1. A simple Pollard Rho factorization algorithm can be implemented in just a few lines in Magma:

```
function PollardRho(n,a)
    x := Random([1..n]);
    x := (x^2+a) mod n;
    y := (x^2+a) mod n;
    while GCD(x-y,n) eq 1 do
        x := (x^2+a) mod n;
        y := (y^2+a) mod n;
        y := (y^2+a) mod n;
    end while;
    return GCD(x-y,n);
end function;
```

a. Use this algorithm to find a factorization of

\[2^{29} - 1, 2^{59} - 1, 2^{26} + 1, \text{ and } 400731052007683. \]

b. What happens if the input argument \(n \) is prime?

2. The Pollard rho algorithm is effective for solving discrete logarithms in subgroups of fields \(\mathbb{F}_p^* \) of moderate size. In the following code we make the assumption that the subgroup order is a prime \(n \). The following code implements a Pollard rho discrete logarithm. You will need to first include the iteration function \texttt{PollardIteration}, presented below, in which the three disjoint sets \(S_1, S_2 \) and \(S_3 \) are those finite field elements with representatives \(x \) in intervals \(1 \leq x \leq B_1 \), \(B_1 < x \leq B_2 \), and \(B_2 < x \leq p-1 \) respectively.

```
procedure PollardIteration(~t,a,b,B1,B2);
    x := Integers()!t[1];
    if x le B1 then
    elsif x le B2 then
    else
    end if;
end procedure;
```
Assuming that the function PollardIteration the main body of the function, below, creates in a deterministic fashion a new triple \((x_{i+1}, n_{i+1}, m_{i+1})\) consisting of the sequence element \(x_{i+1}\) together with the exponents \((n_{i+1}, m_{i+1})\) such that
\[x_{i+1} = a^{n_{i+1}} b^{m_{i+1}} \]
from a similar sequence \((x_i, n_i, m_i)\).

```plaintext
function PollardRhoLog(a,b,p,n)
  error if not IsPrime(p), "Argument 3 must be prime";
  error if not IsPrime(n) or (p-1) mod n ne 0,
      "Argument 4 must be a prime divisor of", p-1;
  K := FiniteField(p);
  R := FiniteField(n);
  a := K!a; b := K!b;
  error if Order(a) ne n /* or Order(b) notin {1,n} */,
      "Arguments 1 and 2 must have order", n, "mod", p;
  t1 := <K!1,R!0,R!0>; t2 := t1;
  B1 := p div 3; B2 := (2*p) div 3;
  while true do
    PollardIteration(~t1,a,b,B1,B2);
    PollardIteration(~t2,a,b,B1,B2);
    PollardIteration(~t2,a,b,B1,B2);
    if t1[1] eq t2[1] then break; end if;
  end while;
  r := t1[3]-t2[3];
  if r eq 0 then return -1; end if;
  return Integers()!(r^-1*(t2[2]-t1[2]));
end function;
```

The Magma tuple <K!1,R!0,R!0> represents the element \((1,0,0)\) of \(K \times R \times R\). The notation ~t is a pass-by-reference in which the argument can be modified in the course of the procedure. Note that the algorithm can fail, and if so, returns the value of -1.

a. Use this algorithm to find discrete logarithms of 3, 7, and 17 with respect to the base 2 in \(\mathbb{F}_p^*\), where \(p = 536871263\). Note that \(n = (p - 1)/2\) is a prime. Verify the correctness of the results.

b. Note that each of the primes 2, 3, 7, and 17 are squares modulo \(p\). What is the significance of the output of the algorithm when the discrete logarithm of 5 and 11 are computed with respect to the base 2?

c. Find the discrete logarithm of 3 with respect to the base 2 in \(\mathbb{F}_p^*\), where \(p = 1234619627\). Make use of the Pollig-Hellman reduction, noting that \(p - 1 = 2 \cdot 37 \cdot 61 \cdot 479 \cdot 571\).