Partitions

Problem: How many partitions \(\{B_1, B_2, \ldots, B_n\} \) of \(\{1, 2, \ldots, n\} \) are there such that if the numbers 1, 2, \ldots, \(n \) are arranged in order around a circle, then the convex hulls of the blocks \(B_1, B_2, \ldots, B_n \) are pairwise disjoint?

For \(n = 1 \), there is only 1 way; namely

For \(n = 2 \), there are 2 ways; namely \(\cdot \cdot \) and \(\cdot \cdot \).

For \(n = 3 \), there are 5 ways:

\[
\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\end{array}
\]

For \(n = 4 \), there are 14 ways:

\[
\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\end{array}
\]

For \(n = 5 \) there are 42 ways:

\[
\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\end{array}
\]
For \(n = 6 \), there are 132 such partitions:
In fact, for any n, the number of such partitions is the Catalan number c_n.
Connection with the first bracket problem

Given a balanced string of n left and n right brackets, we obtain the corresponding partition as follows. First we choose a starting position, choose clockwise direction to draw n dots and name these dots from 1 to n. Also name the left brackets in the balanced string from 1 to n. Read from the left of the balanced string: if there is a block of k right brackets R, then join the integers corresponding to the matching L by a k–gon [1-gon is a point, 2-gon is a line].

Given such a partition, we first choose a starting position for the partition and choose clockwise direction to construct the corresponding balanced string of bracket, by reversing the above procedures.

Remark: This is closely related to the noncrossing partitions problem and the non-crossing Murasaki diagrams problem.

1. Construct balanced strings of brackets corresponding to the following partition:

 (i) \[\text{1 2 3} \quad \text{4} \quad \text{5 6} \quad \text{7} \]
 (ii) \[\text{1 2 3 4} \quad \text{5} \quad \text{6 7 8} \quad \text{9 10} \]
 (iii) \[\text{1 2 3 4} \quad \text{5} \quad \text{6 7 8 9} \quad \text{10 11 12} \]

 Solution. The corresponding balanced strings of brackets are:
 (i) \[\text{LLLRLRLLRLLLRR} \]
 (ii) \[\text{LRLRLRLRRLRLLLLL} \]
 (iii) \[\text{LLLRLRLLRLLRLLLRR} \]

2. For the following balanced strings of brackets, construct the corresponding partitions:

 (i) \[\text{LLLRLLLLRLRRR} \]
 (ii) \[\text{LRLLRLRLRLRRR} \]
 (iii) \[\text{LRLRRLRRRLLLRRRLLRRR} \]

 Solution. The corresponding partitions are:

 (i) \[\text{1 2 3} \quad \text{4} \quad \text{5 6} \quad \text{7} \]
 (ii) \[\text{1 2 3 4} \quad \text{5} \quad \text{6 7} \quad \text{8} \]
 (iii) \[\text{1 2 3 4} \quad \text{5} \quad \text{6 7 8} \quad \text{9 10 11} \quad \text{12} \]