1. Let \(n = p_1^{n_1} \cdots p_t^{n_t} \) be an odd composite number, and for each \(i \) write \(p_i - 1 = 2^{k_i} r_i \) with each \(r_i \) an odd number. Justify the probabilities

\[
P(x^{2^r} = -1) = \frac{1}{m} \prod_{i=1}^{t} \frac{1}{2^{k_i-j}}
\]

where \(x \in \mathbb{Z}/n\mathbb{Z}^* \) (chosen uniformly at random), \(j < k_i \), and where \(m \) is the largest odd divisor of \(|(\mathbb{Z}/n\mathbb{Z}^*)^r|\) for any odd number \(r \).

Solution The value \(m \) is the odd part of the size of the subgroup \(|(\mathbb{Z}/n\mathbb{Z}^*)^{2^r}|\) of \(r \)-th multiples in \(\mathbb{Z}/n\mathbb{Z}^* \), and the factor \(2^{k_i-j} \) order of the even part in each component \(\mathbb{Z}/p_i^{n_i}\mathbb{Z}^* \). When \(-1\) is contained in the group, then the probability of \(x^{2^r} \) equalling \(-1\) is the reciprocal of the order of \(|(\mathbb{Z}/n\mathbb{Z}^*)^{2^r}|\).

2. Recall the Miller–Rabin primality test:

1. let \(n - 1 = 2^s r \) for \(r \) odd
2. choose \(a \) at random in \(\mathbb{Z}/n\mathbb{Z}^* \) and set \(u = a^r \)
3. if \(u = \pm1 \) then return probable prime
4. for \(i \) in \([1, \ldots, s - 1]\) {
 set \(u = u^2 \)
 if \(u = -1 \) then
 return probable prime
 if \(u = +1 \) then
 return composite
}
5. return composite

and explain why the sum

\[
P(x^r = 1) + P(x^r = -1) + P(x^{2^r} = -1) + \cdots + P(x^{2^{s-1}r} = -1)
\]

gives the probability that the output is probable prime.

Solution The sum is over a disjoint set of events defining the conditions under which probable prime is returned.

3. For each of the following integers \(15 = 3 \cdot 5 \), \(21 = 3 \cdot 7 \), \(29 \), \(85 = 5 \cdot 17 \), \(105 = 3 \cdot 5 \cdot 7 \), and \(357 = 13 \cdot 29 \), determine the probability that the Miller–Rabin primality test returns probable prime.
Solution Applying the formula at top, the values of \(r \) and \(k_1, \ldots, k_t \) give the probabilities \(P \) in the table below.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(r)</th>
<th>(k_1, \ldots, k_t)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1</td>
<td>1, 2</td>
<td>(\frac{1}{4} = \frac{1}{8} + \frac{1}{8})</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>1, 1</td>
<td>(\frac{1}{6} = \frac{1}{12} + \frac{1}{12})</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>2</td>
<td>(\frac{1}{6} = \frac{1}{4} + \frac{1}{4} + \frac{1}{2})</td>
</tr>
<tr>
<td>85</td>
<td>1</td>
<td>2, 4</td>
<td>(\frac{3}{32} = \frac{1}{64} + \frac{1}{64} + \frac{1}{16})</td>
</tr>
<tr>
<td>105</td>
<td>3</td>
<td>1, 2, 1</td>
<td>(\frac{1}{24} = \frac{1}{48} + \frac{1}{48})</td>
</tr>
<tr>
<td>377</td>
<td>21</td>
<td>2, 2</td>
<td>(\frac{1}{56} = \frac{1}{336} + \frac{1}{336} + \frac{1}{84})</td>
</tr>
</tbody>
</table>

Note that \(r \) is computed as the odd part of \(\varphi(n)/\gcd(n-1, \varphi(n)) \).

4. Explain what happens when \(j \geq k_i \) for some \(i \), and demonstrate this with one of the above integers.

Solution When \(j \geq k_i \) for some \(i \), the element \(-1\) is not in \([2^j] \mathbb{Z}/p_i \mathbb{Z}^* \), hence not in \([2^m] \mathbb{Z}/p_i \mathbb{Z}^* \). Consequently, \(-1\) cannot be in \([2^m] \mathbb{Z}/n \mathbb{Z}^* \). Take for example \(n = 15 \), for which the \(k_i \)'s are 1 and 2. While \([7] \mathbb{Z}/15 \mathbb{Z}^* \) equals \(\mathbb{Z}/15 \mathbb{Z}^* \), once we take squares, we see that \([2] \mathbb{Z}/15 \mathbb{Z}^* \) does not contain \(-1\), since its image \([2] \mathbb{Z}/3 \mathbb{Z}^* \) does not contain \(-1\) even though \([2] \mathbb{Z}/5 \mathbb{Z}^* \) does. We can verify that \(1 \) and \(4 \) are the only elements of \([2] \mathbb{Z}/15 \mathbb{Z}^* \), and these are precisely the two elements which are \(1 \mod 3 \) and \(\pm 1 \mod 5 \).