Algebraic Topology Notes. Part I: Homology

Copyright

The teaching material that forms this web site is copyright. Other than for the purposes of and subject to the conditions prescribed under the Copyright Act, no part of it may in any form or by any means (electronic, mechanical, microcopying, photocopying, recording or otherwise) be altered, reproduced, stored in a retrieval system or transmitted without prior written permission from the University of Sydney.

Copyright: University of Sydney 2003 (revised in June 2005).

J.A.Hillman
PM4 Handbook entry

Algebraic topology advanced more rapidly than any other branch of mathematics during the twentieth century. Its influence on other branches, such as algebra, algebraic geometry, analysis, differential geometry and number theory has been enormous.

The typical problems of topology such as whether \mathbb{R}^m is homeomorphic to \mathbb{R}^n or whether the projective plane can be embedded in \mathbb{R}^3 or whether we can choose a continuous branch of the complex logarithm on the whole of $\mathbb{C}\setminus\{0\}$ may all be interpreted as asking whether there is a suitable continuous map. The goal of Algebraic Topology is to construct invariants by means of which such problems may be translated into algebraic terms. The homotopy groups $\pi_n(X)$ and homology groups $H_n(X)$ of a space X are two important families of such invariants. The homotopy groups are easy to define but in general are hard to compute; the converse holds for the homology groups.

We begin with simplicial homology theory. Then we define singular homology theory, and over several weeks develop the properties which are summarized in the Eilenberg-Steenrod axioms. (These give an axiomatic characterization of homology for reasonable spaces). We then apply homology to various examples, and conclude this part of the course with two or three lectures on cohomology and differential forms on open subsets of \mathbb{R}^n. The final third of the course shall be devoted to the fundamental group, its relationship with covering space theory and elementary ideas of combinatorial group theory. Although we shall assume no prior knowledge of Category Theory, we shall introduce and use categorical terminology where appropriate. (Indeed Category Theory was largely founded by algebraic topologists).

There are also some excellent notes by Allan Hatcher of Cornell University, available through the WWW (“www.math.cornell.edu/~hatcher”), and published by Cambridge University Press.
Part I: Homology

Introduction

The most interesting spaces for geometrically minded mathematicians are manifolds, cell-complexes and polyhedra.

Notation.

\[\mathbb{R}^n_+ = \{ (x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_n \geq 0 \} \]

\[\partial \mathbb{R}^n_+ = \{ (x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_n = 0 \} \]

\[D^n = \{ (x_1, \ldots, x_n) \in \mathbb{R}^n \mid \sum x_i^2 \leq 1 \} \]

\[S^{n-1} = \partial D^n = \{ (x_1, \ldots, x_n) \in \mathbb{R}^n \mid \sum x_i^2 = 1 \} \]

Definition. An \(n \)-manifold is a space \(M \) whose topology arises from a metric and such that for all \(m \in M \) there is an open neighbourhood \(U \) and a homeomorphism \(h: U \to h(U) \) onto an open subset of \(\mathbb{R}^n_+ \). The boundary \(\partial M \) is the set of points \(m \) for which there is such a homeomorphism \(h \) with \(h(m) \in \partial \mathbb{R}^n_+ \). We shall show later that the dimension \(n \) is well-defined, and that \(\partial (\mathbb{R}^n_+) = \partial \mathbb{R}^n_+ \), so \(\partial M \) is an \((n-1)\)-manifold and \(\partial \partial M = \emptyset \). (See Exercise 14 below).

FACT. The metric condition is equivalent to requiring that \(M \) be Hausdorff \((T_2)\) and that each connected component of \(M \) have a countable base of open sets. Open subspaces of \(\mathbb{R}^n_+ \) clearly satisfy these conditions, but there are bizarre examples which demonstrate that these conditions are not locally determined.

Examples. spheres, torus, surfaces, annulus, Möbius band \((Mb)\), projective plane \((P^2(\mathbb{R}) = S^2/(x \sim -x) \cong Mb \cup D^2)\).

All surfaces without boundary are locally homeomorphic to each other. We need a global invariant to distinguish them. Homology provides such invariants. (It is not so successful in higher dimensions).

Cell complexes

Definition. Let \(X \) be a space and \(f: S^{n-1} \to X \) a map. Then \(X \cup_f e^n = X \amalg D^n/(y \sim f(y), \forall y \in S^{n-1}) \) is the space obtained by adjoining an \(n \)-cell to \(X \) along \(f \). (The topology on \(X \cup_f e^n \) is the finest such that the quotient function \(q: X \amalg D^n \to X \cup_f e^n \) is continuous).

We may identify \(X \) with a closed subset of \(X \cup_f e^n \). The image of \(D^n \) is also closed (provided \(X \) is Hausdorff).
Note that since $S^{-1} = \partial D^0 = \emptyset$, we can adjoin 0-cells to the empty set.

Definition. A **finite cell-complex** is a space built from the empty set by successively adjoining finitely many cells of various dimensions.

We may also consider spaces constructed by adjoining infinitely many cells, but then the topology must be defined in a more complicated way. (CW-complex).

Examples. $S^n = e^0 \cup e^n$. $S^1 \times S^1 = e^0 \cup e^1 \cup e^1 \cup e^2$. (Consider the usual construction of the torus by identifying opposite sides of a rectangle).

Polyhedra and simplicial homology

Definition. An **affine q-simplex** in \mathbb{R}^N is the closed convex set determined by $q + 1$ affinely independent points. The **standard q-simplex** Δ_q is determined by the standard basis vectors in \mathbb{R}^{q+1}. Thus

$$\Delta_q = \{(x_0, \ldots, x_q) \in \mathbb{R}^{q+1} \mid \sum x_i = 1, x_j \geq 0 \ \forall j\}.$$

Clearly any affine q-simplex is homeomorphic to Δ_q and so is a compact metric space.

Definition. The **faces** of the affine simplex determined by $\{P_0, \ldots P_q\}$ are the affine simplices determined by subsets of this set.

Definition. A **polyhedron** in \mathbb{R}^N is a subset P which is the union of finitely many affine simplices (of varying dimensions).

(We may assume that any two simplices meet along a common face, possibly empty).

Definition. A **triangulation** of a space X is a homeomorphism $h: K \to X$ from some polyhedron K (in some \mathbb{R}^N).

In other words, a triangulation is a representation of X as a finite union of closed subsets, each homeomorphic to a simplex.

A polyhedron is a special case of a cell complex in which all the defining maps are one-to-one. Conversely, any such cell complex admits a triangulation as a polyhedron, but in general more simplices are needed than cells.

Example. $\partial \Delta_3 = \{(x_0, \ldots, x_3) \in \mathbb{R}^4 \mid \sum x_i = 1, \Pi x_i = 0, x_j \geq 0 \ \forall j\}$ is a union of four 2-simplices, and is homeomorphic to the 2-sphere S^2. The torus
$S^1 \times S^1$ is homeomorphic to a cell complex with just four cells. Its simplest triangulation requires seven vertices.

As each affine simplex is determined by its vertices, a polyhedron is determined by the set of all vertices together with the set of finite subsets corresponding to the simplices (and their faces). This is essentially combinatorial data, and there is a purely combinatorial notion of simplicial complex, which makes no mention of topology. (See [Spanier]). How can we use this to extract invariants of spaces which are insensitive to the triangulation used?

Euler observed that given any triangulation of the 2-sphere S^2 into V vertices, E “edges” and F “faces” (i.e., 0-, 1- and 2-simplices, respectively) then $V - E + F = 2$. This is easily proven by induction on V, once you show that any two triangulations have a common refinement. Riemann and Betti were lead to consider the “number of q-dimensional holes” in a space. It was only later that it was realized that these “Betti numbers” could be interpreted as the dimensions of certain vector spaces (or ranks of certain abelian groups), whose alternating sum gives an extension of Euler’s invariant.

An example of simplicial homology

A q-dimensional hole in a polyhedron may perhaps be defined informally (in terms of what surrounds it) as a union of q-simplices which has no boundary - whose $(q-1)$-dimensional faces match up in pairs. We want to ignore such “q-cycles” which bound $(q+1)$-simplices. From “unions of q-simplices” to “formal sums” is not a great step. With the proper linear analogue of boundary - ∂ - we have $\partial \partial = 0$. We are lead to look at formal sums of q-simplices with $\partial = 0$ and to factor out $\partial((q+1)$-simplex). Thus we define $H_q(P) = \ker(\partial)/\text{im}(\partial)$ as a measure of the q-dimensional holes.

Example. S^2 may be triangulated as a tetrahedron - the boundary of Δ_3 - with vertices A, B, C, D, edges AB, AC, AD, BC, BD, CD and faces ABC, ABD, ACD, BCD. We take these as bases of vector spaces over a field R, of dimensions 4, 6 and 4, respectively. The boundary maps are given by $\partial_0 V = 0$ for vertices V, $\partial_1 VW = W - V$ for edges VW and $\partial_2 VWX = WX - VX + VW$ for faces VWX. These may be extended to
linear maps between the vector spaces. We find that \(ext{Ker}(\partial_2)\) is 1-dimensional, generated by \(BCD - ACD + ABD - ABC\), \(\text{Im}(\partial_2) = \text{Ker}(\partial_1)\) is 3-dimensional and \(\text{Im}(\partial_1)\) is 3-dimensional, generated by the differences \(B - A\), \(C - A\) and \(D - A\). Thus \(H_2(S^2) \cong R\), \(H_1(S^2) = 0\) and \(H_0(S^2) \cong R\). (In fact, we could allow \(R\) to be any ring, provided we modify the terminology of “vector spaces” and “dimension”).

Exercise 1. Triangulate \(S^2\) as an icosahedron (with 12 vertices, 30 edges and 20 faces) and identify opposite sides to obtain a triangulation of the real projective plane \(P^2(\mathbb{R})\) with 6 vertices, 15 edges and 10 faces. (This triangulation is invariant under the antipodal map. See figure). Let \(R\) be a commutative ring and form the simplicial chain complex with coefficients \(R\) of this polyhedron. Compute the homology. Note in particular what happens if \(R\) is (a) a field of characteristic \(\neq 2\), e.g., the field \(\mathbb{R}\) of real numbers; (b) the 2-element field \(\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}\); (c) the integers \(\mathbb{Z}\).

Many interesting spaces cannot be triangulated, and there are others which admit several essentially distinct triangulations with no common refinement. Thus it is not clear that simplicial homology provides a useful topological invariant. We shall have to modify our definition.

An algebraic interlude

The main algebraic prerequisite for Homology is linear algebra. We shall ultimately want to consider modules over a ring \(R\), but you may assume that \(R\) is a field and the modules are vector spaces, for much of what follows.

The key notions that you should understand are homomorphism, kernel,
image, submodule (or sub-vectorspace), quotient module (or quotient vectorspace) and cokernel.

Definition. A pair of module homomorphisms $j : M \to N$ and $q : N \to P$ is said to be exact at N if $\text{Im}(j) = \text{Ker}(q)$. These homomorphisms form a short exact sequence if the sequence $0 \to M \to N \to P \to 0$ is exact at each of M, N and P, i.e., if j is a monomorphism (one-to-one), q is an epimorphism (onto) and $\text{Im}(j) = \text{Ker}(q)$. Thus M is isomorphic to a submodule of N and $P \cong N/j(M)$. Note that if R is a field then $\dim_R N = \dim_R M + \dim_R P$.

Let R be a ring.

Definition. An R-chain complex C_* is a sequence of R-modules C_n and homomorphisms $\partial_n : C_n \to C_{n-1}$ such that $\partial_{n-1} \partial_n = 0$ for all n. The images and kernels of these differentials ∂_n define submodules $B_n = \text{Im}(\partial_{n+1})$ and $Z_n = \text{Ker}(\partial_n)$, called the boundaries and cycles in degree n, respectively. Clearly $B_n \leq Z_n \leq C_n$ (since $\partial \partial = 0$), and so we may define homology modules $H_n(C_*) = Z_n/B_n$.

In the cases of interest to us we shall usually have $C_n = 0$ for all $n < 0$.

Definition. A homomorphism α_* between two chain complexes C_* and D_* is a sequence of homomorphisms $\alpha_n : C_n \to D_n$ such that $\alpha_n \partial_{n+1} = \partial_n \alpha_{n+1}$, for all n. It follows easily that α_n maps boundaries to boundaries and cycles to cycles, and so induces a homomorphism $H_n(\alpha_*) : H_n(C_*) \to H_n(D_*)$. If $\gamma_* = \beta_* \alpha_*$ is the composite of two chain homomorphisms then $H_n(\gamma_*) = H_n(\beta_*)H_n(\alpha_*)$ for all n, while $H_n(id_{C_*}) = id_{H_n(C_*)}$. (In the language of categories, Homology is functorial).

Exercise 2. Let F be a field. Suppose that the following diagram of vector spaces and linear maps is commutative, with exact rows:

\[
\begin{array}{cccccc}
A_1 & \longrightarrow & A_2 & \longrightarrow & A_3 & \longrightarrow & A_4 & \longrightarrow & A_5 \\
\alpha \downarrow & & \beta \downarrow & & \gamma \downarrow & & \delta \downarrow & & \epsilon \downarrow \\
B_1 & \longrightarrow & B_2 & \longrightarrow & B_3 & \longrightarrow & B_4 & \longrightarrow & B_5
\end{array}
\]

Let $p_i : A_i \to A_{i+1}$ and $q_j : B_j \to B_{j+1}$ be the horizontal maps. Show that (i) if α is onto and β and δ are 1-1 then γ is 1-1; (ii) if β and δ are onto and ϵ is 1-1 then γ is onto. Identify clearly where each hypothesis is used.
(Hint for (i): suppose that \(a \in A_3 \) and \(\gamma(a) = 0 \). Show \(p_3(a) = 0 \) hence \(a = p_2(a') \) for some \(a' \in A_2 \). And so on ... Part (ii) is similar). The argument applies without change to modules over a ring.

Exact sequences of complexes

A sequence of chain complexes \(C_* \rightarrow D_* \rightarrow E_* \) is exact if each of the corresponding sequences of modules \(C_n \rightarrow D_n \rightarrow E_n \) is exact at \(D_n \), for all \(n \). If \(0 \rightarrow C_* \rightarrow D_* \rightarrow E_* \rightarrow 0 \) is a short exact sequence of chain complexes then there are connecting homomorphisms from \(H_n(E_*) \) to \(H_{n-1}(C_*) \), for all \(n \), giving rise to a long exact sequence of homology:

\[
\cdots H_{n+1}(E_*) \xrightarrow{\delta} H_n(C_*) \rightarrow H_n(D_*) \rightarrow H_n(E_*) \xrightarrow{\delta} H_{n-1}(C_*) \rightarrow \cdots
\]

Moreover the connecting homomorphisms \(\delta \) are natural transformations: a morphism of short exact sequences of complexes gives rise to a commuting diagram with two parallel long exact sequences of homology.

In particular, if \(C_* \) is a subcomplex of \(D_* \) (i.e., if each homomorphism \(: C_q \rightarrow D_q \) is a monomorphism) then the differentials induce differentials on the quotient modules \(D_q/C_q \), and we obtain a short exact sequence

\[
0 \rightarrow C_* \rightarrow D_* \rightarrow (D/C)_* \rightarrow 0.
\]

The special case in which the complexes \(C_* \), \(D_* \) and \(E_* \) are each trivial except in degrees 1 and 0 is known as the **Snake Lemma**, and then asserts that there is a six-term exact sequence

\[
0 \rightarrow \ker(\gamma_1) \rightarrow \ker(\delta_1) \rightarrow \ker(\epsilon_1) \rightarrow \coker(\gamma_1) \rightarrow \coker(\delta_1) \rightarrow \coker(\epsilon_1) \rightarrow 0.
\]

Conversely, the Snake Lemma can be used to establish the long exact sequence in general.

Exercise 3. Show that the long exact sequence of homology determined by a short exact sequence of chain complexes is indeed exact.

We shall later define the notion of chain homotopy between chain homomorphisms, and take the linear duals to obtain cochain complexes and cohomology.
Euler characteristic

Suppose now that R is a field and that all the vector spaces C_n are finite dimensional, and are 0 for all but finitely many values of n. The alternating sum of the dimensions $\chi(C_\ast) = \sum (-1)^n \text{dim}_R C_n$ is then a well-defined integer, called the *Euler characteristic* of C_\ast.

Exercise 4. Show that $\chi(C_\ast) = \sum (-1)^n \text{dim}_R H_n(C_\ast)$

$$= \sum (-1)^n \left(\text{dim}_F \text{Ker}(\partial_n) - \text{dim}_F \text{Im}(\partial_{n+1}) \right).$$

(This is an exercise in induction together with the formula $\text{dim}_R N = \text{dim}_R M + \text{dim}_R P$, if M is a subspace of N with quotient P).

Exercise 5. Show that any triangulation of the torus T requires at least 7 vertices.

(Hint: Use the Euler characteristic, and note each edge is determined by its vertices, each edge is common to two faces and each face is triangular).

Exercise 6. Generalize (5) to the other compact, connected surfaces without boundary. (For this you need to know that every such surface may be obtained from S^2 by replacing $g \geq 0$ disjoint closed discs with copies of the punctured torus $T_0 = T - \text{int}D^2$ in the orientable case, or by replacing $c \geq 1$ disjoint closed discs with copies of the Möbius band in the nonorientable case).

Exercise 7.

Let G be a finite graph in which no pair of vertices is connected by more than one edge. Suppose that G is embedded in a surface S and let $\{F_i \mid i \in I\}$ be the set of components of $S - G$. Show that $\chi(S) = V - E + \sum_{i \in I} \chi(F_i)$, where G has V vertices and E edges.

Singular homology

Let X be a space and R a ring.

Let S be a set. A function $f : S \to R$ is 0 a.e. if $f(s) = 0$ for all but finitely many $s \in S$. For each $s \in S$ let $e_s : S \to R$ be the function defined by $e_s(s) = 1$ and $e_s(t) = 0$ if $t \neq s$. Then e_s is 0 a.e. The *free R-module with basis S* is the set $R^{(S)} = \{ f : S \to R \mid f \text{ is 0 a.e.} \}$, with the obvious R-module structure. Every element in this module is uniquely expressible as
a linear combination of the “basis” elements e_s. (In fact $f = \sum_{s \in S} f(s) e_s$). It has the “universal property”: homomorphisms from R^S to an R-module M correspond bijectively to functions from S to (the underlying set of) M.

Definition. A singular q-simplex in X is a map $\sigma : \Delta_q \to X$. The module of singular q-chains on X with coefficients in R is the free module $C_q(X; R)$ with basis the singular q-simplices in X. In other words, it is the set of finite formal sums $\sum r_\sigma \sigma$ where the coefficients r_σ are in the ring R and are 0 except for all but finitely many σs. Note that $C_q(X; R) = 0$ for all $q < 0$ and $C_0(X; R)$ is the free module with basis X. In general if $q \geq 0$ then $C_q(X; R)$ is usually huge - the basis is uncountable. We shall often simplify the notation to $C_q(X)$ if the coefficients are understood.

For each $0 \leq j \leq q$ let $F^j_q : \Delta_{q-1} \to \Delta_q$ be defined by $F^j_q(t_0, \ldots t_{q-1}) = (t_0, \ldots t_{j-1}, 0, t_j \ldots t_{q-1})$. Then the composite $\sigma^{(j)} = \sigma F^j_q$ is a singular $(q-1)$-simplex in X, called the j^{th} face of σ. We may now define the boundary operator $\partial_q : C_q(X) \to C_{q-1}(X)$ by $\partial(\sigma) = \Sigma (-1)^j \sigma^{(j)}$.

Exercise 8. Verify that $\partial_{q-1} \partial_q = 0$ for all $q \geq 2$.

Thus we obtain a chain complex, the singular chain complex of X, with coefficients R. The homology of this complex is the singular homology of X. Notation: $H_q(X; R)$ (or just $H_q(X)$). We shall see later that it agrees with the simplicial homology for polyhedra, but it is clearly defined for all spaces and depends only on the topology.

Example. If X is a one-point space $H_0(X; R) \cong R$ and $H_j(X; R) = 0$ for all $j > 0$.

Definition. A path from P to Q in X is a map $f : [a, b] \to X$ such that $f(a) = P$ and $f(b) = Q$. If any two points in X are the endpoints of such a path then X is path-connected; in general, every point is in some maximal path-connected subset of X, and X is a disjoint union of such path components.

Example. Any convex subset of \mathbb{R}^N is path-connected. If X is path connected and $f : X \to Y$ is a map then $f(X)$ lies in some path component of Y.

A path in X determines a singular 1-simplex in X and so $H_0(X; R) \cong R$
if X is path-connected.

Let $\{X_\alpha | \alpha \in A\}$ be the set of path components of X, and let $R^{(A)}$ be the free R-module with basis A. For each path component X_α choose a point $P_\alpha \in X_\alpha$ and define a function $n_\alpha : C_0(X; R) \to R$ by $n_\alpha(x) = 1$ if $x \in X_\alpha$ and 0 otherwise. Let $m(\alpha) = [P_\alpha] \in H_0(X; R)$ for $\alpha \in A$ and $n([x]) = (n_\alpha(x)) \in R^{(A)}$ for $x \in X$. Then $mn = 1_{H_0(X; R)}$ and $nm = 1_{R^{(A)}}$.

Exercise 9. Let $X = S^0$ be the 0-sphere, i.e., the 2-element discrete set. Show that if R is any ring $H_0(X; R) \cong R^2$ and $H_q(X; R) = 0$ if $q > 0$.

In general, $H_q(X) \cong \bigoplus H_q(X_\alpha)$, where the sum is taken over all the path components X_α. As a consequence, we may often assume that our spaces are path connected.

Exercise 10. Let X be the union of two disjoint open subsets Y and Z (i.e., $Y \cup Z = X$ and $Y \cap Z = \emptyset$). Show that $H_q(X) = H_q(Y) \oplus H_q(Z)$ for all q.

Definition. Let R be a field. The q^{th} Betti number of X (with coefficients R) is $\beta_q(X; R) = \dim_R H_q(X; R)$. If all the Betti numbers are finite, and are 0 for q large, then the **Euler characteristic** of X is $\chi(X; R) = \Sigma(-1)^q \beta_q(X; R)$.

The Betti numbers numbers depend on the coefficients R in general. We shall see that if X is a finite cell complex with c_q q-cells then $\chi(X; R) = \Sigma(-1)^q c_q$. In particular, this number is independent of the coefficient field, and moreover does not depend on how X is represented as a cell complex.

Functoriality, relative homology, long exact sequence

Let $f : X \to Y$ be a map. If $\sigma : \Delta_q \to X$ is a singular q-simplex in X then $f\sigma$ is a singular q-simplex in Y. Thus f determines homomorphisms $C_q(f) : C_q(X) \to C_q(Y)$, which are compatible with the differentials $(\partial_q^Y C_q(f) = C_q-1(f) \partial_q^X)$ and so together give a chain homomorphism $C_\ast(f)$. It is easily verified that $C_\ast(id_X) = id_{C_\ast(X)}$ and $C_\ast(g\circ f) = C_\ast(g)C_\ast(f)$, i.e., that the chain complex construction is functorial. Such chain homomorphisms induce homomorphisms $H_q(f) : H_q(X) \to H_q(Y)$, which again are functorial ($H_q(id_X) = id_{H_q(X)}$ and $H_q(g\circ f) = H_q(g)H_q(f)$, for all q).

Exercise 11. Verify that H_q is a functor, i.e., that $H_q(1_X) = 1_{H_q(X)}$ and $H_q(fg) = H_q(f)H_q(g)$.

We shall need to consider also relative homology, for pairs \((X, A)\), where \(A\) is a subspace of \(X\). The inclusion of \(A\) into \(X\) induces natural monomorphisms from \(C_q(A)\) to \(C_q(X)\), for all \(q\). The quotient module \(C_q(X, A) = C_q(X)/C_q(A)\) is the module of relative \(q\)-chains. Thus we have a short exact sequence of chain complexes

\[
0 \to C_*(A) \to C_*(X) \to C_*(X, A) \to 0,
\]

and a corresponding long exact sequence of homology for the pair \((X, A)\).

We may describe the relative homology modules more explicitly as follows. Let \(Z_q(X, A)\) be the module of \(q\)-chains \(c\) on \(X\) such that \(\partial c\) is in the image of \(C_{q-1}(A)\), and let \(B_q(X, A)\) be the submodule generated by \(\partial C_{q+1}(X)\) and the image of \(C_q(A)\). Then it follows easily from the standard isomorphism theorems of linear algebra that

\[
H_q(X, A) \cong Z_q(X, A)/B_q(X, A).
\]

We shall see that if \(A\) is a well-behaved subset of \(X\) then the relative homology depends largely on the difference \(X - A\); in this way we can hope to analyze the homology of a space by decomposing the space into simpler pieces.

We have shown that homology is functorial, the homology of a 1-point space is concentrated in degree 0, and that there is a long exact sequence of homology corresponding to any pair of spaces \((X, Y)\). There remain two fundamental properties of homology that we must develop: “homotopy invariance” and “excision”. Establishing these very important properties is rather delicate, and so we shall state them first, and defer the proofs, so that we can get on with computing the homology of a variety of spaces. (It can be shown that singular homology for cell-complexes may be characterized axiomatically by the properties listed in this paragraph).

Homotopy

If \(f : X \to Y\) is a homeomorphism then (for all \(n\)) \(H_n(f)\) is an isomorphism, since it has inverse \(H_n(f^{-1})\). In fact much weaker conditions on \(f\) imply that the induced homomorphisms are isomorphisms. We shall see that homology is a rather coarse invariant, in that it cannot distinguish \(\mathbb{R}^n\) from a point.
Definition. Two maps \(f, g : X \to Y \) are homotopic if there is a map \(F : X \times [0,1] \to Y \) such that \(f(x) = F(x,0) \) and \(g(x) = F(x,1) \) for all \(x \in X \). We shall write \(f \sim g \).

Such a homotopy \(F \) determines a 1-parameter family of maps \(F_t : X \to Y \) by \(F_t(x) = F(x,t) \) for all \(x \in X \), which we may think of as a path in the space of all maps from \(X \) to \(Y \). We use the above formulation to avoid discussing the topology of spaces of maps.

Being homotopic is an equivalence relation: \(f \sim f \); if \(f \sim g \) then \(g \sim f \); if \(f \sim g \) and \(g \sim h \) then \(f \sim h \).

Let \([X;Y]\) be the set of homotopy classes of maps from \(X \) to \(Y \). If \(f \sim g : X \to Y \) and \(h \sim k : Y \to Z \) then \(hf \sim kg : X \to Z \). Since composition of homotopy classes is well-defined, we may define the homotopy category \(((\text{Hot}))\), with objects topological spaces and \(\text{Hom}_{((\text{Hot}))}(X,Y) = [X;Y] \).

Definition. A map \(f : X \to Y \) is a homotopy equivalence if there is a map \(h : Y \to X \) such that \(hf \sim \text{id}_X \) and \(fh \sim \text{id}_Y \). We then say that \(X \) and \(Y \) are homotopy equivalent, and write \(X \simeq Y \). (We write \(X \approx Y \) if \(X \) and \(Y \) are homeomorphic).

Example. \(\mathbb{R}^n \) is homotopy equivalent to a point. \(\mathbb{R}^n - \{O\} \simeq S^n \).

Homotopy equivalence is again an equivalence relation.

Definition. A space \(X \) is contractible if it is homotopy equivalent to a one point space.

Exercise 12. Let \(f, g : S^{q-1} \to A \) be homotopic maps. Show that \(A \cup_f e^q \) and \(A \cup_g e^q \) are homotopy equivalent.

[Hint: we know very little about \(A \), so any map \(\phi : A \cup_f e^q \to A \cup_g e^q \) that we construct can only have value \(\phi(a) = a \) for points \(a \in A \). On the other hand, we may relate the homotopy parameter \(t \) to the radial coordinate in the \(k \)-disc \(D^k \) used in the construction of these spaces].

Exercise 13. Let \(f : S^{k-1} \to X \) be a map and \(g : X \to Y \) a homotopy equivalence. Show that \(Y \cup_{gf} e^k \) is homotopy equivalent to \(X \cup_f e^k \).

[Hint: As in Exercise 12 we must use the given maps and implicitly given homotopies on \(X \) and \(Y \). The only room for constructing new maps is in
defining maps on the images of \(D^k \).

(These questions are moderately difficult, but do not require any algebraic topology beyond the definition of homotopy).

In particular, if \(X \) is path connected then \(X \cup f \sim X \vee S^1 \).

Claim (to be proven later:) if \(f \sim g \) then \(H_n(f) = H_n(g) \) for all \(n \).

In particular, homotopy equivalent spaces have isomorphic homology, and so \(H_n(\mathbb{R}^m) = 0 \) for all \(n > 0 \) and all \(m \geq 0 \). (On the other hand we shall see that if we delete the origin then the punctured euclidean spaces \(\mathbb{R}^m - \{O\} \) all may be distinguished by their homology). It can be shown that there is a near-converse: if \(X \) and \(Y \) are “simply-connected” cell-complexes (e.g. if they have no 1-cells) and \(f : X \to Y \) induces isomorphisms on all homology groups then \(f \) is a homotopy equivalence. (Whitehead’s Theorem: this is beyond the scope of this course).

Example. Let \(D^n_+ = \{(x_0, \ldots x_n) \in S^n \mid x_n \geq 0\} \) and \(D^n_- = \{(x_0, \ldots x_n) \in S^n \mid x_n \leq 0\} \). Then \(D^n_+ \cup D^n_- = S^n \) and \(D^n_+ \cap D^n_- = S^{n-1} \). Let \(N = (0, \ldots , 0, 1) \in S^n \) be the “north pole”.

Claim (using excision; to be proven later): the inclusion of the pair \((D^n_+, D^n_+ - \{N\})\) into \((S^n, S^n - \{N\})\) induces isomorphisms on all homology groups.

Now \(D^n_+ \) and \(S^n - \{N\} \) are both contractible, while \(D^n_+ - \{N\} \simeq S^{n-1} \). On applying the long exact sequences of homology for these spaces and making use of the isomorphisms coming from excision and homotopy equivalences we find that \(H_q(S^n) \simeq H_{q-1}(S^{n-1}) \), provided \(q \geq 2 \). If \(q = 1 \) we get an exact sequence \(0 \to H_1(S^n) \to H_0(S^{n-1}) \to H_0(D^n_+) \). Since \(S^0 = \{1, -1\} \) and \(S^n \) is path connected if \(n > 0 \) it follows that \(H_1(S^n) = 0 \) unless \(n = 1 \), in which case \(H_1(S^1) \simeq \mathbb{R} \). Since \(H_0(S^0) \simeq \mathbb{R}^2 \) and \(H_q(S^0) = 0 \) for \(q > 0 \) we may conclude that \(H_q(S^n) = 0 \) unless \(q = 0 \) or \(n \), while \(H_0(S^n) \simeq H_n(S^n) \simeq \mathbb{R} \) if \(n > 0 \).

Exercise 14. Let \(W \) be a space. The cone over \(W \) is the space \(CW = W \times [0, 1]/W \times \{0\} \) (i.e., identify all points in \(W \times \{0\} \) to one point). Show that \(CW \) is contractible. Let \(CW_+ \) and \(CW_- \) be two copies of \(CW \). The suspension of \(W \) is the space \(SW \) obtained by identifying the copies of \(W \times \{1\} \) in \(CW_- \) and \(CW_+ \), i.e., \(SW = CW_- \cup CW_+ \), where \(CW_- \cap CW_+ = W \). Assuming
In order to do this, we shall specialise further, to the case $q_i H_{i+1}$. Let

We shall show that this follows by functoriality from a special case.

Proof. Show that if $\pi_i X$ have small open neighbourhoods V such that $V = \{p\}$ is contractible.

Exercise 15. Let V be an open subset of \mathbb{R}^n, and $p \in V$. Show that $H_{n-1}(V^n - \{p\})$ is a direct summand of $H_{n-1}(V - \{p\})$.

Deduce that if \mathbb{R}^n is homeomorphic to an open subset of \mathbb{R}^n then $m = n$. A variation on this argument shows that $\partial R^n_+ = \partial R^n_+$, since points $p \in \partial R^n_+$ have small open neighbourhoods V such that $V - \{p\}$ is contractible.

Exercise 16. The fundamental theorem of algebra. Let $P(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_0$ be a polynomial of degree $n \geq 1$ with complex coefficients. Show that if r is large enough $P_t(z) = (1 - t)P(z) + tz^n$ has no zeroes on the circle $|z| = r$ for any $0 \leq t \leq 1$. Hence the maps $z \rightarrow z^n$ and $z \rightarrow P(rz)/|P(rz)|$ are homotopic as maps from S^1 to S^1. If P has no zeroes the latter map extends to a map from the unit disc D^2 to S^1. CONTRADICTION. Why?

Homotopic maps induce the same homomorphism

Theorem. Let f and g be homotopic maps from X to Y. Then $H_q(f) = H_q(g)$ for all q.

Proof. We shall show that this follows by functoriality from a special case. Let $F : X \times [0,1] \rightarrow Y$ be a homotopy from $F_0 = f$ to $F_1 = g$, and let $i_t : X \rightarrow X \times [0,1]$ be the map defined by $i_t(x) = (x,t)$ for all $x \in X$ and $0 \leq t \leq 1$. Then $F_t = Fi_t$, so $H_q(f) = H_q(F)H_q(i_0)$ and $H_q(g) = H_q(F)H_q(i_1)$, for all q. Thus it shall suffice to show that $H_q(i_0) = H_q(i_1)$, for all q. In other words, we may assume that $Y = X \times [0,1]$ and $F = id_Y$ (so that $F_t = i_t$).

We shall define “prism” operators $P_q : C_q(X) \rightarrow C_{q+1}(X \times [0,1])$ such that $C_q(i_1) - C_q(i_0) = \partial_{q+1}^X P_q + P_{q-1} \partial_q X$. Thus if ζ is a singular q-cycle on X we have $C_q(i_1)(\zeta) - C_q(i_0)(\zeta) = \partial_{q+1}^X P_q(\zeta)$, and so $H_q(i_1)(\zeta) = H_q(i_0)(\zeta)$. In order to do this, we shall specialise further, to the case $X = \Delta_q$. Let $E_i = (0,0,\ldots,0,1,0\ldots)$ be the i^{th} vertex of Δ_q, and let $A_i = (E_i,0)$ and $B_i = (E_i,1)$, for $0 \leq i \leq q$. Then $\{A_i, B_i\}$ are the $2q + 2$ vertices of $\Delta_q \times [0,1]$.

Let $\pi_q = \Sigma_{i=0}^{q}(-1)^i(A_0, \ldots, A_i, B_{i+1}, \ldots, B_q)$, where $(A_0, \ldots, A_i, B_{i+1}, \ldots, B_q)$ is
the singular \((q + 1)\)-simplex determined by the linear map which sends \(E_j\) to \(A_j\) if \(j \leq i\) and to \(B_{j-1}\) if \(j > i\). Thus \(\pi_{q+1}\) is the singular \((q + 1)\)-chain on \(\Delta_q \times [0,1]\) corresponding to a particular triangulation of this “prism on \(\Delta_q\)” as a union of affine \((q + 1)\)-simplices. Note that the boundary of this prism consists of the top and bottom copies of \(\Delta_q\) and the union of the prisms on the \((q - 1)\)-dimensional faces of \(\Delta_q\).

Define \(P_q : C_q(X) \to C_{q+1}(X \times [0,1])\) by \(P_q(\sigma) = C_{q+1}(\sigma \times id_{[0,1]})(\pi_{q+1})\) for any singular \(q\)-simplex \(\sigma\) in \(X\). We may then check that \(\partial_{q+1}^{X \times [0,1]} P_q = C_q(i_1) - C_q(i_0) - P_{q-1} \partial_q^X\), and so these homomorphisms \(P_q\) are as required. □

Remark. The name “prism” is suggested by the shape of \(\Delta_2 \times [0,1]\).

The maps \(C_{q+1}(F)P_q\) determine a chain homotopy from \(C_\ast(f)\) to \(C_\ast(g)\).

Exercise. (unnumbered). Work through the details for \(q = 2\).

We shall need also a relative version of this result. Two maps \(f, g : (X, A) \to (Y, B)\) are homotopic as maps of pairs if there is a homotopy \(F_t\) from \(f\) to \(g\) such that \(F_t(A) \subseteq B\) for all \(0 \leq t \leq 1\).

Exercise (unnumbered). Prove the following

Theorem. Let \(f, g : (X, A) \to (Y, B)\) be homotopic as map of pairs. Then \(H_q(f) = H_q(g)\) for all \(q\).

(This is tedious to do properly, and I shall not attempt it in class).

Excision

Let \(X\) be a space with a subspace \(A\), and let \(U \subseteq A\). Then there is an inclusion of pairs \((X - U, A - U) \to (X, A)\).

Claim: [Excision] If the closure of \(U\) is contained in the interior of \(A\) then this inclusion induces isomorphisms on relative homology, \(H_q(X - U, A - U; R) \cong H_q(X, A; R)\), for all \(q\) and any coefficients \(R\).

The hypotheses on \(U\) can be relaxed considerably, in conjunction with homotopy invariance. We shall defer the proof of this excision property for several lectures, and instead concentrate on using it. We have already sketched one use, to compute the homology of the spheres.
Examples.

(1) The figure-eight \(X = S^1 \lor S^1 \). This is the one point union of two circles (e.g., the set \(\{(x, y) \in \mathbb{R}^2 \mid (x^2 + y^2)^2 = 4x^2\} \)). Let \(E, W \) be the midpoints of the two circles and let \(O \) be the point of intersection of the two circles. Let \(A = X - \{E, W\} \) and \(U = \{O\} \). Then \(A \) is contractible, while \(X - U \) and \(A - U \) are the disjoint unions of two and four contractible pieces (arcs), respectively. It follows easily that \(H_q(X) = 0 \) if \(q > 1 \), \(H_1(X) \cong \mathbb{Z}^2 \) and \(H_0(X) \cong \mathbb{Z} \).

(2) Adjunction spaces. (See figure). Let \(X = A \cup f e^n \) and let \(B = X - \{O\} \), where \(O \) is the centre of the \(n \)-cell adjoined to \(A \). Let \(U = X - (1/2)D^n \). The natural inclusion \(i : A \to B \) is a homotopy equivalence, with homotopy inverse the map \(j : B \to A \) such that \(j(a) = a \) for all \(a \in A \) and \(j(d) = f(d/||d||) \) for all \(d \in B - A \). (The maps \(f_t : B \to B \) given by \(f_t(a) = a \) for all \(a \in A \), \(f_t(d) = d/(1 - t + t||d||) \) if \(d \in B - A \) and \(t < 1 \) and \(f_1(d) = j(d) \) define a homotopy from \(f_0 = id_B \) to \(ij \)). Hence the homomorphisms \(H_q(X, A) \to H_q(X, B) \) are isomorphisms, by the “5-Lemma”. (See Exercise 2). The homomorphisms \(H_q((1/2)D^n, (1/2)D^n - \{O\}) \to H_q(X, B) \) and \(H_q((1/2)D^n, (1/2)D^n - \{O\}) \to H_q(D^n, D^n - \{O\}) \) are isomorphisms, by excision, while \(H_q(D^n, S^{n-1}) \to H_q(D^n, D^n - \{O\}) \), by homotopy invariance.

We find that \(H_q(A) \cong H_q(X) \) if \(q \neq n - 1 \) or \(n \), while there is an exact sequence
\[
0 \to H_n(A) \to H_n(X) \to H_n(X, A)(\cong \mathbb{R}) \to H_{n-1}(A) \to H_{n-1}(X) \to 0.
\]
The map \(f : S^{n-1} \to A \) extends to a map of pairs \((D^n, S^{n-1}) \to (X, A)\), which
induces a map between the long exact sequences of homology for these pairs. Assume for simplicity that $n > 1$. Then the connecting homomorphism from $H_n(D^n, S^{n-1})$ to $H_{n-1}(S^{n-1})$ is an isomorphism. As the homomorphism from $H_n(D^n, S^{n-1})$ to $H_n(X, A)$ is also an isomorphism (by excision), we see that the connecting homomorphism from $H_n(X, A)$ to $H_{n-1}(A)$ is the composite of $H_n-1(f) : H_{n-1}(S^{n-1}) \to H_{n-1}(A)$ with an isomorphism, and in particular has the same image as $H_{n-1}(f)$. In later examples we shall want to identify this homomorphism more explicitly.

Exercise 17. Let X be a finite cell complex of dimension at most n. Show that $H_n(X)$ is torsion free. (Assume the coefficient ring is \mathbb{Z}).

Euler characteristic, graphs and surfaces

Without knowing anything about the homomorphisms induced by attaching maps we may still obtain nontrivial results. Let X be a finite cell complex, with c_q q-cells, and let F be a field. Let $\beta_q(X; F) = \dim_F H_q(X; F)$. Then these dimensions are finite and are 0 for q large, and $\Sigma(-1)^q c_q = \Sigma(-1)^q \beta_q(X; F)$. This number is the Euler characteristic of X, and the equation shows that it is independent of how X is represented as a cell-complex, and also independent of the coefficient field (although the individual Betti numbers $\beta_q(X; F)$ do depend on F).

The proof is by induction on Σc_q, the number of cells in X. The result is clearly true for $X = \emptyset$. Suppose that it holds for the finite cell-complex A, and that $X = A \cup_f e^n$. Then $\beta_q(X) = \beta_q(A)$ if $q \neq n-1$ or n, while $\beta_n(A; F) + 1 - \beta_{n-1}(A; F) = \beta_n(X; F) - \beta_{n-1}(X; F)$ (from the five-term sequence on the previous page). Since $c_q(X) = c_q(A)$ unless $q = n$, while $c_n(X) = c_n(A) + 1$, the inductive step follows easily.

Exercise 18. Let X and Y be finite cell complexes. Show that $X \times Y$ is a finite cell complex and $\chi(X \times Y) = \chi(X) \chi(Y)$.

(Hint: as a set, a finite cell complex is the disjoint union of the ”interiors” of its cells (where the interior of a q-cell e^q of X is the image of $\text{int} D^q$ in X). It follows immediately that $X \times Y$ is the disjoint union of subsets corresponding to $\text{int}(D^{p+q}) = \text{int} D^p \times \text{int} D^q$. The cells of a cell-complex are ordered, and
are attached to the unions of preceding cells. Use a lexical ordering on the cells of the product. Evaluate \(\chi \) by counting the cells: do NOT attempt to compute the homology!

Projective spaces

Let \(F \) be a field (not necessarily commutative).

Given a point \(X = (x_0, \ldots, x_n) \in F^{n+1} - \{O\} \), let \([x_0 : \cdots : x_n] \) be the line through \(O \) and \(X \) in \(F^{n+1} \). Let \(P^n(F) \) (or \(\widetilde{F}P^n \)) be the set of all such lines through \(O \) in \(F^{n+1} \). Two nonzero points determine the same line if and only if they are proportional, i.e., \([x_0 : \cdots : x_n] = [y_0 : \cdots : y_n]\) if and only if there is a \(\lambda \in F^\times = F - \{0\} \) such that \(y_i = \lambda x_i \) for \(0 \leq i \leq n \). Hence \(P^n(F) = (F^{n+1} - \{0\})/F^\times \).

Let \(U_i = \{ [x_0 : \cdots : x_n] \in P^n(F) \mid x_i \neq 0 \} \), for each \(0 \leq i \leq n \). Then \(P^n(F) = \bigcup_{i=0}^{n} U_i \). There are bijections \(\phi_i : U_i \to F^n \), given by
\[
\phi_i([x_0 : \cdots : x_n]) = (x_0/x_i, \ldots, \widehat{x_i}, \ldots, x_n/x_i),
\]
for all \([x_0 : \cdots : x_n] \in U_i \), and with inverse \(\phi_i^{-1}(y_1, \ldots, y_n) = [y_1 : \cdots : y_i : 1 : y_{i+1} : \cdots : y_n] \). Moreover there is an obvious bijection from \(P^{n-1}(F) \) to \(P^n(F) - U_i \).

The group \(GL(n+1, F) \) acts transitively on the lines through \(O \), and so \(P^n(F) \) may be identified with the quotient of \(GL(n+1, F) \) by the subgroup which stabilizes the vector \((1,0,\ldots,0) \in F^{n+1} \). (Note also that the orthogonal group \(O(n+1) \) acts transitively on the lines through \(O \) in \(\mathbb{R}^n \), while the unitary group \(U(n+1) \) acts transitively on the lines through \(O \) in \(\mathbb{C}^n \).

Suppose henceforth that \(F = \mathbb{R}, \mathbb{C} \) or \(\mathbb{H} \), and let \(d = \dim_F F \) (\(= 1, 2 \) or \(4 \)). Each line through \(O \) in \(F^{n+1} \cong \mathbb{R}^{(n+1)d} \) passes through the unit sphere \(S^{(n+1)d-1} \), and two points on the unit sphere determine the same line if and only if one is a multiple of the other by an element of \(S^{d-1} \) (\(= \{ \pm 1 \}, S^1 \) or \(S^3 \)), the subgroup of \(F^\times \) consisting of elements of absolute value 1. Thus \(P^n(F) = S^{(n+1)d-1}/S^{d-1} \).

As \(F^n \) has a natural metric topology, we may topologize \(P^n(F) \) by declaring the subsets \(U_i \) to be open and the bijections \(\phi_i \) to be homeomorphisms. The map \(h : D^{nd} \to P^n(F) \) given by \(h(x_1, \ldots, x_{nd}) = [x_1 : \cdots : x_{nd} : 1 - |x|] \) is a continuous surjection, and maps the interior of \(D^{nd} \) homeomorphically
onto U_n, while it maps $S^n = \partial D^n$ onto $P^n(F) - U_n$. If we identify $P^n(F) - U_n$ with $P^{n-1}(F)$ then $h|_{S^{n-1}}$ is the canonical map. Hence $P^n(F)$ is compact, since it is the continuous image of a compact set. Moreover $P^n(F) = P^{n-1}(F) \cup e^n$, and so we obtain a cell structure inductively. In particular, $P^n(\mathbb{R})$ has one cell in each dimension $\leq n$, $P^n(\mathbb{C})$ has one 2-cell for each $q \leq n$ and $P^n(\mathbb{H})$ has one 4q-cell for each $q \leq n$.

Special cases. $P^1(\mathbb{F}) = F \cup \{\infty\} = S^2$, where $\infty = [1 : 0]$, and points $[x : y] \in U_1$ are identified with the ration $x/y \in F$. In particular, $P^1(\mathbb{C})$ is the extended complex plane. The map $h : S^3 \rightarrow S^2 = P^1(\mathbb{C})$ given by $h(u, v) = [u : v]$ for all $(u, v) \in \mathbb{C}^2$ such that $|u|^2 + |v|^2 = 1$ is known as the Hopf fibration.

$P^n(\mathbb{R})$ is obtained from the n-sphere by identifying antipodal points. In particular, let $S^n = D_+ \cup E \cup D_-$, where $D_+ = \{(x, y, z) \in S^n \mid z \geq \frac{1}{2}\}$, $D_- = \{(x, y, z) \in S^n \mid z \geq \frac{1}{2}\}$ and $E = \{(x, y, z) \in S^n \mid |z| \leq \frac{1}{2}\}$. Since the antipodal map interchanges D_+ and D_- and identifying antipodal points of E gives a Möbius band we see that $P^2(\mathbb{R}) \cong M_b \cup D^2$ is the union of a Möbius band with D^2.

Some explicit chains

Let $p : \Delta_1 \rightarrow [0, 1]$ be the homeomorphism given by projection onto the Y-axis: $p(x, y) = y$ if $(x, y) \in \Delta_1$. A path $\gamma : [0, 1] \rightarrow X$ determines a singular 1-simplex $\tilde{\gamma} = \gamma p$.

1. Let $X = I = [0, 1]$, $\partial I = \{0, 1\}$ and $\gamma = id_I$. Then \tilde{id}_I is a relative 1-cycle on $(I, \partial I)$ and its homology class generates $H_1(I, \partial I) \cong \mathbb{Z}$. (Consider the long exact sequence of homology for the pair $(I, \partial I)$, and observe that $\delta[\tilde{id}_I] = [1] - [0]$ generates the kernel of the natural homomorphism from $H_0(\partial I) \cong \mathbb{Z}^2$ to $H_0(I) \cong \mathbb{Z}$.)

2. Let $\alpha, \beta : [0, 1] \rightarrow X$ be paths in X with $\alpha(1) = \beta(0)$ and define a path $\alpha \cdot \beta$ by concatenation: $\alpha \cdot \beta(t) = \alpha(2t)$ if $0 \leq t \leq 1/2$ and $\alpha \cdot \beta(t) = \beta(2t - 1)$ if $1/2 \leq t \leq 1$. Let $\tau : \Delta_2 \rightarrow X$ be the singular 2-simplex defined by $\tau(x, y, z) = \alpha(1 - x + z)$ if $x \geq z$ and $\tau(x, y, z) = \beta(z - x)$ if $z \geq x$. Then $\partial \tau = \tilde{\beta} - \tilde{\alpha} \cdot \tilde{\beta} + \tilde{\alpha}$.

3. Let \(\bar{\alpha}(t) = \alpha(1-t) \) and let \(\psi : \Delta_2 \to X \) be the singular 2-simplex defined by \(\psi(x, y, z) = \alpha(y) \). For any \(q \geq 0 \) let \(*_q \) be the constant singular \(q \)-simplex with value \(\alpha(0) \). Then \(\partial(\psi + *_2) = \hat{\bar{\alpha}} - *_1 + \hat{\alpha} + *_1 - *_1 = \bar{\alpha} + \bar{\alpha} \).

4. Let \(P \) be a polygon with \(n \) sides \(\alpha_j \), for \(1 \leq j \leq n \) (numbered consecutively). Then \(\sigma = \Sigma \hat{\alpha}_j \) is a 1-cycle on \(\partial P \sim S^1 \), which generates \(H_1(\partial P) \sim \mathbb{Z} \). For let \(U = \partial P - \text{int}\alpha_1 \). Then \(H_1(\partial P) \cong H_1(\partial P, U) \cong H_1(\alpha_1, \partial \alpha_1) \), and the images of \(\sigma \) and \(\hat{\alpha}_1 \) in \(H_1(\partial P, U) \) agree. (Here \(\hat{\alpha}_1 \) is considered as a relative 1-cycle on \((\alpha_1, \partial \alpha_1) \sim (I, \partial I) \)).

5. Similarly, if \(\epsilon(t) = e^{2\pi it} \) for \(0 \leq t \leq 1 \) then \(\epsilon \) generates \(H_1(S^1) \). Moreover, if \(\alpha_j(t) = e^{2\pi i(j-1+t)/n} \), for \(1 \leq j \leq n \) then \([\epsilon] = [\Sigma \hat{\alpha}_j]\) in \(H_1(S^1) \).

6. Let \(f_n : S^1 \to S^1 \) be the \(n \)th power map: \(f_n(z) = z^n \) for all \(z \in S^1 \). Then \(f_n \alpha_j = \epsilon \) for all \(j \), Hence \(H_1(f_n([\epsilon]) = [\Sigma f_n \alpha_j] = n[\epsilon] \) in \(H_1(S^1) \). Thus \(f_n \) induces multiplication by \(n \) on \(H_1(S^1) \).

7. Generalization (not proven). Let \(P \) be a convex polyhedron in \(R^n \), whose faces are triangulated as \((n-1)\)-simplices. Then if these faces are consistently oriented their formal sum represents a generator of \(H_{n-1}(\partial P) \cong H_{n-1}(S^{n-1}) \cong \mathbb{Z} \).

Wedge, bouquets, the torus

Let \(X \) and \(Y \) be spaces with given basepoints \(x_0, y_0 \). The one-point union of \(X \) and \(Y \) is \(X \vee Y = (X \amalg Y)/(x_0 = y_0) \). (Thus \(S^1 \vee S^1 \) is the figure eight). The common image of \(x_0 = y_0 \) represents a natural basepoint for \(X \vee Y \).

Assume that the base-points have contractible neighbourhoods in \(X \) and \(Y \),
respectively. If X and Y are path-connected then so is $X \vee Y$, and $H_q(X \vee Y) \cong H_q(X) \oplus H_q(Y)$ for all $q > 0$.

Example. $\vee S^1$ is defined inductively. It may also be obtained by adjoining r 1-cells to a point.

The torus $T = S^1 \times S^1$ may be constructed by adjoining a 2-cell to $S^1 \vee S^1$. More precisely, we may construct T by identifying opposite sides of a rectangle R. Let $U \subset Y \subset R$ be proper subrectangles. Let $X = T - U$. Then $T = X \cup Y$, $X \cap Y = Y - U \simeq S^1$, $X \simeq S^1 \vee S^1$ and Y is contractible. Since $H_q(T, X) \cong H_q(Y, X \cap Y)$ (by excision), we get $H_q(T) = 0$ if $q > 2$. We also obtain an exact sequence $0 \rightarrow H_2(T) \rightarrow H_1(X \cap Y) \rightarrow H_1(X) \rightarrow H_1(T) \rightarrow 0$.

Let A_1, A_2, A_3, A_4 be the vertices of R and K, L, M, N be the vertices of Y. Then $H_1(X \cap Y)$ is generated by the image of $KL + LM + MN + NK$, which is homologous in $R - U$ to $A_1A_2 + A_2A_3 + A_3A_4 + A_4A_1$, and hence represents $a + b - a - b = 0$ in $H_1(X)$. Hence the homomorphism from $H_1(X \cap Y)$ to $H_1(X)$ induced by the inclusion is trivial, and so $H_1(T) \cong \mathbb{Z}$ and $H_2(T) \cong \mathbb{Z}$.

The other surfaces may also be obtained by adjoining a single 2-cell to a wedge of circles. In particular, $T \# T = \vee_4 S^1 \cup e^2$ may be obtained from a regular octagon in the hyperbolic plane by identifying sides in pairs. This construction generalizes further: $\#_g T \simeq \vee_2 S^1 \cup e^2$.

For simple higher dimensional examples we may look at products of spheres: $S^p \times S^q = (S^p \times D^q) \cup (D^p \times S^q) \cup (D^p \times D^q)$

Hence $S^p \times S^q \simeq S^p \vee S^q \cup e^{p+q}$.

Exercise 19. Compute the homology of $P^2(\mathbb{R})$ by using the decomposition
$P^2(\mathbb{R}) = S^1 \cup_f D^2$ where $f : S^1 = \partial D^2 \to S^1$ is the map sending z to z^2. (You may assume that $H_1(f) : H_1(S^1; \mathbb{Z}) \to H_1(S^1; \mathbb{Z}) \cong \mathbb{Z}$ is multiplication by 2. This follows from the Hurewicz Theorem).

Exercise 20. Complex projective n-space may be constructed inductively, i.e., $P^{n+1}(\mathbb{C}) = P^n(\mathbb{C}) \cup_f D^{2n+2}$ for some map $f : S^{2n+1} \to P^n(\mathbb{C})$. Prove by induction on n that $H_q(P^n(\mathbb{C}); R) = 0$ if q is odd or if $q > 2n$, while $H_q(P^n(\mathbb{C}); R) \cong R$ if q is even and $0 \leq q \leq 2n$. (You don’t need to know much about f for this question!).

Exercise 21. Compute the homology of the Klein bottle $Kb = S^1 \lor S^1 \cup_f D^2$, where $f : S^1 = \partial D^2 \to S^1 \lor S^1$ is the loop $xyx^{-1}y$.

Excision, The Lebesgue Covering Lemma, Subdivision

Let (X, A) be a pair of spaces and U a subset such that $\overline{U} \subseteq \text{int}A$.

Definition. Let \mathcal{V} be an open cover of X. Then a singular q-simplex $\sigma : \Delta_q \to X$ is small of order \mathcal{V} if $\sigma(\Delta_q) \subseteq U$ for some $U \in \mathcal{V}$.

We shall apply this definition to the cover $\{X - \overline{U}, \text{int}A\}$, and show that any singular q-simplex in X is homologous to a sum of small q-simplices, obtained by subdivision. The subdivision will take place on the domain (standard q-simplex) and extend functorially by composition with maps. Compactness of Δ_q is important.

Lemma. [Lebesgue] If \mathcal{V} is an open cover of the compact metric space M there is an $\epsilon > 0$ such that each subset of diameter at most ϵ is contained in some member of \mathcal{V}.

Proof. For each $m \in M$ there is a $V \in \mathcal{V}$ such that $m \in V$, and hence there is an $\epsilon(m) > 0$ such that the open ball $B_{2\epsilon(m)}(m)$ is contained in V. Since $M = \cup_{m \in M} B_{\epsilon(m)}(m)$ and is compact there is a finite subset $F \subset M$ such that $M = \cup_{m \in F} B_{\epsilon(m)}(m)$. Then $\epsilon = \min\{\epsilon(m) \mid m \in F\}$ works. □

Definition. If B and C are subsets of \mathbb{R}^n let

$$B \ast C = \{tb + (1-t)c \mid b \in B, c \in C, 0 \leq t \leq 1\}.$$

If $n = p + q$, $B \subseteq \mathbb{R}^p \times \{O\} \subset \mathbb{R}^n$ and $C \subseteq \{O\} \times \mathbb{R}^q \subset \mathbb{R}^n$ then $B \ast C$ is the join of B and C. We shall use this notion only for B a point and
an affine simplex. More precisely, we shall assume the vertices of \(C \) are ordered, say \(C = (A_0, \ldots, A_q) \), and then set \(B \ast C = (B, A_0, \ldots, A_q) \). However, we shall allow the “degenerate” cases when the vertices \(\{B, A_0, \ldots, A_q\} \) lie in some \(q \)-dimensional hyperplane. (In particular, we allow \(B \in C \)).

Joining extends to linear combinations of affine simplices in an obvious way.

Lemma. If \(C \) is a \(q \)-chain with \(q \geq 1 \) then \(\partial(B \ast C) = C - B \ast \partial C \). If \(C = \Sigma r_i P_i \) is a 0-chain then \(\partial(B \ast C) = C - (\Sigma r_i)B \).

Proof. It suffices to assume that \(C \) is a \(q \)-simplex. The result is geometrically clear (see figure); the only point to check is that the signs are correct. \(\square \)

Definition. The **barycentre** of \(\Delta_q \) is \(B_q = (1/(q + 1), \ldots, 1/(q + 1)) \).

We shall define the subdivision of \(\Delta_q \) inductively, extending the subdivision of its boundary by “joining” with \(B_q \).

Let \(\delta_q = id_{\Delta_q} \), considered as a singular \(q \)-simplex in the compact metric space \(\Delta_q \).

Let \(Sd(\delta_0) = \delta_0 \). Suppose \(Sd(\delta_q) \) has been defined. We may extend \(Sd \) functorially to other singular \(q \)-simplices by \(Sd(\sigma) = C_q(\sigma)(Sd(\delta_q)) \), and then linearly to all singular \(q \)-chains. Hence \(Sd(\partial \delta_{q+1}) = \Sigma_{i=0}^{q+1} (-1)^i Sd(\delta_q^{(i)}) \), where \(\delta_q^{(i)} \) is the \(i \)th face of \(\delta_{q+1} \). Therefore we may define

\[
Sd(\delta_{q+1}) = B_{q+1} \ast Sd(\partial \delta_{q+1}).
\]

Lemma. \(\partial Sd = Sd \partial \).

Proof. By functoriality it suffices to check the values on \(\delta_q \). We induct on \(q \). The result is true for \(q = 0 \). Now \(\partial Sd(\delta_q) = \partial(B \ast Sd(\partial \delta_q)) = \)
\(Sd(\partial \delta_q) - B \ast \partial(Sd(\partial \delta_q))\). As \(\partial(Sd(\partial \delta_q)) = Sd(\partial \partial \delta_q) = 0\), by the inductive hypothesis, this gives \(\partial Sd(\delta_q) = Sd(\partial \delta_q)\). □

We must also check that subdivision preserves homology classes, i.e., that \(Sd(c) - c\) is a boundary, for any cycle \(c\). To do this systematically we shall construct a “chain homotopy” operator \(T : C_q(X) \to C_{q+1}(X)\) such that \(Id - Sd = \partial T + T \partial\). (Hence if \(z\) is a cycle \(z - Sd(z) = \partial T(z) + T(\partial z) = \partial T(z)\) is a boundary). We again insist that \(T\) be functorial, and so it suffices to define \(T\) for the standard simplex, by induction. Let \(T(\delta_q) = 0\) and \(T(\delta_q) = B_q \ast (\delta_q - Sd(\delta_q) - T(\partial \delta_q))\), if \(q > 0\). (Here \(B_q \ast \delta_q\) is the “degenerate” \((q + 1)\)-simplex whose image is just \(\Delta_q\)).

Lemma. \(Id - Sd = \partial T + T \partial\).

Proof. As before, it suffices to check the values on \(\delta_q\), and induct on \(q\). The result is true for \(q = 0\). If \(q > 0\) then

\[
\partial T(\delta_q) + T(\partial \delta_q) = \partial(B_q \ast (\delta_q - Sd(\delta_q) - T(\partial \delta_q))) + T(\partial \delta_q) = \\
\delta_q - Sd(\delta_q) - T(\partial \delta_q) - B_q \ast (\partial \delta_q - \partial Sd(\delta_q) - \partial T(\partial \delta_q)) + T(\partial \delta_q) = \\
\delta_q - Sd(\delta_q) - B_q \ast (\partial \delta_q - Sd(\partial \delta_q) + T(\partial \partial \delta_q) + (Sd - Id)(\partial \delta_q)) = \\
\delta_q - Sd(\delta_q). \quad \square
\]

Excision - completion of argument

Finally we must check that on iterating the subdivision operator sufficiently many times we do indeed obtain sums of small simplices. We need the basic estimate: if \(\sigma\) is an affine \(q\)-simplex of diameter \(d(\sigma)\) then each summand of \(Sd(\sigma)\) has diameter at most \((q/q + 1)d(\sigma)\).

Lemma. Let \(A_0, \ldots, A_q\) be the vertices of an affine \(q\)-simplex \(\sigma\) in \(\mathbb{R}^N\). Then the diameter of \(\sigma\) is \(\text{diam}(\sigma) = \max\{||A_i - A_j|| | 0 \leq i < j \leq q\}\).

Proof. If \(x \in \sigma\) then \(x = \Sigma t_i A_i\), where \(t_i \geq 0\) and \(\Sigma t_i = 1\). Hence \(|x - y| = |\Sigma t_i (A_i - y)|| \leq \Sigma t_i |A_i - y|| \leq \max\{||A_i - y|| | 0 \leq i \leq q\}\). If \(y\) is also in \(\sigma\) a similar argument gives \(|x - y| \leq \max\{||A_i - A_j|| | 0 \leq i < j \leq q\}|. \quad \square

Lemma. Let \(\sigma\) be an affine \(q\)-simplex in \(\mathbb{R}^N\) and \(\sigma'\) one of the simplices of \(Sd(\sigma)\). Then \(\text{diam}(\sigma') \leq (q/q + 1)\text{diam}(\sigma)\).
Proof. The vertices of σ' are the barycentres of faces of σ. The dimension of the corresponding face determines a natural ordering on these vertices, say $B_0 = A_0$, $B_1 = (A_0 + A_1)/2$, $B_2 = (A_0 + A_1 + A_2)/3$, \ldots, $B_q = (A_0 + \ldots A_q)/(q+1)$. If $r < s \leq q$ then $\|B_r - B_s\| \leq \max\{\|A_i - B_s\| : 0 \leq i \leq r\}$. Now if $i \leq r$ then $\|A_i - B_r\| = \|\sum_{j=0}^{r} (A_i - A_j)\|/(r+1) \leq (r/r+1) \max\{\|A_i - A_j\| : 0 \leq j \leq r\} \leq (q/q+1)diam(\sigma)$. The lemma follows easily. □

[Insert figure here]

Lemma. Every homology class in $H_q(X, A)$ can be represented by a relative cycle which is a combination of singular simplices which are small of order \{X - \overline{U}, intA\}.

Proof. For each singular q-simplex $\sigma : \Delta_q \to X$ there is an $n_\sigma \geq 0$ such that $(Sd)^{n_\sigma}(\delta_\sigma)$ is a linear combination of singular simplices which are small of order \{\sigma^{-1}(X - \overline{U}), \sigma^{-1}(intA)\}, by the Lebesgue Covering Lemma and the estimate above. Given a relative q-cycle $z = \Sigma r_\sigma \sigma$, let $n = \max\{n_\sigma \mid r_\sigma \neq 0\}$. Then $(Sd)^{n}(z)$ is a linear combination of singular simplices which are small of order \{X - \overline{U}, intA\}. Moreover $z - Sd(z) = \partial T(z) + T(\partial z)$ is a relative boundary. Hence $(Sd)^{n}(z)$ represents the same relative homology class as z. □

Theorem. Let X be a space with a subspace A, and let $U \subseteq A$. If the closure of U is contained in the interior of A then the inclusion of $(X - U, A - U)$ into (X, A) induces isomorphisms on relative homology, $H_q(X - U, A - U; R) \cong H_q(X, A; R)$, for all q and any coefficients R.

Proof. 1-1: Suppose z is a singular q-chain on $X - U$ such that ∂z is a $(q - 1)$-chain on $A - U$ and that z is a relative boundary in (X, A), i.e.,
that there is a singular q-chain z' on A and a singular $q + 1$-chain w on X such that $z = z' + \partial w$. Then $(Sd)^n(z) = (Sd)^n(z') + \partial(Sd)^n(w)$. If $(Sd)^n(w)$ is small of order $\{X - \bar{U}, \text{int}A\}$, say $(Sd)^n(w) = w_{X - \bar{U}} + w_A$ then $(Sd)^n(z) - \partial w_{X - \bar{U}} = (Sd)^n(z') + \partial w_A$. Since the LHS is a chain on $X - \bar{U}$ and the RHS is a chain on A both sides are chains on $A - U$. Hence $(Sd)^n(z) = ((Sd)^n(z) - \partial w_{X - \bar{U}}) + \partial w_{X - \bar{U}}$ is a relative boundary in $(X - U, A - U)$.

onto: similar. \square

Exercise 22. Let $\mu Y = Y \times \{1, \ldots, \mu\}$ denote the disjoint union of μ copies of Y. The exterior of an embedding $L : \mu S^n \times D^k \to S^{n+k}$ is the compact $(n+k)$-manifold $X = S^{n+k} - L(\mu S^n \times \text{int}D^k)$. Show that if $\mu > 0$ and $k > 0$ then $H_{k-1}(X; R) \cong R^n$, $H_{n+k-1}(X; R) \cong R^{n-1}$ and $H_q(X; R) = 0$ for all $q \neq 0$, $k - 1$ or $n + k - 1$. (Use excision and the fact that $X \subset S^{n+k} - \{P\} \subset S^{n+k}$, where P is any point in $S^{n+k} - X$. The result holds for embeddings of μS^n (without such product neighbourhoods) but this extension is usually done via Alexander duality).

Spectral theory for orthogonal matrices

Let $(x, y) = \Sigma x_i y_i$ be the standard inner product on \mathbb{R}^n and $(v, w) = \Sigma v_i w_i$ be the standard inner product on \mathbb{C}^n. If U is a subspace of \mathbb{R}^n $U^\perp = \{x \in \mathbb{R}^n \mid (x, u) = 0 \ \forall u \in U\}$ be the orthogonal complement. The inner product on \mathbb{R}^n induces inner products on subspaces, and $\mathbb{R}^n \cong U \perp U^\perp$ is the orthogonal direct sum. (Similarly for subspaces of \mathbb{C}^n).

A matrix $A \in GL(n, \mathbb{R})$ is **orthogonal** if $(Ax, Ay) = (x, y)$ for all $x, y \in \mathbb{R}^n$. A matrix $B \in GL(n, \mathbb{C})$ is **unitary** if $(Bv, Bu) = (v, w)$ for all $v, w \in \mathbb{C}^n$. Any real matrix $A \in GL(n, \mathbb{R})$ acts on \mathbb{C}^n in a natural way, and so we may view $GL(n, \mathbb{R})$ as a subgroup of $GL(n, \mathbb{C})$. Under this identification, the orthogonal matrices are exactly the real unitary matrices.

The advantage of working over the complex numbers is that we can always find eigenvalues and eigenvectors. Let u be an eigenvector of the unitary matrix B corresponding to an eigenvalue λ and let $U = \mathbb{C}u$. We may assume that $(u, u) = 1$. Since B is unitary it also maps U^\perp to itself, and so preserves the direct sum decomposition $\mathbb{C}^n \cong U \perp U^\perp$. Hence we may prove by induction
on n that \mathbb{C}^n has an orthonormal basis consisting of eigenvectors for B. Let V be the matrix whose columns are these eigenvectors. Then V is unitary (since the columns are orthonormal) and $BV = V\Lambda$, where Λ is a diagonal matrix whose diagonal entries or the eigenvalues of B.

[Remark. It is easy to see that eigenvectors corresponding to distinct eigenvalues must be orthogonal.]

We now carry this argument over to the reals. Let A be an orthogonal matrix, and let v be an eigenvector in \mathbb{C}^n for A, corresponding to the eigenvalue $\lambda \in \mathbb{C}$. We may write $v = v_1 + iv_2$ and $\lambda = c + is$, where $v_1, v_2 \in \mathbb{R}^n$ and $c, s \in \mathbb{R}$. On comparing real and imaginary parts in the equation $Av = \lambda v$ we find that $Av_1 = cv_1 - sv_2$ and $Av_2 = sv_1 + cv_2$. If $s = 0$ then $\lambda = \pm 1$ and each of the vectors v_1 and v_2 is a real eigenvector. Otherwise v_1 and v_2 are perpendicular. [Expand out the equations $(Av_1, Av_1) = (v_1, v_1)$ and $(Av_1, Av_2) = (v_1, v_2)$, to get $(c^2 - s^2)(v_1, v_2) = 0$.] The matrix A acts as a rotation on the 2-dimensional subspace of \mathbb{R}^n spanned by $\{v_1, v_2\}$. Since A is orthogonal it also maps the orthogonal complement of this subspace to itself.

Thus arguing by induction on n, we can find a basis for \mathbb{R}^n with respect to which A is block-diagonal, the diagonal blocks being either 1×1 blocks $[\pm 1]$ or 2×2 rotation matrices. Equivalently: there is an orthogonal matrix P such that PAP^{-1} is block diagonal.

(Note also that $diag[-1, -1]$ is a rotation matrix, and $det(A) = (-1)^s$, where s is the number of -1s on the diagonal).

Self-maps of S^n (1): orthogonal homeomorphisms

We have $S^n = \{(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} | \langle x, x \rangle = 1\}$.

Definition. The degree of a self-map $f : S^n \to S^n$ is the integer $deg(f)$ such that $H_n(f)([z]) = deg(f)[z]$ for all $[z] \in H_n(S^n; \mathbb{Z}) \cong \mathbb{Z}$.

We shall define an addition on $[S^n; S^n]$ which makes this set into an abelian group. With the product corresponding to composition of functions it becomes a ring, and we shall show that $deg : [S^n; S^n] \to \mathbb{Z}$ is an isomorphism of rings. It is easy to see that the degree is multiplicative:
deg(fg) = deg(f)deg(g). In particular, if f is a homotopy equivalence then deg(f) = ±1. (The hardest part is showing that deg is 1-to-1, and we may only sketch this).

An \((n+1) \times (n+1)\) orthogonal matrix \(A\) determines a self-homeomorphism of \(S^n\) (since ||Ax|| = ||x||). We shall show that \(deg(A) = det(A)\).

There is an orthogonal matrix \(P\) such that \(PAP^{-1}\) is block-diagonal. Since \(deg(A) = deg(PAP^{-1})\) we may assume that \(A\) is block-diagonal. Suppose first that \(det(A) = +1\). Then there must be an even number of −1s on the diagonal, and so these may be grouped in pairs, corresponding to rotations through \(\pi\). Thus \(A = \text{diag}[R(\theta_1), \ldots R(\theta_k), 1, \ldots 1]\). We may define a homotopy \(A_t\) from \(A_0 = I\) to \(A_1 = A\) through orthogonal matrices by \(A_t = \text{diag}[R(\theta_1), \ldots R(\theta_k), 1, \ldots 1]\) for \(0 \leq t \leq 1\). Hence \(deg(A) = deg(I) = 1\).

Now let \(M_{n+1} = \text{diag}[-1, 1, \ldots, 1]\) be the orthogonal matrix corresponding to reflection in the first coordinate. We shall show that \(deg(M_{n+1}) = -1 = det(M_{n+1})\). The reflection \(M_{n+1}\) preserves the hemispheres \(D^n_{\pm} = \{(x_0, \ldots x_n) \in S^n | \pm x_n \geq 0\}\) and restricts to \(M_n\) on the equator \(S^{n-1}\). If \(n > 1\) there are isomorphisms \(H_n(S^n) \cong H_n(S^n, D^n_+) \cong H_n(D^n_+, S^{n-1}) \cong H_{n-1}(S^{n-1})\), and \(M_{n+1}\) induces commuting diagrams involving these isomorphisms. (We are using the naturality of the connecting homomorphisms here!). Hence \(deg(M_{n+1}) = deg(M_n)\) for all \(n \geq 2\), by an easy induction. If \(n = 1\) there is an exact sequence \(0 \rightarrow H_1(S^1) \rightarrow H_0(S^0) \rightarrow H_0(D^1_+) \rightarrow 0\). The image of \(H_1(S^1)\) in \(H_0(S^0)\) is generated by the 0-cycle \([+1] - [-1]\). Since \(M_1\) interchanges +1 and −1 in \(S^0\) it follows that \(deg(M_2) = -1\).

Finally, if \(A\) is orthogonal and \(det(A) = -1\) then \(det(AM_{n+1}) = +1\) so \(deg(A) = deg(AM^2_{n+1}) = deg(AM_{n+1})deg(M_{n+1}) = -1 = det(A)\).

Example. Let \(a_n = -I_{n+1} : S^n \rightarrow S^n\) be the antipodal map, given by \(a_n(x) = -x\) for all \(x \in S^n\). Then \(deg(a_n) = det(-I_{n+1}) = (-1)^{n+1}\). Hence \(a_n\) is homotopic to \(I\) if and only if \(n\) is odd.

Vector fields.

A vector field on a smooth manifold \(M\) is a continuous family of tangent vectors. Thus if \(M = S^n\) is the unit \(n\)-sphere in \(\mathbb{R}^{n+1}\) a vector field is a map
$v : S^n \to \mathbb{R}^{n+1}$ such that $x \cdot v(x) = 0$ for all $x \in S^n$. If v is a nowhere 0 vector field we may normalize it to get \hat{v}, given by $\hat{v}(x) = v(x)/|v(x)|$ for all $x \in S^n$. The function $F_t(x) = \cos(\pi t)x + \sin(\pi t)\hat{v}(x)$ then gives a homotopy from $F_0 = I$ to $F_1 = a_n$. In particular, n must be odd. Conversely, if n is odd then $v(x_0, \ldots, x_n) = (x_1, -x_0, \ldots, x_n, -x_{n-1})$ is a (nowhere 0) unit vector field on S^n.

FACT. A closed n-manifold M supports a nowhere 0 vector field if and only if $\chi(M) = 0$. (This is always the case if n is odd).

On surfaces this can be seen rather directly.

Hopf Index Formula.

Construct a vector field which is 0 only at the vertices of the barycentric subdivision of a triangulation. Assign “Hopf indices” ± 1 at each of these. Note that adjacent zeroes of opposite index can be cancelled.

Much deeper arguments show that S^n admits n everywhere linearly independent vector fields if and only if S^n admits a continuous multiplication if and only if $n = 0, 1, 3$ or 7. The latter cases correspond to the groups of units in \mathbb{R}, \mathbb{C}, \mathbb{H} (the quaternions) and \mathbb{O} (the Cayley octonions), respectively.

Fixed points

Let $f : X \to X$ be a map. A point x is a fixed point if $f(x) = x$. For instance, I fixes every point, $a_n : S^n \to S^n$ fixes nothing. If $f : S^n \to S^n$ has no fixed points then it is homotopic to a_n. (Normalize a linear homotopy).
Corollary. Every self map of S^{2n} of degree +1 has a fixed point.

The connection between homology and fixed points extends to more general spaces via the Lefshetz Fixed Point Formula. If f has no fixed point then

$$\Sigma(-1)^q tr(H_q(f; F)) = 0,$$

for any field coefficients F.

Exercise 23. Let $f : D^n \to D^n$ be a continuous function. Show that f has a fixed point, i.e. that $f(z) = z$ for some z in D.

(Hint: Suppose not. Then the line from $f(z)$ through z is well defined. Let $g(z)$ be the point of intersection of this line with S^{n-1} such that z lies between $f(z)$ and $g(z)$. Show that g is a continuous function from D^n to S^{n-1} such that $g(\pm x_{n-1})$, where $i : S^{n-1} \to D^n$ is the natural inclusion (i.e., $g(z) = z$ for all z in S^{n-1}). Show that no such map can exist).

Exercise 24. Let $f : S^n \to S^n$ be a map which is homotopic to a constant map. Show that f fixes some point of S^n (i.e., $f(x) = x$) and also sends some other point to its antipodal point (i.e., $f(y) = -y$).

Exercise 25. Let $f : S^{2n} \to S^{2n}$ have no fixed point. Show that there is a point $x \in S^{2n}$ such that $f(x) = -x$.

Exercise 26. Let G be a group of homeomorphisms of S^{2n} such that each non-identity element of G has no fixed point. Show that $|G| \leq 2$.

Self maps of S^n (2): Suspension

The suspension of a space X is the space $SX = [-1,1] \times X / \sim$, where $(-1, x) \sim (-1, x')$ and $(1, x) \sim (1, x')$ for all $x, x' \in X$. (Thus each end of the cylinder has been crushed to a point $\pm \infty$).

In order that the constructions used below be well-defined we require that our spaces have “basepoints”, and that all functions, homotopies, etc., respect these basepoints. If $x_0 \in X$ and $y_0 \in Y$ are basepoints let $[X; Y]$, denote the set of homotopy classes of basepoint preserving maps $f : X \to Y$ (i.e., such that $f(x_0) = y_0$ and the homotopies are constant on the basepoints). Give SX the basepoint $[0, x_0]$, and let I_0 be the subspace $[-1,1] \times \{x_0\}$. This is an interval through the basepoint and connecting $\pm \infty$. In the pointed category (Hot_*) it is more natural to replace SX by the reduced suspension $\Sigma X = SX/I_0$, in which I_0 has been crushed to a point, and which thus has
a natural basepoint (the image of I_0). The natural map from SX to ΣX is a homotopy equivalence, and composition with this map gives a bijection $\left\langle \Sigma X; Y \right\rangle_* \rightarrow [SX; Y]_*$. (It can be shown that ΣS^n is homeomorphic to $SS^n = S^{n+1}$. This is the most important case for us).

Let $[t, x]$ denote the image of (t, x) in ΣX for all $-1 \leq t \leq 1$ and $x \in X$.

If $f : X \rightarrow Y$ is a map then $\Sigma f : \Sigma X \rightarrow \Sigma Y$ is the map defined by $\Sigma f([t, x]) = [t, f(x)]$ for all $-1 \leq t \leq 1$ and $x \in X$.

If $f : \Sigma X \rightarrow Z$ is a map then $\tilde{f} : \Sigma X \rightarrow Z$ is the map defined by $f([-t, x])$ for all $-1 \leq t \leq 1$ and $x \in X$.

Let ΣX^+ and ΣX^- be two copies of ΣX, and let $\Sigma X^+ \cup \Sigma X^-$ be the one-point union of these spaces, with basepoints identified. Then there is a “pinch” map $p : \Sigma X \rightarrow \Sigma X^+ \cup \Sigma X^-$, given by $p([t, x]) = [2t - 1, x]^+$ if $t \geq 0$ and $p([t, x]) = [2t + 1, x]^-\text{ if } t \leq 0$.

If $f, g : \Sigma X \rightarrow Z$ are maps then they define a map $f \vee g : \Sigma X^+ \cup \Sigma X^- \rightarrow Z$. We set $f + g = (f \vee g)p : \Sigma X \rightarrow Z$. It is straightforward to verify that if $f \sim f'$ and $g \sim g'$ then $f + g \sim f' + g'$, so we get an “addition” on $\left\langle \Sigma X; Z \right\rangle_*$. (The notation is misleading, as in general $g + f$ is not homotopic to $f + g$).

Let $c : \Sigma X \rightarrow Z$ denote the constant map (with value the basepoint of Z).

Claim:

(i) $f + c \sim f \sim c + f$

(ii) $f + \tilde{f} \sim c \sim \tilde{f} + f$

(iii) $(f + g + h) \sim (f + (g + h))$

We shall prove (i) and (ii) by giving explicit formulae for the case $f = id_{\Sigma X}$. (The general case follows by composition with $f : \Sigma X \rightarrow Z$).

Let $h_s([t, x]) = [1 + 2s(|t| - 1), x]$ and $k_s([t, x]) = [t + s(|t| - 1), x]$, for all $0 \leq s \leq 1$, $-1 \leq t \leq 1$ and $x \in X$. Then h_s is a homotopy from $h_0 = c$ to $h_1 = id_{\Sigma X} + \overline{c}$, while k_s is a homotopy from $k_0 = id_{\Sigma X}$ to $k_1 = id_{\Sigma X} + c$.

Check that a similar argument establishes the associativity of the operation.

Thus $\left\langle \Sigma X; Z \right\rangle_*$ is a group, with identity represented by the constant map c and with \tilde{f} representing the inverse of f.

Claim: $[\Sigma^2 X; Y]$ is an abelian group, and the natural “forget basepoints” function from $[\Sigma^2 X; Y]_*$ to $[S^2 X; Y]$ is a bijection.
Degree

degree is an epimorphism: suspend the k^{th} power map: $z \rightarrow z^k$

degree is a homomorphism: consider the maps

... sketch of geometric argument for injectivity

Any map $f: S^n \rightarrow S^n$ can be approximated by a smooth (C^∞) map, and sufficiently close approximations are homotopic to f. If f is C^∞ then there is a dense open subset $U \subseteq S^n$ such that for all $P \in U$ the preimage $f^{-1}(P)$ is finite, and for all $Q \in f^{-1}(P)$ the differential $Df(Q)$ is invertible. Let $\epsilon_Q = \text{sign}(\det(Df(Q))) = \pm 1$. Then $\deg(f) = \sum_{P \in f^{-1}(U)} \epsilon_P$.

If $\deg(f) = 0$ then we may homotope f so that there is a $P \in S^n$ such that $f^{-1}(P) = \emptyset$. Since $S^n - \{P\} \cong \mathbb{R}^n$ it follows that f is homotopic to a constant map.

Application. Assume $n \geq 2$ and let $X_k = S^{n-1} \cup f_k e^n$, where $f_k: S^{n-1} \rightarrow S^{n-1}$ has degree k. Then X_k is path-connected and $H_q(X_k) = 0$ unless $q = 0$, $n - 1$, or n. Moreover $H_{n-1}(X; R) \cong R/kR$ and $H_n(X; R) = \text{Ker}(r \mapsto kr)$.

Exercise 27. Given integers $m, n > 0$ show that there exists a connected finite cell complex X such that $H_q(X) = 0$ if $q \neq 0$ or m and $H_m(X) \cong \mathbb{Z}/n\mathbb{Z}$.

Exercise 28. Let H_i be a finitely generated abelian group, for $1 \leq i \leq n$. Show that there is a connected finite cell complex X (with all cells of dimension at most $n + 1$) such that $H_q(X) \cong H_q$, for $1 \leq q \leq n$.

Cohomology

If we consider the linear duals of our chain complexes, we obtain a more powerful invariant, the cohomology ring of a space. As we do not have time to do justice to this, I shall just sketch the easy bits here, and indicate in the final section below an alternative construction of the real cohomology ring for open subsets of \mathbb{R}^n, using differential forms.

Given a chain complex C_\ast, we define the associated cochain complex C^\ast by $C^q = \text{Hom}_R(C_q, R)$, with codifferential $\delta^q(f) = f \circ \partial_{q+1}$. The cohomology modules $H^q(C^\ast)$ are the quotients $\text{Ker}(\delta^q)/\text{Im}(\delta^{q-1})$. On applying this
construction to the singular chain complexes of (pairs of) spaces, we obtain contravariant functors: if \(f : (X, A) \to (Y, B) \) then \(H^q(f) : H^q(Y, B) \to H^q(X, A) \). A pair of spaces determines a long exact sequence of cohomology, and cohomology satisfies homotopy and excision. The cohomology of a point is \(H^*(\{P\}; R) = R, 0, 0, \ldots \).

In degree 0 the cohomology module \(H^0(X; R) \) may be identified with the \(R \)-valued functions on \(X \) which are constant on components. (This is the first indication that cohomology may be related to functions and differential forms, since a function \(f \) on an open subset of \(\mathbb{R}^n \) is locally constant if and only if \(df = 0 \).

Let \(ev : H^q(C^*; R) \to Hom_R(H_q(C_*; R), R) \) be the evaluation homomorphism, defined by \(ev([f])([c]) = f(c) \). This homomorphism is onto if \(R = \mathbb{Z} \) or is a PID, and is an isomorphism if \(R \) is a field.

The ring structure arises from the diagonal map \(\Delta_X : X \to X \times X \) together with the Künneth Theorem, which computes the homology of a product \(H_t(X \times Y; F) \cong \bigoplus_{p+q=t} (H^p(X; F) \otimes H^q(Y; F)) \). (See below for \(\otimes \)). (There is a similar result for homology).

We set \(\alpha \cup \beta = H^n(\Delta)(\alpha \otimes \beta) \). Then \(H^*(X; R) \) is a graded \(R \)-algebra, and is graded-commutative: \(\alpha \cup \beta = (-1)^{pq} \beta \cup \alpha \).

Examples. \(P^2(\mathbb{C}) = S^2 \cup_h e^4 \), where \(h \) is the Hopf fibration.

\(S^2 \cup S^4 = S^2 \cup_c e^4 \), where \(c \) is the constant map.

\(H^*(S^n; Z) \cong Z[\eta_n]/(\eta_n^2) \).

\(H^*(S^2 \cup S^4; Z) \cong Z[\eta_2, \eta_4]/(\eta_2, \eta_4)^2 \).

\(H^*(P^2(\mathbb{C}); Z) \cong Z[\eta_2]/(\eta_2^2) \).

The latter two rings are not isomorphic, and so \(P^2(\mathbb{C}) \) and \(S^2 \cup S^4 \) are not homotopy equivalent, although their homology groups and cohomology groups are isomorphic. Hence the Hopf fibration \(h : S^3 \to S^2 \) is not homotopic to a constant map, although \(H_*(h) = H_*(c) \).

\(ev : H^1(X; Z) \to Hom(H_1(X; Z), Z) \) is an isomorphism.

\(H^1(X; Z) \cong [X; S^1] \). (The map is given by \(f \mapsto f^*\eta_1 \)).

\(H^*(P^n(\mathbb{R}); F_2) \cong F_2[\eta_1]/(\eta_1^{n+1}) \).
Examples:

Let R be a commutative ring, M and N two R-modules. Let $R^{(M \times N)}$ be the free R-module with basis the set $M \times N$. Then $M \otimes_R N$ is the quotient of $R^{(M \times N)}$ by the submodule generated by the elements $r[m, n] - [rm, n]$, $r[m, n] - [m, rn]$, $[m + m', n] - [m, n] - [m', n]$ and $[m, n + n'] - [m, n] - [m, n']$, for all $r \in R$, $m, m' \in M$ and $n, n' \in N$. Let $m \otimes n$ denote the image of $[m, n]$ in $M \otimes_R N$. The obvious function from $M \times N$ to $M \otimes_R N$ which sends (m, n) to $m \otimes n$ is bilinear. This is in fact the universal bilinear function; if P is another R-module and $b : M \times N \to P$ is bilinear then there is an unique linear map $\tilde{b} : M \otimes_R N \to P$ such that the obvious diagram commutes.

This construction and those that follow are suitably functorial.

Examples: R a field. $R^m \otimes_R R^n \cong R^{mn}$.

$R = \mathbb{Z}$. $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/(m, n)\mathbb{Z}$.

Let $M^* = \text{Hom}_R(M, R)$. Then $M \otimes_R N^* \cong \text{Hom}_R(N, M)$, via the isomorphism $m \otimes \nu \mapsto (n \mapsto \nu(n)m)$ (at least if M and N are finitely generated free modules).

We may iterate the process of forming tensor products. (The construction is associative. In particular we may define tensor powers $\otimes^k M$ inductively, with $\otimes^0 M = R$, $\otimes^1 M = M$ and $\otimes^{k+1} M = (\otimes^k M) \otimes_R M$. The direct sum $\otimes^* M = \bigoplus_{k \geq 0} \otimes^k M$ is a noncommutative R-algebra under the obvious multiplication.

In general $m \otimes m' \neq m' \otimes m$. However the set of all elements of $M \otimes_R M$ of the form $m \otimes m' - m' \otimes m$ generates a 2-sided ideal in $\otimes^* M$ and the quotient is a commutative R-algebra $\otimes^* M$, the symmetric algebra on M. If $M \cong R^d$ then $\otimes^* M$ is isomorphic to the polynomial ring in d variables over R.

We are more interested in another quotient of $\otimes^* M$, the exterior algebra. This is the quotient by the ideal generated by all elements of $\otimes^2 M$ of the form $m \otimes m$. This quotient is graded-commutative, i.e., $\omega \wedge \xi = (-1)^{pq} \xi \wedge \omega$ if $\omega \in \wedge^p M$ and $\xi \in \wedge^q M$.

If $M \cong R^d$ then $\wedge^k M$ has rank $\binom{d}{k}$. In particular, $\wedge^0 M = R$, $\wedge^1 M = M$, $\wedge^d M \cong R$ and $\wedge^k M = 0$ if $k > d$. Hence the algebra $\wedge^* M = \oplus_{k \geq 0} \wedge^k M$ has rank 2^d. An ordered basis $\{m_1, \ldots, m_d\}$ for M determines an (ordered) basis for $\wedge^k M$. In particular, it determines a generator $m_1 \wedge \ldots \wedge m_d$ for $\wedge^d M \cong R$.

If $A : M \to M$ is R-linear then it induces endomorphisms $\wedge^k A$ of the higher exterior powers, and $\wedge^d (A) = \det (A)$.

De Rham for open subsets of \mathbb{R}^n.

Let X be an open subset of \mathbb{R}^n. Let $S = C^\infty (X, \mathbb{R})$ be the ring of smooth functions on X. Let $\Omega^1 (X)$ be the free S-module with basis $\{dx_1, \ldots, dx_n\}$. This is the module of differential 1-forms on X. Let $\Omega^0 (X) = S$ and $\Omega^k (X) = \wedge_k \Omega^1 (X)$ for $k \geq 2$. Then $\Omega^n (X) \cong S.dx_1 \wedge \ldots \wedge dx_n$ and $\Omega^k (X) = 0$ if $k > n$.

We shall define differentials $d : \Omega^k (X) \to \Omega^{k+1} (X)$ by means of partial derivatives. For $f \in S$ let $df = \Sigma f_i dx_i$ where $f_i = \partial f / \partial x_i$. Let $d(dx_i) = 0$ for all i and extend by the Leibnitz rule: $d(\omega \wedge \xi) = (d\omega) \wedge \xi + (-1)^p \omega \wedge d\xi$, if $\omega \in \Omega^p (X)$, and then by linearity (over the reals \mathbb{R}). Then d is well defined and $dd = 0$, essentially by equality of mixed partial derivatives. The De Rham cohomology of X is $H^n_{\text{DR}} (X) = \text{Ker} (d : \Omega^n \to \Omega^{n+1}) / \text{im} d$.

Closed q-forms modulo exact q-forms. Wedge-product of forms gives rise to a graded-commutative multiplication of cohomology classes.

In particular, $H^n_{\text{DR}} (X) = \text{Ker} (d : S \to \Omega^1 (X))$ is the ring of locally constant functions on X. The image dS is the module of exact 1-forms.

Given a smooth path $\gamma : [0, 1] \to X$ and a 1-form $\omega = \Sigma g_i dx_i$ on X we may define $\int_\gamma \omega = \int_0^1 \Sigma g_i(\gamma(t)) \gamma_i(t) dt$. Then (Stokes’ Theorem):

1) $\int_\gamma df = f(\gamma(1)) - f(\gamma(0))$.

2) if then $\int_\gamma \omega = \int_F \omega$.

Now $H_1 (X ; \mathbb{R}) \cong \{ \gamma \mid \gamma (0) = \gamma (1) \} / \sim$, where $\gamma_1 \sim \gamma_2$ if $\gamma_1 \cup \gamma_2$ together bound an oriented surface in X. (Here the overbar denotes a reversal
of orientation). Thus integration gives a pairing $H_1(X; \mathbb{R}) \times H^1_{DR}(X) \rightarrow \mathbb{R}$, sending $([\gamma],[\omega])$ to $\int_\gamma \omega$. This pairing is nondegenerate and so $H^1_{DR}(X) \cong H_1(X; \mathbb{R})^\ast \cong H^1(X; \mathbb{R})$. More generally, $H^q_{DR}(X) \cong H^q(X; \mathbb{R})$ (for reasonable open subsets X).

Any finite cell complex is homotopy equivalent to an open subset of some \mathbb{R}^n. Thus the De Rham approach applies in considerable generality. De Rham cohomology may also be defined directly for a smooth n-manifold, without first choosing some embedding in an euclidean space. We illustrate this for the circle $S^1 = \mathbb{R}/\mathbb{Z}$. (Note that as S^1 is compact it is not diffeomorphic to an open subset of any \mathbb{R}^n).

Example. Let $S = \{ f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ is } C^\infty, f(x + 1) = f(x) \forall x \in \mathbb{R} \}$ be the set of periodic C^∞ functions. Let $\Omega = Sdx$ and let $d : S \rightarrow \Omega$ be given by $df = f'dx$. Then dx is closed but not exact. $\int_{S^1} dx = 1 \neq 0$.

Sometimes we can get away with much "smaller" complexes. The circle is given by polynomial equations: $S^1 = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \}$. Let $S = \mathbb{R}[x, y]/(x^2 + y^2 - 1) = \mathbb{R}[x][y]/(y^2 = 1 - x^2)$. Since $x^2 + y^2 = 1$ we should have $2xdx + 2ydy = 0$, and so we set $\Omega = (Sdx \oplus Sdy)/S(xdx + ydy) \cong Sdx \oplus \mathbb{R}[x]dy$. Then $dx \wedge dy = (x^2 + y^2)dx \wedge dy = 0$ (on using $xdx = -ydy$, etc.). Hence $\Omega \wedge \Omega = 0$. We find that $\text{Ker}(d) = \mathbb{R}.1$ and $\Omega/dS \cong \mathbb{R}.[xdy]$. Thus $H^q_{DR}(S^1) \cong \mathbb{R}$ for $q = 0, 1$ and is 0 otherwise.

When $n = 3$ we may relate exterior derivation of forms to the familiar operations of vector calculus. Let i, j and k denote the standard unit vectors in \mathbb{R}^3. A C^∞ vector field on X is a vector-valued function $f_1 i + f_2 j + f_3 k$ with coefficients in S. Let \mathcal{V} denote the S-module of all such vector fields. Then \mathcal{V} is a free S-module of rank 3, with basis $\{ i, j, k \}$. Since $(i^2)_3 = 3$ and $(i^3)_3 = 1$ the spaces of 1-forms and 2-forms on \mathbb{R}^3 are each free of rank 3, while the space of 3-forms is free of rank 1. There are obvious isomorphisms from $\Omega^1(X)$ and $\Omega^2(X)$ to \mathcal{V}, sending dx, dy, dz and $dy \wedge dz, dz \wedge dx, dx \wedge dy$ to i, j, k (respectively), and $\Omega^3(X) \cong S$ via $f dx \wedge dy \wedge dz \mapsto f$.

Under these identifications wedge product corresponds to cross product of vector fields and the exterior derivative in degrees 0, 1 and 2 corresponds to grad, curl and div.
If X is a simply connected region of \mathbb{R}^3 then $H^1_{DR}(X) = 0$, so $\text{curl}(V) = 0$ if and only if $V = \text{grad}(f)$ for some function f.

If $H^2_{DR}(X) = 0$, so $\text{div}(W) = 0$ if and only if $W = \text{curl}(V)$ for some V.

Example. $X = \mathbb{R}^3 - \{O\}$. $V(x) = -(m/|x|^3)x$. $V = d(m/|x|)$.

(Remark. Vector fields and 1-forms are dual objects: a 1-form ω may be evaluated on a vector field v to get a function $\omega(v)$. In a proper development of differential geometry a Riemannian metric is used to determine an isomorphism between these modules. Changing the metric changes the isomorphism. The identification of vector fields with 1-forms for open subsets of \mathbb{R}^3 given above is the one determined by the standard euclidean inner product on \mathbb{R}^3).
Appendix: **Categories, Functors, Natural Transformations** - the bare bones

It has been said that “categories are what one must define in order to define functors, and functors are what one must define in order to define natural transformations” [Freyd, *Abelian Categories*]. For our purposes Category Theory is a language in which the ideas of Algebraic Topology find their most convenient expression, and indeed the theory was largely founded by algebraic topologists.

Definition. A category C consists of a class of objects and for each ordered pair of objects (A, B) a set $\text{Hom}_C(A, B)$ of morphisms (or arrows) with domain (or source) A and codomain (or target) B, written $f : A \to B$, satisfying the following axioms:

1. For each $f : A \to B$ and $g : B \to C$ there is an unique composite $gf : A \to C$;
2. If $f : A \to B$, $g : B \to C$ and $h : C \to D$ then $h(gf) = (hg)f$;
3. For every object A there is an (identity) morphism $1_A : A \to A$ such that $f1_A = f$ for all $f : A \to B$ and $1_A g = g$ for all $g : C \to A$.

There is a 1-1 correspondence between objects A and identity morphisms 1_A.

Examples.
1. $\langle \text{Set} \rangle$ - objects sets, morphisms functions.
2. $\langle \text{Top} \rangle$ - objects topological spaces, morphisms continuous maps.
3. $\langle \text{Grp} \rangle$ - objects groups, morphisms group homomorphisms.
4. $\langle \text{Mod}_R \rangle$ - objects R-modules (for a given ring R), morphisms R-module homomorphisms.
5. $\langle \text{Hot} \rangle$ - objects topological spaces, morphisms homotopy classes of continuous maps.
6. $\langle \text{Top}_* \rangle$ - objects topological spaces with basepoints, morphisms continuous, basepoint preserving maps.
7. $\langle \text{Hot}_* \rangle$ - objects topological spaces with basepoints, morphisms homotopy classes of continuous, basepoint preserving maps (the homotopies must also preserve the basepoint).
(8) If \mathcal{C} is a category the dual category \mathcal{C}^{op} has the same class of objects but all the arrows are reversed, so $\text{Hom}_{\mathcal{C}^{\text{op}}}(A, B) = \text{Hom}_\mathcal{C}(B, A)$.

Definition. A covariant (respectively, contravariant) functor F from one category \mathcal{A} to another \mathcal{B} is a rule which associates with each object A of \mathcal{A} an object B of \mathcal{B} and with each morphism $f : A_1 \to A_2$ a morphism $F(f) : F(A_1) \to F(A_2)$ (respectively, $F(f) : F(A_2) \to F(A_1)$) such that $F(1_A) = 1_{F(A)}$ and $F(fg) = F(f)F(g)$ (respectively, $F(fg) = F(g)F(f)$), for all objects A and morphisms f, g in \mathcal{A}.

Examples.

1. The identity functor I_A (or I, for short) is defined by $I(A) = A$ and $I(f) = f$.

2. There are natural functors from $((\text{Top}))$, $((\text{Grp}))$, $((\text{Mod}_R))$ to $((\text{Set}))$ obtained by forgetting structure (e.g., every continuous map of topological spaces is a function between the underlying sets. However there is NO such functor from $((\text{Hot}))$ to $((\text{Set}))$; in other words, in $((\text{Hot}))$ the morphisms are not functions.

3. The abelianization functor $-^{ab}$ from $((\text{Grp}))$ to $((\text{Mod}_Z))$ which sends a group G the the abelian group $G^{ab} = G/G'$ and a homomorphism $f : G \to H$ to the induced homomorphism $f^{ab} : G/G' \to H/H'$.

4. If A is an object of \mathcal{A} there is a covariant functor from \mathcal{A} to $((\text{Set}))$ sending an object B to the set $\text{Hom}_\mathcal{A}(A, B)$ and a morphism $f : B \to C$ to $\text{Hom}_\mathcal{A}(A, f)$, or f_* for short, such that $f_*(g) = fg$ for all $g \in \text{Hom}_\mathcal{A}(A, B)$. Similarly there is a contravariant functor sending B to $\text{Hom}_\mathcal{A}(B, A)$ and f to f^* such that $f^*(g) = gf$.

5. Every contravariant functor from \mathcal{C} to \mathcal{D} can be thought of as a covariant functor from the dual category \mathcal{C}^{op} to \mathcal{D}.

Definition. A natural transformation η between functors F and G from \mathcal{A} to \mathcal{Z} is a rule which associates to each object A of \mathcal{A} a morphism $\eta(A) : F(A) \to G(A)$ in \mathcal{Z} such that for all morphisms $f : A \to B$ in \mathcal{A} we have $\eta(B)F(f) = G(f)\eta(A)$.

Example. Let $\mathcal{V} = ((\text{Mod}_\mathbb{R}))$ be the category of finite dimensional real vector spaces and D be the contravariant functor from \mathcal{V} to itself which sends a vector space V to its dual $D(V) = Hom_\mathbb{R}(V, \mathbb{R})$ (considered as a vector space in the usual way). Then DD is naturally isomorphic to the identity functor, i.e., there is a natural transformation η from $I_\mathcal{V}$ to DD such that $\eta(V)$ is an isomorphism for all objects V of \mathcal{V}. (It is defined by $\eta(V)(v)(f) = f(v)$ for all $v \in V$ and $f \in D(V)$).

There is no such natural transformation from $I_\mathcal{V}$ to D, although each vector space has the same dimension as its dual and so is isomorphic to it.

Topics not considered:
augmentation : $X \to *$
Mayer-Vietoris Theorem
Jordan-Brouwer separation theorems
Hopf Index theorem
orientation for manifolds
Poincaré duality
lens spaces, knots etc
geometric representations of homology classes

Further reading: