
Explaining Variational Approximations

J. T. ORMEROD and M. P. WAND

Variational approximations facilitate approximate inference
for the parameters in complex statistical models and provide
fast, deterministic alternatives to Monte Carlo methods. How-
ever, much of the contemporary literature on variational ap-
proximations is in Computer Science rather than Statistics, and
uses terminology, notation, and examples from the former field.
In this article we explain variational approximation in statistical
terms. In particular, we illustrate the ideas of variational approx-
imation using examples that are familiar to statisticians.
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1. INTRODUCTION

Variational approximations is a body of deterministic tech-
niques for making approximate inference for parameters in
complex statistical models. It is now part of mainstream Com-
puter Science methodology, where it enjoys use in elaborate
problems such as speech recognition, document retrieval, and
genetic linkage analysis (Jordan 2004). Summaries of contem-
porary variational approximations can be found in the works
of Jordan et al. (1999), Jordan (2004), Titterington (2004), and
Bishop (2006, chap. 10). In 2008, a variational approximation-
based software package named Infer.NET (Minka et al. 2009)
emerged with claims of being able to handle a wide variety of
statistical problems.

The name ‘variational approximations’ has its roots in the
mathematical topic known as variational calculus. Variational
calculus is concerned with the problem of optimizing a func-
tional over a class of functions on which that functional de-
pends. Approximate solutions arise when the class of functions
is restricted in some way—usually to enhance tractability.

Despite their statistical overtones, variational approximations
are not widely known within the statistical community. In par-
ticular, they are overshadowed by Monte Carlo methods, es-
pecially Markov chain Monte Carlo (MCMC), for performing
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approximate inference, as well as Laplace approximation meth-
ods. Variational approximations are a much faster alternative to
MCMC, especially for large models, and are a richer class of
methods than the Laplace variety. They are, however, limited
in their approximation accuracy—as opposed to MCMC which
can be made arbitrarily accurate through increases in the Monte
Carlo sample sizes. In the interest of brevity, we will not discuss
the quality of variational approximations in any detail. Jordan
(2004) and Titterington (2004) pointed to some relevant litera-
ture on variational approximation accuracy.

In the statistics literature, variational approximations are be-
ginning to have a presence. Examples include the articles by
Teschendorff et al. (2005), McGrory and Titterington (2007),
and McGrory et al. (2009) on new variational approximation
methodology for particular applications, and Hall, Humphreys,
and Titterington (2002) and Wang and Titterington (2006) on
the statistical properties of estimators obtained via variational
approximation.

In this article we explain variational approximation in terms
that are familiar to a statistical readership. Most of our expo-
sition involves working through several illustrative examples,
starting with what is perhaps the most basic: inference from a
Normal random sample. Other contexts that are seen to ben-
efit from variational approximation include Bayesian general-
ized linear models, Bayesian linear mixed models, and non-
Bayesian generalized linear mixed models. It is anticipated that
a statistically literate reader who works through all of the ex-
amples will have gained a good understanding of variational
approximations.

Variational approximations can be useful for both likelihood-
based and Bayesian inference. However, their use in the litera-
ture is greater for Bayesian inference where intractable calculus
problems abound. Hence, most of our description of variational
approximations is for Bayesian inference. It is also worth not-
ing that situations in which variational approximations are use-
ful closely correspond to situations where MCMC is useful.

Section 2 explains the most common variant of variational
approximation, which we call the density transform approach.
A different type, the tangent transform approach, is explained
in Section 3. Sections 2 and 3 focus exclusively on Bayesian
inference. In Section 4 we point out that the same ideas transfer
to frequentist contexts. Some concluding remarks are made in
Section 5.

1.1 Definitions

Integrals without limits or subscripts are assumed to be over
the entire space of the integrand argument. If P is a logical
condition, then I (P ) = 1 if P is true and I (P ) = 0 if P is
false. We use � and φ to denote the standard normal distribu-
tion function and density function, respectively. The Gamma
function, denoted by �, is given by �(x) = ∫∞

0 ux−1e−u du
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and the Digamma function, denoted by ψ , is given by ψ(x) =
d
dx

log�(x).
Column vectors with entries consisting of subscripted vari-

ables are denoted by a boldfaced version of the letter for that
variable. Round brackets will be used to denote the entries of
column vectors. For example, x = (x1, . . . , xn) denotes an n×1
vector with entries x1, . . . , xn. Scalar functions applied to vec-
tors are evaluated element-wise. For example,

exp(a1, a2, a3) ≡ (exp(a1), exp(a2), exp(a3)).

Similarly, (a1, a2, a3)
(b1,b2,b3) ≡ (a

b1
1 , a

b2
2 , a

b3
3 ). The element-

wise product of two matrices A and B is denoted by A � B.
We use 1d to denote the d × 1 column vector with all entries
equal to 1. The norm of a column vector v, defined to be

√
vT v,

is denoted by ‖v‖. For a d × 1 vector a, we let diag(a) denote
the d × d diagonal matrix containing the entries of a along the
main diagonal. For a d ×d square matrix A, we let diagonal(A)

denote the d × 1 vector containing the diagonal entries of A.
For square matrices A1, . . . ,Ar , we let blockdiag(A1, . . . ,Ar )

denote the block diagonal matrix, with ith block equal to Ai .
The density function of a random vector u is denoted

by p(u). The conditional density of u given v is denoted by
p(u|v). The covariance matrix of u is denoted by Cov(u).
A d × 1 random vector x has a Multivariate Normal distrib-
ution with parameters μ and �, denoted by x ∼ N(μ,�), if its
density function is

p(x) = (2π)−d/2|�|−1/2 exp

{
−1

2
(x − μ)T �−1(x − μ)

}
.

A random variable x has an Inverse Gamma distribution with
parameters A,B > 0, denoted by x ∼ IG(A,B), if its density
function is p(x) = BA�(A)−1x−A−1e−B/x, x > 0. A random
vector x = (x1, . . . , xK) has a Dirichlet distribution with para-
meter vector α = (α1, . . . , αK), where each αk > 0, if its den-
sity function is

p(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
�

(
K∑

k=1

αk

)/ K∏
k=1

�(αk)

}
K∏

k=1

x
αk−1
k ,

if
K∑

k=1

xk = 1

0, otherwise.

We write x ∼ Dirichlet(α). If yi has distribution Di for
each 1 ≤ i ≤ n, and the yi are independent, then we write

yi
ind.∼ Di .
It is helpful, although not necessary, to work with directed

acyclic graph (DAG) depictions of Bayesian statistical models.
One reason is the localness of the calculations that arise from
the Markov blanket result given in Section 2.2.1. The nodes
of the DAG correspond to random variables or random vectors
in the Bayesian model, and the directed edges convey condi-
tional independence. Because of this connection with Bayesian
(hierarchical) models, DAGs with random nodes are known as
Bayesian networks in the Computer Science literature. Figure 1

Figure 1. DAGs corresponding to the Bayesian Poisson regression
model (1). Left: the large nodes correspond to scalar random variables
in the model. The smaller nodes correspond to constants and the ob-
served data are shaded. Right: abbreviated DAG for the same model.
The constants are suppressed and the nodes u and y correspond to ran-
dom vectors containing the Ui and yij , respectively.

provides DAGs corresponding to the Bayesian Poisson mixed
model:

Yij |Ui
ind.∼ Poisson(eβ0+Ui ), i = 1,2,3; j = 1,2,

Ui |σ 2
U

ind.∼ N(0, σ 2
U), β0 ∼ N

(
0, σ 2

β0

)
, (1)

σ 2
U ∼ IG(A,B) for constants σ 2

β0
,A,B > 0.

The DAG on the left side of Figure 1 has a separate node for
each scalar random variable and each constant. On the right
side the constant nodes are suppressed and two of the nodes
correspond to the random vectors u ≡ (U1,U2,U3) and y =
(Y11, . . . , Y32).

2. DENSITY TRANSFORM APPROACH

The density transform approach to variational approximation
involves approximation of posterior densities by other densities
for which inference is more tractable. The approximations are
guided by the notion of Kullback–Leibler divergence, which we
now explain.

2.1 Kullback–Leibler Divergence

Consider a generic Bayesian model with parameter vector
θ ∈ 
 and observed data vector y. Bayesian inference is based
on the posterior density function

p(θ |y) = p(y, θ)

p(y)
.

The denominator p(y) is known as the marginal likelihood (or
model evidence in the Computer Science literature) and forms
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the basis of model comparison via Bayes factors (e.g., Kass and
Raftery 1995). It should be noted that, in this Bayesian context,
p(y) is not a likelihood function in the usual sense. Through-
out this section we assume that y and θ are continuous random
vectors. The discrete case has a similar treatment, but with sum-
mations rather than integrals.

Let q be an arbitrary density function over 
. Then the log-
arithm of the marginal likelihood satisfies

logp(y) = logp(y)

∫
q(θ) dθ =

∫
q(θ) logp(y) dθ

=
∫

q(θ) log

{
p(y, θ)/q(θ)

p(θ |y)/q(θ)

}
dθ

=
∫

q(θ) log

{
p(y, θ)

q(θ)

}
dθ

+
∫

q(θ) log

{
q(θ)

p(θ |y)

}
dθ

≥
∫

q(θ) log

{
p(y, θ)

q(θ)

}
dθ . (2)

The inequality arises from the fact that∫
q(θ) log

{
q(θ)

p(θ |y)

}
dθ ≥ 0

for all densities q, with equality if and only if

q(θ) = p(θ |y) almost everywhere (3)

(Kullback and Leibler 1951). The integral in (3) is known as the
Kullback–Leibler divergence (also known as Kullback–Leibler
distance) between q and p(·|y). From (2), it follows immedi-
ately that

p(y) ≥ p(y;q),

where the q-dependent lower bound on the marginal likelihood
is given by

p(y;q) ≡ exp
∫

q(θ) log

{
p(y, θ)

q(θ)

}
dθ . (4)

Note that the lower bound p(y;q) can also be derived more
directly using Jensen’s inequality, but the above derivation has
the advantage of quantifying the gap between p(y) and p(y;q).

The essence of the density transform variational approach
is approximation of the posterior density p(θ |y) by a q(θ)

for which p(y;q) is more tractable than p(y). Tractability is
achieved by restricting q to a more manageable class of den-
sities, and then maximizing p(y;q) over that class. According
to (2), maximization of p(y;q) is equivalent to minimization of
the Kullback–Leibler divergence between q and p(·|y).

The most common restrictions for the q density are:

(a) q(θ) factorizes into
∏M

i=1 qi(θ i ), for some partition
{θ1, . . . , θM} of θ .

(b) q is a member of a parametric family of density func-
tions.

In the case of (a), note that the product form is the only assump-
tion being made. Hence (a) represents a type of nonparametric
restriction. Restriction (a) is also known as mean field approxi-
mation and has its roots in Physics (e.g., Parisi 1988). The term
variational Bayes has become commonplace for approximate
Bayesian inference under product density restrictions.

Depending on the Bayesian model at hand, both restric-
tions can have minor or major impacts on the resulting infer-
ence. For example, if p(θ1, θ2|y) is such that θ1 and θ2 have
a high degree of dependence, then the restriction q(θ1, θ2) =
q1(θ1)q2(θ2) will lead to a degradation in the resulting in-
ference. Conversely, if the posterior dependence between θ1
and θ2 is weak, then the product density restriction could lead
to very accurate approximate inference. Further discussion on
this topic, including references, may be found in section 3.2 of
the article by Titterington (2004).

2.2 Product Density Transforms

Restriction of q to a subclass of product densities gives rise
to explicit solutions for each product component in terms of the
others. These, in turn, lead to an iterative scheme for obtaining
the simultaneous solutions. The solutions rely on the following
result, which we call Result 1. Note that Result 1 follows imme-
diately from (2) and (3) above. However, it is useful to present
the result for general random vectors.

Result 1. Let u and v be two continuous random vectors with
joint density function p(u,v). The maximum value of∫

q(u) log

{
p(u,v)

q(u)

}
du

over all density functions q is attained by q∗(u) = p(u|v).

Return now to the Bayesian model setting of Section 2.1 and
suppose that q is subject to the product restriction (a). Then

logp(y;q) =
∫ M∏

i=1

qi(θ i )

{
logp(y, θ)

−
M∑
i=1

logqi(θ i )

}
dθ1 · · · dθM

=
∫

q1(θ1)

{∫
logp(y, θ)q2(θ2) · · ·

× qM(θM)dθ2 · · · dθM

}
dθ1

−
∫

q1(θ1) logq1(θ1) dθ1

+ terms not involving q1.

Define the new joint density function p̃(y, θ1) by

p̃(y, θ1) ≡ exp
∫

logp(y, θ)q2(θ2) · · ·qM(θM)dθ2 · · · dθM/∫ ∫ {
exp
∫

logp(y, θ)q2(θ2) · · ·

× qM(θM)dθ2 · · · dθM

}
dθ1 dy.
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Algorithm 1 Iterative scheme for obtaining the optimal densi-
ties under product density restriction (a). The updates are based
on the solutions given at (5).
Initialize: q∗

2 (θ2), . . . , q
∗
M(θM).

Cycle:

q∗
1 (θ1) ← exp{E−θ1 logp(y, θ)}∫

exp{E−θ1 logp(y, θ)}dθ1
,

...

q∗
M(θM) ← exp{E−θM

logp(y, θ)}∫
exp{E−θM

logp(y, θ)}dθM

until the increase in p(y;q) is negligible.

Then

logp(y;q) =
∫

q1(θ1) log

{
p̃(y, θ1)

q(θ1)

}
dθ1

+ terms not involving q1.

By Result 1, the optimal q1 is then

q∗
1 (θ1) = p̃(θ1|y) ≡ p̃(y, θ1)∫

p̃(y, θ1) dθ1

∝ exp

{∫
logp(y, θ)q2(θ2) · · ·qM(θM)dθ2 · · · dθM

}
.

Repeating the same argument for maximizing logp(y;q) over
each of q2, . . . , qM leads to the optimal densities satisfying:

q∗
i (θ i ) ∝ exp

{
E−θ i

logp(y, θ)
}
, 1 ≤ i ≤ M, (5)

where E−θ i
denotes expectation with respect to the density∏

j �=i qj (θ j ). The iterative scheme, labeled Algorithm 1, can
be used to solve for the q∗

i .
Convexity properties can be used to show that convergence

to at least local optima is guaranteed (Boyd and Vandenberghe
2004). If conjugate priors are used, then the q∗

i belong to recog-
nizable density families and the q∗

i updates reduce to updat-
ing parameters in the q∗

i family (e.g., Winn and Bishop 2005).
Also, in practice it is common to monitor convergence using
log{p(y;q)} rather than p(y;q). Sections 2.2.2–2.2.4 provide
illustrations.

2.2.1 Connection With Gibbs Sampling

It is easily shown that a valid alternative expression for the
q∗
i (θ i ) is

q∗
i (θ i ) ∝ exp

{
E−θ i

logp(θ i |rest)
}
, (6)

where

rest ≡ {y, θ1, . . . , θ i−1, θ i+1, . . . , θM}
is the set containing the random vectors in the model, apart
from θ i . The distributions θ i |rest, 1 ≤ i ≤ M , are known, in the
MCMC literature, as the full conditionals. This form of the op-
timal densities reveals a link with Gibbs sampling (e.g., Casella
and George 1992) which involves successive draws from these
full conditionals. Indeed, it becomes apparent from the upcom-

ing examples that the product density transform approach leads
to tractable solutions in situations where Gibbs sampling is also
viable.

The DAG viewpoint of Bayesian models also gives rise to a
useful result arising from the notion of Markov blankets. The
Markov blanket of a node is the set of children, parents, and
co-parents of that node. The result

p(θ i |rest) = p(θ i |Markov blanket of θ i ) (7)

(Pearl 1988) means that determination of the required full con-
ditionals involves localized calculations on the DAG. It fol-
lows from this fact and expression (6) that the product den-
sity approach involves a series of local operations. In Com-
puter Science, this has become known as variational message
passing (Winn and Bishop 2005). See the example in Sec-
tion 2.2.3 for illustration of (7) and localization of variational
updates.

2.2.2 Normal Random Sample

Our first and most detailed illustration of variational approx-
imation involves approximate Bayesian inference for the most
familiar of statistical settings: a random sample from a Normal
distribution. Specifically, consider

Xi |μ,σ 2 ind.∼ N(μ,σ 2)

with priors

μ ∼ N(μμ,σ 2
μ) and σ 2 ∼ IG(A,B).

The product density transform approximation to p(μ,σ 2|x) is

q(μ,σ 2) = qμ(μ)qσ 2(σ
2). (8)

The optimal densities take the form

q∗
μ(μ) ∝ exp

[
Eσ 2{logp(μ|σ 2,x)}] and

q∗
σ 2(σ

2) ∝ exp
[
Eμ{logp(σ 2|μ,x)}],

where x = (X1, . . . ,Xn). Standard manipulations lead to the
full conditionals being

μ|σ 2,x ∼ N

(
nX/σ 2 + μμ/σ 2

μ

n/σ 2 + 1/σ 2
μ

,
1

n/σ 2 + 1/σ 2
μ

)
and

σ 2|μ,x ∼ IG

(
A + n

2
,B + 1

2
‖x − μ1n‖2

)
,

where X = (X1 + · · · + Xn)/n is the sample mean. The second
of these, combined with (6), leads to

q∗
σ 2(σ

2) ∝ expEμ

{
−
(

A + n

2
+ 1

)
log(σ 2)

−
(

B + 1

2
‖x − μ1n‖2

)/
σ 2
}

∝ (σ 2)−(A+n/2+1)

× exp

{
−
(

B + 1

2
Eμ‖x − μ1n‖2

)/
σ 2
}
.
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We recognize this as a member of the Inverse Gamma family:

q∗
σ 2(σ

2) is IG

(
A + n

2
,B + 1

2
Eμ‖x − μ1n‖2

)
.

Note that Eμ‖x−μ1n‖2 = ‖x−Eμ(μ)1n‖2 +nVarμ(μ) where

Eμ(μ) =
∫ ∞

−∞
μ0qμ(μ0) dμ0 and

Varμ(μ) =
∫ ∞

−∞
{μ0 − Eμ(μ)}2qμ(μ0) dμ0

are the mean and variance of the qμ density. Similar arguments
lead to

q∗
μ(μ) is N

(
nXEσ 2(1/σ 2) + μμ/σ 2

μ

nEσ 2(1/σ 2) + 1/σ 2
μ

,

1

nEσ 2(1/σ 2) + 1/σ 2
μ

)
, (9)

where Eσ 2(1/σ 2) = ∫∞
0 (1/σ 2

0 )qσ 2(σ 2
0 ) dσ 2

0 . When qσ 2 = q∗
σ 2

we get

Eσ 2(1/σ 2) = A + n/2

B + 1
2 {‖x − Eμ(μ)1n‖2 + nVarμ(μ)} . (10)

It is now apparent that the functional forms of the optimal densi-
ties q∗

μ and q∗
σ 2 are Normal and Inverse Gaussian, respectively,

but the parameters need to be determined from relationships
such as (9) and (10). Let

μq(μ) ≡ Eμ(μ), σ 2
q(μ) ≡ Varμ(μ), and

Bq(σ 2) ≡
(

A + n

2

)/
Eσ 2(1/σ 2).

Using the relationships established at (9) and (10) we arrive at
Algorithm 2, which can be used to obtain the optimal values of
μq(μ), σ 2

q(μ), and Bq(σ 2).
Note that logp(x;q) admits the explicit expression:

logp(x;q) = 1

2
− n

2
log(2π) + 1

2
log
(
σ 2

q(μ)/σ
2
μ

)
− (μq(μ) − μμ)2 + σ 2

q(μ)

2σ 2
μ

Algorithm 2 Iterative scheme for obtaining the parameters in
the optimal densities q∗

μ and q∗
σ 2 in the Normal random sample

example.
Initialize: Bq(σ 2) > 0.
Cycle:

σ 2
q(μ) ←

{
n

(
A + n

2

)/
Bq(σ 2) + 1/σ 2

μ

}−1

,

μq(μ) ←
{
nX

(
A + n

2

)/
Bq(σ 2) + μμ/σ 2

μ

}
σ 2

q(μ),

Bq(σ 2) ← B + 1

2

(∥∥x − μq(μ)1n

∥∥2 + nσ 2
q(μ)

)
until the increase in p(x;q) is negligible.

+ A log(B) −
(

A + n

2

)
log
(
Bq(σ 2)

)
+ log�

(
A + n

2

)
− log�(A).

However, within each iteration of Algorithm 2, this expression
is valid only after each of the parameter updates has been made.

Upon convergence to μ∗
q(μ), (σ

2
q(μ))

∗, and B∗
q(σ 2)

, the ap-
proximations to the individual posterior densities are

p(μ|x) ≈ {2π
(
σ 2

q(μ)

)∗}−1/2 exp
[−(μ − μ∗

q(μ)

)2
/
{
2
(
σ 2

q(μ)

)∗}]
and

p(σ 2|x) ≈
(B∗

q(σ 2)
)A+n/2

�(A + n
2 )

(σ 2)−A−n/2−1

× exp
(−B∗

q(σ 2)
/σ 2), σ 2 > 0.

Figure 2 illustrates these variational approximations for a sim-
ulated sample of size n = 20 from the N(100,225) density. For
priors we used μ ∼ N(0,108) and σ 2 ∼ IG( 1

100 , 1
100 ), corre-

sponding to vague beliefs about the mean and variance, and
such that the prior mean of the precision, 1/σ 2, is unity. The
initial value for the iterative scheme is Bq(σ 2) = 1. The exact
posterior densities, obtained via highly accurate quadrature, are
also displayed. Note that, in this example, convergence is very
rapid and the accuracy of the variational approximation is quite
good.

2.2.3 Linear Mixed Model

The Bayesian version of the Gaussian linear mixed model
takes the general form

y|β,u,G,R ∼ N(Xβ + Zu,R), u|G ∼ N(0,G), (11)

where y is an n × 1 vector of response variables, β is a p × 1
vector of fixed effects, u is a vector of random effects, X and Z
are corresponding design matrices, and G and R are covariance
matrices. While several possibilities exist for G and R (e.g.,
McCulloch, Searle, and Neuhaus 2008), we restrict attention
here to variance component models with

G = blockdiag
(
σ 2

u1IK1 , . . . , σ
2
urIKr

)
and

(12)
R = σ 2

ε I.

We also impose the conjugate priors:

β ∼ N(0, σ 2
β I),

σ 2
u� ∼ IG(Au�,Bu�), 1 ≤ � ≤ r, (13)

σ 2
ε ∼ IG(Aε,Bε)

for some σ 2
β ,Au�,Bu�,Aε,Bε > 0. Figure 3 is the DAG corre-

sponding to model (11)–(13).
Somewhat remarkably, a tractable solution arises for the two-

component product

q(β,u, σ 2
u1, . . . , σ

2
ur , σ

2
ε )

= qβ,u(β,u)qσ 2(σ
2
u1, . . . , σ

2
ur , σ

2
ε ). (14)

144 General



Figure 2. Results from applying the product density variational approximation to a simulated Normal random sample. The exact posterior
density functions are added for comparison. The vertical dotted line in the posterior density plots corresponds to the true value of the parameter.

Application of (5) leads to the optimal densities taking the form

q∗
β,u(β,u) is a Multivariate Normal density function,

q∗
σ 2 is a product of r + 1 Inverse Gamma density functions.

It should be stressed that these forms are not imposed at the
outset, but arise as optimal solutions for model (11)–(13) and
product restriction (14). Moreover, the factorization of q∗

σ 2 into
r + 1 separate components is also a consequence of (5) for
the current model, rather than an imposition. Bishop (2006,
sec. 10.2.5) explained how these induced factorizations follow
from the structure of the DAG and d-separation theory (Pearl
1988). This example also benefits from the Markov blanket re-
sult (7) described in Section 2.2.1 and Figure 3. For example,
the full conditional density of σ 2

u1 is

p(σ 2
u1|rest) = p(σ 2

u1|Markov blanket of σ 2
u1)

= p(σ 2
u1|u, σ 2

u2, . . . , σ
2
ur).

Hence, determination of q∗
σ 2

u1
requires calculations involving

only the subset of the DAG consisting of u and the variance
parameters.

Let μq(β,u) and �q(β,u) be the mean and covariance ma-
trix for the q∗

β,u density and set C ≡ [X Z]. For the q∗
σ 2

Figure 3. DAG corresponding to the model (11)–(13).

density the shape parameters for the r + 1 components can
be shown to be deterministic: Au1 + 1

2K1, . . . ,Aur + 1
2Kr ,

Aε + 1
2n. Let Bq(σ 2

u1)
, . . . ,Bq(σ 2

ur )
,Bq(σ 2

ε ) be the accompanying

rate parameters. The relationships between (μq(β,u),�q(β,u))

and (Bq(σ 2
u1)

, . . . ,Bq(σ 2
ur )

,Bq(σ 2
ε )) enforced by (5) lead to the it-

erative scheme in Algorithm 3.
In this case logp(y;q) takes the form

logp(y;q)

= 1

2

(
p +

r∑
�=1

K�

)
− n

2
log(2π) − p

2
log(σ 2

β )

+ 1

2
log
∣∣�q(β,u)

∣∣− 1

2σ 2
β

{∥∥μq(β)

∥∥2 + tr
(
�q(β)

)}
+ Aε log(Bε) −

(
Aε + n

2

)
log
(
Bq(σ 2

ε )

)
+ log�

(
Aε + n

2

)
− log�(Aε)

+
r∑

�=1

{
Au� log(Bu�) −

(
Au� + K�

2

)
log
(
Bq(σ 2

u�)

)
+ log�

(
Au� + K�

2

)
− log�(Au�)

}
.

Note that, within each iteration of Algorithm 3, this expression
applies only after each of the parameter updates has been made.

Upon convergence to μ∗
q(β,u)

,�∗
q(β,u),B

∗
q(σ 2

u1)
, . . . ,B∗

q(σ 2
ur )

and B∗
q(σ 2

ε )
the approximate posteriors are:

p(β,u|y) ≈ the N(μ∗
q(β,u)

,�∗
q(β,u)) density function

and

p(σ 2
u1, . . . , σ

2
ur , σ

2
ε |y)

≈ product of the IG(Au� + 1
2K�,B

∗
q(σ 2

u�)
),1 ≤ � ≤ r,
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Algorithm 3 Iterative scheme for obtaining the parameters in the optimal densities q∗
β,u and q∗

σ 2 in the Bayesian
linear mixed model example.
Initialize: Bq(σ 2

ε ), Bq(σ 2
u1)

, . . . ,Bq(σ 2
ur )

> 0.

Cycle:

�q(β,u) ←
{

Aε + n
2

Bq(σ 2
ε )

CT C + blockdiag

(
σ−2

β Ip,
Au1 + 1

2K1

Bq(σ 2
u1)

IK1 , . . . ,
Aur + 1

2Kr

Bq(σ 2
ur )

IKr

)}−1

,

μq(β,u) ←
(

Aε + n
2

Bq(σ 2
ε )

)
�q(β,u)CT y,

Bq(σ 2
ε ) ← Bε + 1

2

{∥∥y − Cμq(β,u)

∥∥2 + tr
(
CT C�q(β,u)

)}
,

Bq(σ 2
u�)

← Bu� + 1

2

{∥∥μq(u�)

∥∥2 + tr
(
�q(u�)

)}
for 1 ≤ � ≤ r

until the increase in p(y;q) is negligible.

density functions together with the IG(Aε + 1
2n,B∗

q(σ 2
ε )

)

density function.

We now provide an illustration for Bayesian analysis of a
dataset involving longitudinal orthodontic measurements on 27
children (source: Pinheiro and Bates 2000). The data are avail-
able in the R computing environment (R Development Core
Team 2010) via the package nlme (Pinheiro et al. 2009), in
the object Orthodont. We entertained the random intercept
model

distanceij |Ui
ind.∼ N(β0 + Ui + β1ageij

+ β2malei , σ
2
ε ),

(15)
Ui |σ 2

u

ind.∼ N(0, σ 2
u ), 1 ≤ i ≤ 27,1 ≤ j ≤ 4,

βi
ind.∼ N(0, σ 2

β ), σ 2
u , σ 2

ε

ind.∼ IG(A,B),

where distanceij is the distance from the pituitary to the
pterygomaxillary fissure (mm) for patient i at time point j .
Similarly, ageij correspond to the longitudinal age values
in years and malei is an indicator of the ith child being
male. This fits into framework (11)–(12) with y containing
the distanceij measurement, X = [1,ageij ,malei], and
Z = I27 ⊗ 14 is an indicator matrix for the random intercepts.
We used the vague priors σ 2

β = 108, A = B = 1
100 and used

standardized versions of the distance and age data during the
fitting. The results were then converted back to the original
units. For comparison, we obtained 1 million samples from the
posteriors using MCMC (with a burn-in of length 5000) and,
from these, constructed kernel density estimate approximations
to the posteriors. For such a high Monte Carlo sample size we
would expect these MCMC-based approximations to be very
accurate.

Figure 4 shows the progressive values of logp(y;q) and the
approximate posterior densities obtained from applying Algo-
rithm 3. Once again, convergence of log{p(y;q)} to a maxi-
mum is seen to be quite rapid. The variational approximate pos-
terior densities are quite close to those obtained via MCMC,
and indicate statistical significance of all model parameters in

the sense that most of the posterior probability mass is away
from zero.

2.2.4 Probit Regression and the Use of Auxiliary Variables

As shown by Albert and Chib (1993), Gibbs sampling
for the Bayesian probit regression model becomes tractable
when a particular set of auxiliary variables is introduced. The
same trick applies to product density variational approximation
(Girolami and Rogers 2006; Consonni and Marin 2007), as we
now show.

The Bayesian probit regression model that we consider here
is

Yi |β0, . . . , βk

ind.∼ Bernoulli(�(β0 + β1x1i + · · · + βkxki)), 1 ≤ i ≤ n,

where the prior distribution on the coefficient vector β =
(β0, . . . , βk) takes the form β ∼ N(μβ ,�β). Letting X ≡
[1 x1i · · · xki]1≤i≤n, the likelihood can be written compactly
as

p(y|β) = �(Xβ)y{1n − �(Xβ)}1n−y, β ∼ N(μβ ,�β).

Introduce the vector of auxiliary variables a = (a1, . . . , an),
where

ai |β ind.∼ N((Xβ)i,1).

This allows us to write

p(yi |ai) = I (ai ≥ 0)yi I (ai < 0)1−yi , 1 ≤ i ≤ n.

In graphical model terms we are introducing a new node to the
graph, as conveyed by Figure 5. Expansion of the parameter set
from {β} to {a,β} is the key to achieving a tractable solution.

Consider the product restriction

q(a,β) = qa(a)qβ(β).
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Figure 4. Approximate posterior densities from applying the product density variational approximation to (11)–(13) for the orthodontic data.
‘Exact’ posterior densities, based on kernel density estimates of 1 million MCMC samples, are shown for comparison.

Then application of (5) leads to

q∗
a (a) =

[
n∏

i=1

{
I (ai ≥ 0)

�((Xμq(β))i)

}yi
{

I (ai < 0)

1 − �((Xμq(β))i)

}1−yi

]

× (2π)−n/2 exp

{
−1

2

∥∥a − Xμq(β)

∥∥2
}

and q∗
β(β) is the N(μq(β), (X

T X + �−1
β )−1) density function.

These optimal densities are specified up to the parameter vec-

Figure 5. Graphical representations of the probit regression model.
The left graph does not admit a tractable product density variational
approximation. The right graph overcomes this with the addition of an
auxiliary variable node.

tor μq(β) ≡ Eβ(β). We also need to work with the q-density
mean of the auxiliary variable vector μq(a) ≡ Ea(a). The itera-
tive scheme, Algorithm 4, emerges.

The logp(y;q) expression in this case is

logp(y;q) = yT log
{
�
(
Xμq(β)

)}
+ (1n − y)T log

{
1n − �

(
Xμq(β)

)}
− 1

2

(
μq(β) − μβ

)T
�−1

β

(
μq(β) − μβ

)
− 1

2
log |�βXT X + I|.

Algorithm 4 Iterative scheme for obtaining the parameters in
the optimal densities q∗

β and q∗
a in the Bayesian probit regres-

sion example.
Initialize: μq(a)(n × 1).
Cycle:

μq(β) ← (XT X + �−1
β )−1(XT μq(a) + �−1

β μβ

)
,

μq(a) ← Xμq(β) + φ(Xμq(β))

�(Xμq(β))
y{�(Xμq(β)) − 1n}1n−y

until the increase in p(y;q) is negligible.
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Upon convergence, the approximate posterior distribution of
the regression coefficients is

β|y approx.∼ N
(
μ∗

q(β), (X
T X + �−1

β )−1).
2.2.5 Finite Normal Mixture Model

Our last example of product density variational approxima-
tion is of great interest within both Statistics and Computer
Science: inference for finite mixture models. Let X1, . . . ,Xn

be a univariate sample that is modeled as a random sample
from a mixture of K Normal density functions with parameters
(μk, σ

2
k ), 1 ≤ k ≤ K . Accordingly, the joint density function of

the sample is

p(x1, . . . , xn)

=
n∏

i=1

[
K∑

k=1

wk(2πσ 2
k )−1/2 exp

{
−1

2
(xi − μk)

2/σ 2
k

}]
, (16)

where the weights wk , 1 ≤ k ≤ K , are nonnegative, and sum to
unity. Let (w1, . . . ,wK) have prior distribution:

(w1, . . . ,wK) ∼ Dirichlet(α, . . . , α), α > 0.

We will take the prior distributions for the mean and variance
parameters to be

μk
ind.∼ N

(
μμk

, σ 2
μk

)
, σ 2

k

ind.∼ IG(Ak,Bk), 1 ≤ k ≤ K.

As with the probit regression model, a tractable product den-
sity transform requires the introduction of the auxiliary variable
vectors:

(ai1, . . . , aik)|(w1, . . . ,wK)

ind.∼ Multinomial(1;w1, . . . ,wK), 1 ≤ i ≤ n. (17)

According to this notation,
∑K

k=1 aik = 1 and wk = P(aik = 1).
If we set

p(xi |ai1, . . . , aiK)

=
K∏

k=1

[
(2πσ 2

k )−1/2 exp

{
−1

2
(xi − μk)

2/σ 2
k

}]aik

independently for each 1 ≤ i ≤ n, then, using (17), the joint
density function of the X1, . . . ,Xn is easily shown to be (16).

Let w, μ, σ 2, and a be the vectors containing the correspond-
ing subscripted random variables. Then either of the product
density restrictions

q(w,μ,σ 2,a) = q(w,μ)q(σ 2)q(a) or
(18)

q(w,μ,σ 2,a) = q(w,σ 2)q(μ)q(a)

is sufficient for a closed form solution. Note that subscripting
on the q densities is being suppressed to reduce clutter. Regard-
less of which restriction in (18) is chosen, application of Algo-
rithm 1 leads to the optimal density for the model parameters
having the product structure

q∗(w,μ,σ 2) = q∗(w)q∗(μ)q∗(σ 2),

where

q∗(w) = density function of a Dirichlet distribution,

q∗(μ) = product of K Normal density functions,

and

q∗(σ 2) = product of K Inverse Gamma density functions.

For 1 ≤ k ≤ K , let μq(μk) and σ 2
q(μk)

denote the mean and vari-
ance for q∗(μk) and let Aq(σ 2

k ) and Bq(σ 2
k ) denote the shape and

rate parameters for q∗(σ 2
k ). Also, let

αq(w) ≡ (αq(w1), . . . , αq(w1)

)
be the Dirichlet parameter vector for q∗(w). The optimal para-
meters may be found obtained using Algorithm 5. Recall, from
Section 1.1, that ψ denotes the Digamma function.

The logp(x;q) expression in this case is

logp(x;q) = 1

2
K{1 − n log(2π)} + log�(Kα)

− K log�(α) − log�(n + Kα)

+
K∑

k=1

[
Ak log(Bk) − Aq(σ 2

k ) log
(
Bq(σ 2

k )

)
+ log�

(
Aq(σ 2

k )

)− log�(Ak)

+ log�
(
αq(wk)

)+ 1

2
log
(
σ 2

q(μk)
/σ 2

μk

)
− 1

2

{(
μq(μk) − μμk

)2 + σ 2
q(μk)

}
/σ 2

μk

−
n∑

i=1

ωik log(ωik)

]
.

Note that, for each iteration of Algorithm 5, this expression is
valid only after each of the parameter updates has been made.

Algorithm 5 is similar to the EM algorithm for fitting a finite
Normal mixture model. Comparison and contrast are given in
section 10.2.1 of the book by Bishop (2006).

Figure 6 shows the result of applying Algorithm 5 to data on
the duration of geyser eruptions. The data are available in the R
computing environment via the package MASS (Venables and
Ripley 2009), in the object geyser$duration. The number
of mixtures was set at K = 2 and vague priors with α = 0.001,
μk ∼ N(0,108), and σ 2

k ∼ IG( 1
100 , 1

100 ) were used. The upper
panel of Figure 6 shows that convergence of logp(x;q) was
obtained after about 20 iterations from naïve starting values.
In the lower panel, the curve corresponds to the approximate
posterior mean of the common density function. The shaded
region corresponds to approximate pointwise 95% credible sets.
These were obtained using 10,000 draws from q∗(w,μ,σ 2).

Finally, we note that variational approximation methodology
could also be used to choose the number of mixtures K . See, for
example, the work of Bishop (2006, sec. 10.2.4) and McGrory
and Titterington (2007).
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Algorithm 5 Iterative scheme for obtaining the parameters in the optimal densities q∗
w, q∗

μ, and q∗
σ 2 in the finite

Normal mixtures example.

Initialize: μq(μk) ∈ R and αq(wk), σ
2
q(μk)

,Aq(σ 2
k ),Bq(σ 2

k ),ω•k > 0, 1 ≤ k ≤ K ,

such that
∑K

k=1ω•k = 1.
Cycle: For i = 1, . . . , n and k = 1, . . . ,K :

νik ← ψ
(
αq(wk)

)+ 1

2
ψ
(
Aq(σ 2

k )

)− 1

2
log
(
Bq(σ 2

k )

)
− 1

2
Aq(σ 2

k )

{(
Xi − μq(μk)

)2 + σ 2
q(μk)

}
/Bq(σ 2

k ).

For i = 1, . . . , n and k = 1, . . . ,K : ωik ← exp(νik)/
∑K

k=1 exp(νik).
For k = 1, . . . ,K :

ω•k ←
n∑

i=1

ωik; σ 2
q(μk)

← 1/
{
1/σ 2

μk
+ Aq(σ 2

k )ω•k/Bq(σ 2
k )

}
,

μq(μk) ← σ 2
q(μk)

{
μμk

/σ 2
μk

+ Aq(σ 2
k )

n∑
i=1

ωikXi/Bq(σ 2
k )

}
,

αq(wk) ← α + ω•k; Aq(σ 2
k ) ← Ak + 1

2
ω•k,

Bq(σ 2
k ) ← Bk + 1

2

n∑
i=1

ωik

{(
Xi − μq(μk)

)2 + σ 2
q(μk)

}
until the increase in p(x;q) is negligible.

Figure 6. Results from application of Algorithm 5 to data on the du-
ration of geyser eruptions. The upper panel shows successive values
of logp(x;q). The lower panel shows approximate mean and point-
wise 95% credible sets for the common density function. The data are
shown at the base of the plot.

2.3 Parametric Density Transforms

Rather than assuming that q(θ) has product density structure,
we may instead assume that it belongs to a particular paramet-
ric family and hope that this results in a more tractable approx-
imation to the posterior density p(θ |y). This approach has re-
ceived less attention in the Computer Science literature. Exam-
ples where it has appeared are the works by Barber and Bishop
(1998), Seeger (2000, 2004), Honkela and Valpola (2005), and
Archambeau et al. (2007).

Next, we illustrate parametric density transforms with a sim-
ple example.

2.3.1 Poisson Regression With Gaussian Transform

Consider the Bayesian Poisson regression model

Yi |β0, . . . , βk

ind.∼ Poisson(exp(β0 + β1x1i + · · · + βkxki)), 1 ≤ i ≤ n,

where the prior distribution on the coefficient vector β ≡
(β0, . . . , βk) takes the form β ∼ N(μβ ,�β). As before, we let
X = [1 x1i · · · xki]1≤i≤n. Then the likelihood is

p(y|β) = exp{yT Xβ − 1T
n exp(Xβ) − 1T

n log(y!)}
and the marginal likelihood is

p(y) = (2π)−(k+1)/2|�β |−1/2

×
∫

Rk+1
exp

{
yT Xβ − 1T

n exp(Xβ) − 1T
n log(y!)

− 1

2
(β − μβ)T �−1

β (β − μβ)

}
dβ.
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Note that p(y), and hence p(β|y), involves an intractable inte-
gral over R

k+1.
Take q to be the N(μq(β),�q(β)) density:

q
(
β;μq(β),�q(β)

)
= (2π)−p/2

∣∣�q(β)

∣∣−1/2

× exp

{
−1

2

(
β − μq(β)

)T
�−1

q(β)

(
β − μq(β)

)}
.

Then the lower bound (4) admits the explicit expression

logp
(
y;μq(β),�q(β)

)
= yT Xμq(β) − 1T

n exp

{
Xμq(β) + 1

2
diagonal

(
X�q(β)XT

)}
− 1

2

(
μq(β) − μβ

)T
�−1

β

(
μq(β) − μβ

)− 1

2
tr
(
�−1

β �q(β)

)
+ 1

2
log
∣∣�q(β)

∣∣− 1

2
log |�β | + k + 1

2

− 1T
n log(y!). (19)

Note that, from (2),

logp(y) ≥ logp
(
y;μq(β),�q(β)

)
for all choices of the mean vector μq(β) and covariance ma-
trix �q(β). Choosing these variational parameters to maxi-
mize logp(y;μq(β),�q(β)) makes the approximation as good
as possible. The optimal Gaussian density transform q∗(β) is
the N(μ∗

q(β)
,�∗

q(β)) density function, where μ∗
q(β)

and �∗
q(β)

are the maximizers of logp(y;μq(β),�q(β)). Newton–Raphson
iteration can be used to determine μ∗

q(β)
and �∗

q(β). Further de-
tails may be found in the work of Ormerod (2008).

3. TANGENT TRANSFORM APPROACH

Not all variational approximations fit within the Kullback–
Leibler divergence framework. Another variety are what might

be called tangent transform variational approximations since
they work with ‘tangent-type’ representations of concave and
convex functions. An example of such a representation is

log(x) = min
ξ>0

{ξx − log(ξ) − 1} for all x > 0. (20)

Figure 7 provides a graphical description of (20).
The representation (20) implies that

log(x) ≤ ξx − log(ξ) − 1 for all ξ > 0.

The fact that ξx − log(ξ) − 1 is linear in x for every value of
the variational parameter ξ > 0 allows for simplifications of
expressions involving the logarithmic function. The value of ξ

can then be chosen to make the approximation as accurate as
possible.

Tangent transform variational approximations are under-
pinned by the theory of convex duality (e.g., Rockafellar 1972).
We will not delve into that here, and instead stay on course
with statistical examples. The interested reader should consult
the article by Jordan et al. (1999).

3.1 Bayesian Logistic Regression

As described by Jaakkola and Jordan (2000), Bayesian logis-
tic regression lends itself to tangent transform variational ap-
proximation. Hence, we consider the Bayesian logistic regres-
sion model

Yi |β0, . . . , βk
ind.∼ Bernoulli

([
1 + exp{−(β0 + β1x1i + · · ·

+ βkxki)}
]−1)

, 1 ≤ i ≤ n,

where the prior distribution on the coefficient vector β =
(β0, . . . , βk) takes the form β ∼ N(μβ ,�β). The likelihood is

p(y|β) = exp
[
yT Xβ − 1T

n log{1n + exp(Xβ)}],
where X = [1 x1i · · · xki]1≤i≤n. The posterior density of β is

p(β|y) = p(y,β)
/∫

Rk+1
p(y,β) dβ,

Figure 7. Variational representation of the logarithmic function. Left axes: Members of family of functions f (x, ξ) ≡ ξx − log(ξ) − 1 versus
ξ > 0, for x ∈ {0.25,0.5,1,2,4}, shown as gray curves. Right axes: For each x, the minimum of f (x, ξ) over ξ corresponds to log(x). In the x

direction the f (x, ξ) are linear and are shown in gray.

150 General



where

p(y,β) = exp

[
yT Xβ − 1T

n log{1n + exp(Xβ)}

− 1

2
(β − μβ)T �−1

β (β − μβ)

− k + 1

2
log(2π) − 1

2
log |�β |

]
. (21)

Once again, we are stuck with a multivariate intractable inte-
gral in the normalizing factor. We get around this by noting the
following representation of − log(1 + ex) as the maxima of a
family of parabolas:

− log(1 + ex) = max
ξ∈R

{
A(ξ)x2 − 1

2
x + C(ξ)

}
for all x ∈ R,

(22)
where

A(ξ) ≡ − tanh(ξ/2)/(4ξ) and

C(ξ) ≡ ξ/2 − log(1 + eξ ) + ξ tanh(ξ/2)/4.

While the genesis of (22) may be found in the article by
Jaakkola and Jordan (2000), it is easily checked via elementary
calculus methods. It follows from (22) that

−1T
n log{1n + exp(Xβ)}

≥ 1T
n

{
A(ξ) � (Xβ)2 − 1

2
Xβ + C(ξ)

}
= βT XT diag{A(ξ)}Xβ − 1

2
1T
n Xβ + 1T

n C(ξ), (23)

where ξ = (ξ1, . . . , ξn) is an n×1 vector of variational parame-
ters. This gives us the following lower bound on p(y,β):

p(y,β; ξ) = exp

(
−1

2
βT
[
�−1

β − 2XT diag{A(ξ)}X]β
+
{(

y − 1

2
1n

)T

X + μT
β �−1

β

}
β

− 1

2
μT

β �−1
β μβ + 1T

n C(ξ)

− k + 1

2
log(2π) − 1

2
log |�β |

)
which is proportional to a Multivariate Normal density in β .
Upon normalization we obtain the following family of varia-
tional approximations to β|y:

β|y; ξ ∼ N(μ(ξ),�(ξ)), (24)

where

�(ξ) ≡ [�−1
β − 2X� diag{A(ξ)}X]−1 and

μ(ξ) ≡ �(ξ)

{
X�
(

y − 1

2
1
)

+ �−1
β μβ

}
.

We are left with the problem of determining the vector of
variational parameters ξ ∈ R

n. A natural way of choosing these
is to make

p(y; ξ) ≡
∫

p(y,β; ξ) dβ

as close as possible to p(y). Since p(y; ξ) ≤ p(y) for all ξ , this
reduces to the problem of maximizing p(y; ξ) over ξ . Note that
this lower bound on logp(y) has explicit expression:

logp(y; ξ) = 1

2
log |�(ξ )| − 1

2
log |�β |

+ 1

2
μ(ξ)T �(ξ)−1μ(ξ) − 1

2
μT

β �−1
β μβ

+
n∑

i=1

{ξi/2 − log(1 + eξi ) + (ξi/4) tanh(ξi/2)}.

Even though this can be maximized numerically in a similar
fashion to (19), Jaakkola and Jordan (2000) derived a simpler
algorithm based on the notion of Expectation Maximization
(EM) (e.g., McLachlan and Krishnan 1997) with β playing the
role of a set of latent variables. Treating y,β as the set of ‘com-
plete data,’ the E-step of their EM algorithm involves

Q(ξnew|ξ) ≡ Eβ|y;ξ {logp(y,β; ξnew)},
where p(y,β; ξ) is interpreted as the variational lower bound
on the ‘complete data likelihood.’ This results in the explicit
expression

Q(ξnew|ξ) = tr
[
XT diag{A(ξnew)}X{�(ξ ) + μ(ξ)μ(ξ)T }]

+ 1T
n C(ξnew) + terms not involving ξnew.

Differentiating with respect to ξnew and using the fact that
A(ξ) is monotonically increasing over ξ > 0, the M-step can
be shown to have the exact solution

(ξnew)2 = diagonal
[
X{�(ξ) + μ(ξ)μ(ξ)�}X�]. (25)

Taking positive square roots on both sides of (25) leads to Al-
gorithm 6.

Convergence of Algorithm 6 is monotone and usually quite
rapid (Jaakkola and Jordan 2000).

4. FREQUENTIST INFERENCE

Up until now, we have only dealt with approximate inference
in Bayesian models via variational methods. In this section we
point out that variational approximations can be used in fre-
quentist contexts. However, use of variational approximations
for frequentist inferential problems is much rarer. Frequentist

Algorithm 6 Iterative scheme for obtaining the optimal model
and variational parameters in the Bayesian logistic regression
example.
Initialize: ξ (n × 1; all entries positive).
Cycle:

�(ξ) ← [�−1
β − 2X� diag{A(ξ)}X]−1

,

μ(ξ) ← �(ξ )

{
X�
(

y − 1

2
1n

)
+ �−1

β μβ

}
,

ξ ←
√

diagonal
[
X{�(ξ) + μ(ξ )μ(ξ)�}X�]

until the increase in p(y; ξ) is negligible.
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models that stand to benefit from variational approximations
are those for which specification of the likelihood involves con-
ditioning on a vector of latent variables u. In this case, the log-
likelihood of the model parameter vector θ takes the form

�(θ) ≡ logp(y; θ) = log
∫

p(y|u; θ)p(u; θ) du. (26)

The maximum likelihood estimate of θ is exactly

θ̂ = argmax
θ

�(θ)

but, because of the integral in (26), �(θ) may not be available in
closed form. Depending on the forms of p(y|u; θ) and p(u; θ),
either the density transform or tangent transform approaches
can result in more tractable approximations to �(θ). For the
remainder of this section we restrict discussion to the density
transform approach. The tangent transform approach has a sim-
ilar treatment.

Let q(u) be an arbitrary density function in u. Repeating the
steps given at (2), but with the log marginal likelihood logp(y)

replaced by the log-likelihood �(θ), we obtain

�(θ) =
∫

q(u) log

{
p(y,u; θ)

q(u)

}
du

+
∫

q(u) log

{
q(u)

p(u|y; θ)

}
du

≥ �(θ;q),

where

�(θ;q) ≡
∫

q(u) log

{
p(y,u; θ)

q(u)

}
du. (27)

We now have the option of choosing q to make �(θ;q) more
tractable while also aiming to minimize the Kullback–Leibler
divergence between q and p(u|y; θ). In theory, the product den-
sity methodology of Section 2.2 could be used to guide the
choice of q . However, we have yet to find a nontrivial fre-
quentist example where an explicit solution arises. Suppose,
instead, that we restrict q to a parametric family of densities
{q(u; ξ) : ξ ∈ �}. Then the log-likelihood lower bound (27) be-
comes

�(θ , ξ ;q) =
∫

q(u; ξ) log

{
p(y,u; θ)

q(u; ξ)

}
du. (28)

We should maximize over the variational parameters ξ to min-
imize the Kullback–Leibler divergence between q(u; ξ) and
p(u|y; θ), and over the model parameters θ to maximize the
approximate log-likelihood. This leads to the new maximiza-
tion problem:

(̂θ , ξ̂) = argmax
θ ,ξ

�(θ , ξ ;q).

Then θ̂ is a variational approximation to the maximum likeli-
hood estimator θ̂ . Standard error estimates can be obtained by
plugging in θ̂ for θ and ξ for ξ in the variational approximate
Fisher information matrix, the matrix that arises from replace-
ment of �(θ) by �(θ , ξ ;q) in the definition of Fisher informa-
tion. However, to our knowledge, asymptotic normality theory
that justifies such standard error estimation has not yet been
done.

4.1 Poisson Mixed Model

Consider the (non-Bayesian) Poisson mixed model

Yij |Ui
ind.∼ Poisson{exp(β0 + β1xij + Ui)},

(29)
Ui

ind.∼ N(0, σ 2), 1 ≤ j ≤ ni,1 ≤ i ≤ m,

where yij is the j th response measurement for unit i, and
the deterministic predictors xij are defined similarly. The log-
likelihood of (β0, β1, σ

2) involves intractable integrals, but the
lower bound (28) takes the form

�(β0, β1, σ
2;q)

=
∫

Rm

(
m∑

i=1

[
ni∑

j=1

{yij (β0 + β1xij + ui)

− eβ0+β1xij +ui − log(yij !)} − u2
i

2σ 2

]

− m

2
log(2πσ 2) − logq(u1, . . . , um)

)
× q(u1, . . . , um)du1 · · · dum.

Setting q to be the product of m univariate Normal densities
with mean μi and variance λi > 0, 1 ≤ i ≤ m, leads to the
closed form lower bound:

�(β0, β1, σ
2,μ,λ;q)

=
m∑

i=1

ni∑
j=1

{
yij (β0 + β1xij + μi)

+ eβ0+β1xij +μi+(1/2)λi − log(yij !)
}

+ m

2
{1 − log(σ 2)} + 1

2

m∑
i=1

{
log(λi) − μ2

i + λi

σ 2

}
for all values of the variational parameters μ = (μ1, . . . ,μm)

and λ = (λ1, . . . , λm). Maximizing over these parameters nar-
rows the gap between �(β0, β1, σ

2,μ,λ;q) and �(β0, β1, σ
2)

and so sensible estimators of the model parameters are

(β̂0, β̂1, σ̂
2) = (β0, β1, σ

2)

component of

argmax
β0,β1,σ

2,μ,λ

�(β0, β1, σ
2,μ,λ;q).

Recently, Hall, Ormerod, and Wand (2010) established consis-
tency and rates of convergence results for β̂0, β̂1, and σ̂ 2.

5. CLOSING DISCUSSION

Our goal in this article is to explain variational approxima-
tions in a digestible form for a statistical audience. As men-
tioned in the Introduction, the important issue of accuracy of
variational approximations is not dealt with here. The expo-
sitions by Jordan (2004) and Titterington (2004) provide ac-
cess to some of the literature on variational approximation ac-
curacy.
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Variational approximations have the potential to become an
important player in statistical inference. New variational ap-
proximation methods are continually being developed. The re-
cent emergence of formal software for variational inference is
certain to accelerate its widespread use. The usefulness of vari-
ational approximations increases as the size of the problem in-
creases and Monte Carlo methods such as MCMC start to be-
come untenable.

[Received March 2009. Revised April 2010.]
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