), c(.2,.35,.79,.01,.93,.47),
3,.1,.5,.8)
gn(theta, merge2)
Note: This will give 4^5 array.
Joint Distribution for K Matched Sequences (2)

Description:
This function calculates the joint distribution array for K matched sequences.

Usage:
gn2(theta, merge2)

Arguments:
theta: is a vector of variables containing the following parameters in this order:
1. the first three parameters from π_X vector,
2. the first three parameters from π_Y vector,
3. the first three parameters from f_0 vector,
4. the six off-diagonal free parameters in the S matrix,
5. a $(K-1) \times 2$ matrix contains the rate at each edge of the K matched sequences.

merge2: a $(K-1) \times 2$ matrix describing the tree topology.

Details:
This function calculates the joint distribution array for a tree with K matched sequences. It uses the following functions: Pt, Fmatrix and Smatrix.

See Chapter 2 Section 2.6.3 for more details.

Value:
A 4^K array containing the joint distribution for the K edges.

See Also:
Fmatrix, Pt, Smatrix.
Example:
merge2 = matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)
rho2 = matrix(c(.3,.5,.3,.2,.3,.5,.8,2.7),4,2)
theta = c(rep(.25,3), rep(.25,3),rep(.25,3), rep(.2,.35,.79,.01,.93,.47),rho2)
 gn2(theta, merge2)
Note: This will give 4^5 array.
Generating Samples from a Multinomial Distribution

Description:
Generating random DNA samples from a multinomial distribution.

Usage:
Ntml(n, Ft)

Arguments:
n: sample size
Ft: a 4^K array, containing the joint distribution probabilities for K matched sequences.

Details:
This function generates a 4^K DNA array from a multinomial distribution. It depends on the sample size we need to generate and the 4^K joint distribution array of K matched sequences.
See Chapter 3 Section 3.2 for more details.

Value:
A 4^K observed divergence array.

See Also:
simemb, simapp, gn3sim, gn, gn2, Fmatrix.

Example:
merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)
theta=c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),
3,.1,.5,.8)
F1=gn(theta,merge2)
Ntml(1000, F1)

Note: This will give a 4^5 observed divergence array.
Generating Random DNA Samples using an Embedded Markov Chain

Description:
This function generates random DNA samples using embedded chain.

Usage:
simemb(theta, seq Length, merge2)

Arguments:
theta: is a vector of variables containing the following parameters in this order:
1. the first three parameters from \(\pi_X \) vector,
2. the first three parameters from \(\pi_Y \) vector,
3. the first three parameters from \(f_0 \) vector,
4. the six off-diagonal free parameters in the \(S \) matrix,
5. a scalar \(\rho \),
6. a vector of lengths containing \(K - 2 \) values.

merge2: a \((K - 1) \times 2 \) matrix describing the tree topology.

seqlength: the length of sequences we need to generate.

Details:
This function generates \(4^K \) DNA array using embedded Markov chain. It depends on a set of variables theta, the sequence length and a merge matrix describing the tree topology.

See Chapter 3 Section 3.3 for more details.

Value:
A \(n \times K \) observed divergence matrix.

See Also:
Ntml, simapp, gn3sim, gn, gn2, Fmatrix.
Example:
theta=\(c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),
3,.1,.5,.8))\)
n=1000
merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)
simemb(theta, n, merge2)
Note: This will give 4\(^5\) observed divergence array.
Generating Random DNA Samples using the Rambaut and Grassly Method

Description:
This function generates random DNA samples using Rambaut and Grassly method.

Usage:
gn3sim(theta, seq Length, merge2)

Arguments:
theta: a vector of variables containing the following parameters in this order:
1. the first three parameters from \(\pi_X \) vector,
2. the first three parameters from \(\pi_Y \) vector,
3. the first three parameters from \(f_0 \) vector,
4. the six off-diagonal free parameters in the \(S \) matrix,
5. a scalar \(\rho \),
6. a vector of lengths containing \(K - 2 \) values.
merge2: a \((K - 1) \times 2\) matrix describing the tree topology.
seqLength: the length of sequences we need to generate.

Details:
This function generates a \(4^K \) DNA array using Rambaut and Grassly, (1997) method. It depends on a set of variables theta, the sequence length and a merge matrix describing the tree topology.
See Chapter 3 Section 3.3.1 for more details.

divergence array.

Value:
A \(n \times K \) observed divergence matrix.

See Also:
Ntml, simapp, simemb, gn, gn2, Fmatrix.
Example:
theta=(c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),
3,.1,.5,.8))
n=1000
merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)
 gn3sim(theta, n, merge2)
Note: This will give 4^b observed divergence array.
Generating Random DNA Samples using an Approximation Method

Description:
This function generates random DNA samples using an approximation method.

Usage:
simapp(theta, seq Length, merge2)

Arguments:
theta: a vector of variables containing the following parameters in this order:
1. the first three parameters from π_X vector,
2. the first three parameters from π_Y vector,
3. the first three parameters from f_0 vector,
4. the six off-diagonal free parameters in the S matrix,
5. a scalar ρ,
6. a vector of lengths containing $K - 2$ values.
merge2: a $(K - 1) \times 2$ matrix describing the tree topology.
seqlength: the length of sequences we need to generate.

Details:
This function generates a 4^K DNA array using an approximation method. It depends on a set of variables theta, the sequence length and a merge matrix describing the tree topology. See Chapter 3 Section 3.4 for more details.

Value:
A $n \times K$ observed divergence matrix.

See Also:
Ntml, simemb, gn3sim, gn, gn2, Fmatrix.
Example:
theta=(c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),
3,.1,.5,.8))
n=1000
merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)
simapp(theta, n, merge2)
Note: This will give 4^b observed divergence array.
Transforming 4^K Array to $m \times K$ Matrix

Description:
This function transfers any array to a matrix.

Usage:
artomat(Ft)

Arguments:
Ft: a 4^K array, containing the observed divergent frequencies for K matched sequences.

Details:
This function transfers any 4^K array containing the observed divergent frequencies of K matched sequences to an $m \times K$ matrix, where m is the sum of the frequencies in the 4^K observed divergence array.

See Chapter 3, Example 3.1 for more details.

Value:
An $m \times K$ matrix, where m is the sum of the frequencies in the 4^K divergence

See Also:
gn2, gn, Fmatrix.

Example:
F1=gn(c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47), 3,.1,.5,.8))
N1=Ntml(1000,F1)
artomat(N1)

Note: This will give 1000×5 matrix.
Paralinear Distances

Description:
This function calculates the paralinear distance between K matched DNA sequences.

Usage:
Distance(F4)

Arguments:
F4: a 4^K array containing the joint distribution array $F(t)$ or the observed array N.

Details:
This function calculates the paralinear distances between K matched DNA sequences, depending on the joint distribution array for these K sequences or on the observed divergence array N.
See Chapter 5 Section 5.2 for more details.

Value:
A $K \times K$ symmetric matrix distances between the K sequences.

See Also:
gn2, gn, Fmatrix, Ntml.

Example:
merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)
theta=c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47), 3,1,.5,.8)
F1=gn(theta,merge2)
Distance(F1)
[1,] 0.000 0.825 6 6.6 5.500 5.500
[2,] 0.825 0.000 6 6.6 5.500 5.500
[3,] 6.600 6.600 0 0.0 5.500 5.500
[4,] 5.500 5.500 5 5. 0.000 1.375
[5,] 5.500 5.500 5 5 1.375 0.000

18
Test for Symmetry of Matched DNA Sequences

Description:
This function tests for symmetry between all the pairs of K matched DNA sequences.

Usage:
TEST2(Nt)

Arguments:
Nt: a 4^K array containing the observed divergence array N.

Details:
This function calculates Bowker’s test for symmetry, Stuart’s test for marginal symmetry and the test for internal symmetry. It depends on the 4^K observed divergence array N.

See Chapter 4 Sections 4.2, 4.3 and 4.4, for more details.

Value:
A list of three lower triangle matrices:
1. the lower triangle of the matrix contains $(K - 1) \times (K - 1)$ values shows Bowker’s test between all the possible pairs of the K sequences.
2. the lower triangle of the matrix contains $(K - 1) \times (K - 1)$ values shows Stuart’s test between all the possible pairs of the K sequences.
3. the lower triangle of the matrix contains $(K - 1) \times (K - 1)$ values shows the internal test between all the possible pairs of the K sequences.

See Also:
Ntml, simapp, simemb, TEST3.
Example:
merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)
theta=c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),
3,.1,.5,.8)
F1=gn(theta,merge2)
N1=Ntml(1000,F1)
TEST2(N1)
$Bowker.test
 1 2 3 4
 2 0.5757
 3 0.1403 0.7638
 4 0.3291 0.7729 0.7252
 5 0.8371 0.9933 0.8939 0.4990

$Stuart.test
 1 2 3 4
 2 0.4860
 3 0.3978 0.7549
 4 0.2637 0.4012 0.7752
 5 0.7695 0.9763 0.9110 0.2742

$Internal.test
 1 2 3 4
 2 0.5101
 3 0.0825 0.5402
 4 0.4022 0.9520 0.4694
 5 0.6507 0.9088 0.6306 0.6888
Overall Test for Marginal Symmetry

Description:
This function tests for symmetry between \(K \) matched DNA sequences.

Usage:
TEST3(Nt)

Arguments:
Nt: a \(4^K \) array containing the observed divergence array \(N \).

Details:
This function calculates overall test for marginal symmetry. It depends on the \(4^K \) observed divergence array \(N \).
See Chapter 4 Sections 4.5, for more details.

Value:
A single value gives the overall test for marginal symmetry between \(K \) matched sequences.

See Also:
Ntml, simapp, simemb, TEST2.

Example:
merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)
theta=c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),
3,.1,.5,.8)
F1=gn(theta,merge2)
N1=Ntml(1000,F1)
TEST3(N1)
[1] 9.217612
Negative Log Likelihood Ratio

Description:
This function calculates log likelihood ratio value.

Usage:
likelihood(thetast,fobs,merge2)

Arguments:
- thetast: a starting values for the parameter we need to estimate.
- fobs: the 4^K joint distribution array for K edge tree.
- merge2: a $(K - 1) \times 2$ matrix describing the tree topology.

Details:
This function calculates the log likelihood ratio value for $F(t)$. It needs a vector of starting values for the parameters estimate, 4^K observed divergence array and merge matrix describing the tree topology.

See Chapter 6 Sections 6.2, for more details.

Value:
The value of the log likelihood ratio.

See Also:
- gn, gn2.

Example:
merge2=matrix(c(-1,-4,-3.2,-2,-5,1,3), 4, 2)
theta=c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),
3,.1,.5,.8)
F1=gn(theta,merge2)
likelihood(theta,F1,merge2)
[1] 0.00