Three-time pads

1. Given $\Delta_1 = XY \oplus ZW$ and $\Delta_2 = XY \oplus QR$, the matrix of relative probabilities $P(XY|\Delta_1, \Delta_2)$ can be computed with this function.

```
function RelativeDifferentialProbabilities(D1,D2,PT)
    // Given 2-character strings D1 and D2 representing
    // XY-ZW and XY-QR, return the 26x26 matrix of
    // probabilities, (P(XY)P(ZW)P(QR)), scaled to a
    // probability function on the set {A,..,Z}^2.
    // PT is a sample plaintext for use in determining
    // the 2-character frequency distribution of English.
    assert #D1 eq 2 and #D2 eq 2;
    AZ := {@ CodeToString(64+i) : i in [1..26] @};
    r1 := Index(AZ,D1[1]); s1 := Index(AZ,D1[2]);
    r2 := Index(AZ,D2[1]); s2 := Index(AZ,D2[2]);
    FDD := RealField()!0;
    DD2 := MatrixAlgebra(RealField(),26)!0;
    F2D := DigraphFrequencyDistribution(PT);
    for i1, j1 in [1..26] do
        i2 := ((i1-r1) mod 26) + 1;
        j2 := ((j1-s1) mod 26) + 1;
        i3 := ((i1-r2) mod 26) + 1;
        j3 := ((j1-s2) mod 26) + 1;
        F3 := F2D[i1,j1] * F2D[i2,j2] * F2D[i3,j3];
        DD2[i1,j1] += F3;
        FDD += F3;
    end for;
    return (1/FDD)*DD2;
end function;
```

Apply this function to find the plaintexts PT_1, PT_2, and PT_3, where

$\Delta_1 = PT_1 \oplus PT_2 = AHXCOYFBAMKUE$

$\Delta_2 = PT_1 \oplus PT_3 = XHXRGEUHPRAHN$

You may use `blackcat.txt` as the sample plaintext.

Modes of Operation
Block ciphers can be applied to longer ciphertexts using one of various modes of operation. We assume that the input is plaintext \(M = M_1M_2 \ldots \), the block enciphering map for given key \(K \) is \(E_K \), and the output is \(C = C_1C_2 \ldots \). The following gives a summary of the major modes of operation.

Electronic Codebook Mode. For a fixed key \(K \), the output ciphertext is given by \(C_j = E_K(M_j) \) with output \(C_1C_2 \ldots \).

Ciphertext Block Chaining Mode. For input key \(K \), and initialization vector \(C_0 \), the output ciphertext is given by \(C_j = E_K(C_{j-1} \oplus M_j) \), with output \(C_0C_1C_2 \ldots \).

Ciphertext Feedback Mode. Given plaintext \(M_1M_2 \ldots \) in \(r \)-bit blocks, a key \(K \), an \(n \)-bit cipher \(E_K \), and an \(n \)-bit initialization vector \(I = I_1 \), the ciphertext is computed as:

\[
C_j = M_j \oplus L_r(E_K(I_j)) \\
I_{j+1} = R_{n-r}(I_j) || C_j
\]

where \(R_{n-r} \) and \(L_r \) are the operators which take the right-most \(n - r \) bits and the left-most \(r \) bits, respectively, and || is concatenation.

Output Feedback Mode. Given plaintext \(M_1M_2 \ldots \) in \(r \)-bit blocks, a key \(K \), an \(n \)-bit cipher \(E_K \), and an \(n \)-bit initialization vector \(I = I_0 \), the ciphertext is computed as:

\[
I_j = E_K(I_{j-1}) \\
C_j = M_j \oplus L_r(I_j),
\]

where \(L_r \) is the operator which takes the left-most \(r \) bits.

2. What mode of operation has been used in the assignment and in class up to this point? Why?

3. Let \(E_K \) be the 4-bit cipher defined by:

\[
E_K(M) = (X_1 + X_3, X_2 + X_4, X_2 + X_3, X_1 + X_4)
\]

where \(X = X_1X_2X_3X_4 = K \oplus M \). Encipher the message \(M \) given by

\[
1101011101111001100100010010001001000,
\]

using the key \(K = 1011 \), in (i) ECB mode, in (ii) CBC mode with initialization vector 1001, and in (iii) CFB mode with initialization vector 1001 and \(r = 1 \).

4. How many steps are required for error recovery from a ciphertext transmission error in ECB and CBC modes?

5. If \(n = 64 \) and \(r = 8 \), how many steps in CFB mode does it take to recover from an error in a ciphertext block? What about in OFB mode?