1. Let M be an A-module with composition series

$$M = M_0 \supset M_1 \supset \cdots \supset M_n = (0).$$

(a) Let $N_1 \supset N_2$ be submodules of M. Prove that N_1/N_2 is simple if and only if

$$((N_1 \cap M_{j-1}) + M_j)/(N_2 \cap M_{j-1}) + M_j) \cong M_{j-1}/M_j$$

for exactly one value of j.

(b) Show that M is simple only if M_p is simple for every prime p. Find a counterexample to the converse statement.

2. Let G be a finite group of automorphisms of a ring A and let A^G be the subring of elements fixed by G (i.e. $\sigma(x) = x$ for all $\sigma \in G$).

(a) Prove that A is integral over A^G.

(b) Let $X = \text{Spec}(A)$ and $Y = \text{Spec}(A^G)$, and let $\varphi : X \rightarrow Y$ be the pullback map with respect to inclusion. Show that $|\varphi^{-1}(p)|$ is finite and divides $|G|$.

(c) Let B be a finite A-algebra, and let $\varphi : X = \text{Spec}(B) \rightarrow Y = \text{Spec}(A)$ be the pullback map. Show that φ has finite fibers $\varphi^{-1}(p)$.

3. A topological space X is said to be Noetherian if the open subsets of X satisfy the ACC.

(a) Show that the ACC on open subsets is equivalent to the DCC on closed subsets.

(b) Show that the following are equivalent:

- X is Noetherian.
- Every open subspace of X is compact.
- Every subspace of X is compact.

(c) Show that $X = \text{Spec}(A)$ is a Noetherian topological space if A is a Noetherian ring.