Commutative Algebra Semester 1, 2006

This assignment is due on Friday 5 May and will count for 10% of the final mark.

Throughout, let A be a commutative ring with one and let M', M, M'', N', N and N'' be A-modules.

1. Suppose that $f : N' \rightarrow N$ and $g : N \rightarrow N''$ are both A-module homomorphisms.
 (a) Prove that $0 \rightarrow N' \rightarrow N \rightarrow N''$ is exact if and only if for all A-modules M the induced sequence
 $$0 \rightarrow \text{Hom}_A(M, N') \rightarrow \text{Hom}_A(M, N) \rightarrow \text{Hom}_A(M, N'')$$
 is exact.
 (b) Find an exact sequence $N \rightarrow N'' \rightarrow 0$ of A-modules and an A-module M such that
 $$\text{Hom}_A(M, N) \rightarrow \text{Hom}_A(M, N'') \rightarrow 0$$
 is not exact.

2. Suppose that
 $$
 \begin{array}{cccccc}
 0 & \rightarrow & M' & \alpha \rightarrow & M & \beta \rightarrow & M'' & \rightarrow & 0 \\
 f' \downarrow & & \downarrow f & & \downarrow f'' & & \\
 0 & \rightarrow & N' & \rightarrow & N & \rightarrow & N'' & \rightarrow & 0
 \end{array}
 $$
 is a commutative diagram of A-modules. By the snake lemma, there exists an induced long exact sequence of the form
 $$0 \rightarrow \ker f' \rightarrow \ker f \rightarrow \ker f'' \rightarrow \text{coker} f' \rightarrow \text{coker} f \rightarrow \text{coker} f'' \rightarrow 0.$$
 (a) Prove exactness at $\text{coker} f$ and at $\text{coker} f''$.
 (b) Find an example where each of the modules $\ker f'$, $\ker f$, $\ker f''$, $\text{coker} f'$, $\text{coker} f$ and $\text{coker} f''$ are nonzero and each of the induced maps is also nonzero.

3. Suppose that p_1, p_2, \ldots, p_n are prime ideals of a ring A.
 (a) Show that $S = A \setminus (p_1 \cup p_2 \cup \cdots \cup p_n)$ is a multiplicatively closed set.
 (b) Describe the set of ideals of $S^{-1}A$ in terms of the set of ideals of A.

4. If M is an A-module let $\mathcal{P}(M)$ be the set of prime ideals p of A such that $M_p \neq 0$.
 (a) Show that $M \neq 0$ if and only if $\mathcal{P}(M)$ is nonempty.
 (b) Suppose that $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ is a short exact sequence. Prove that
 $$\mathcal{P}(M) = \mathcal{P}(M') \cup \mathcal{P}(M'').$$