1. Let G be an abelian group of order $p^n q^m$ for primes p and q. What are the possible dimensions of $G[p]$ and $G[q]$ as vector spaces?

Hint: Show that $G = G_1 \times G_2$ where $G_1 = [q^m](G)$ and $G_2 = [p^n](G)$. Prove that $|G_1| = p^n$ and $|G_2| = q^m$, then consider the possible p-torsion and q-torsion subgroups in each of G_1 and G_2.

2. Let $n = 1547$ and let $g_1 = 2$, $g_2 = 3$, $g_3 = 5$, and $g_4 = 11$ in $\mathbb{Z}/n\mathbb{Z}^*$.

 a. Verify the relations $g_1 g_3 = g_2^2 g_4^3$, $g_3 g_2 = g_3^3 g_4^4$, $g_1^6 g_2^4 = g_2^2$, and $g_1^3 g_2^5 g_3 = g_4^2$.

 b. Let $\phi : \mathbb{Z}^4 \to \mathbb{Z}/n\mathbb{Z}^*$ be the homomorphism taking the standard basis to the generators $\{g_1, g_2, g_3, g_4\}$. What is the kernel of ϕ?

 c. What is the order and what is the exponent of the group $\mathbb{Z}/n\mathbb{Z}^*$?

 d. Determine the dimension r of $\mathbb{Z}/n\mathbb{Z}^*[3]$ as a vector space over \mathbb{F}_3, and define an isomorphism from \mathbb{F}_3^r with $\mathbb{Z}/n\mathbb{Z}^*[3]$.

3. Let n be the Mersenne number $2^{29} - 1 = 536870911$.

 a. Prove that $|\mathbb{Z}/n\mathbb{Z}^*|$ is divisible by 29.

 b. What does the following Magma code do?

   ```magma
   Z := Integers();
   R := ResidueClassRing(N);
   a := (R!3)^29;
   for r in [1..80] do
       printf "%3o: %o
", r, GCD(Z!(a^r-1),N);
   end for;
   ```

 c. Now consider the set of 19 generators

 $$\{-1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61\}$$

 inside of the group \mathbb{Q}^*, and label them g_1, \ldots, g_{19}. These define a map

 $$\mathbb{Z}^{19} \to \mathbb{Z}/n\mathbb{Z}^*,$$

 by the map $(n_1, \ldots, n_{19}) \mapsto g_1^{n_1} \cdots g_{19}^{n_{19}}$, for which we find a matrix of 2-torsion relations

 $$\begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & -4 & 0 & -2 & 0 & 3 & 3 & 4 & 4 & 4 & 2 & 6 & 4 & 4 & 5 & 4 & 7 & 4 & 3 \\
 1 & 1 & -4 & 2 & 2 & 3 & 3 & 5 & 2 & 2 & 6 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
 0 & -2 & -1 & -3 & 3 & 4 & 0 & 4 & 1 & 5 & 5 & 6 & 2 & 2 & 3 & 3 & 3 & 4 & 3
 \end{bmatrix}$$
That is, for any row \((n_1, \ldots, n_{19})\) we have

\[
\prod_{i=1}^{19} g_i^{2n_i} \equiv 1 \mod n.
\]

Suppose that \(n = pq\), with \(\text{GCD}(p, q) = 1\), so that

\[
\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}.
\]

We hope that a 2-torsion element \(u\) satisfies

\[
u \equiv 1 \mod p \text{ but } u \not\equiv 1 \mod q.
\]

If such is the case, then \(p | \text{GCD}(u - 1, n) \neq n\) and we have found a nontrivial factorization. In particular, the second line of this relation matrix gives the equality:

\[
\left(2^{15^2}\right)^2 \equiv \left(11^313^317^419^423^229^231^637^441^443^547^453^759^461^3\right)^2 \mod n
\]

from which we can derive the factorization

\[
\text{GCD}(n, 2^{15^2} - 11^313^317^419^423^229^231^637^441^443^547^453^759^461^3) = 1103.
\]

Compute the other factorizations determined by the 2-torsion relations.