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Abstract

Reaction–diffusion equations (RDEs) model the spatiotemporal evolution of a density field

u(x, t) according to diffusion and net local changes. Usually, the diffusivity is positive

for all values of u, which causes the density to disperse. However, RDEs with negative

diffusivity can model aggregation, which is the preferred behaviour in some circumstances.

In this paper, we consider a nonlinear RDE with quadratic diffusivity D(u) = (u−a)(u−b)

that is negative for u ∈ (a, b). We use a non-classical symmetry to construct analytic

receding time-dependent, colliding wave, and receding travelling wave solutions. These

solutions are initially multi-valued, and we convert them to single-valued solutions by

inserting a shock. We examine properties of these analytic solutions including their Stefan-

like boundary condition, and perform a phase plane analysis. We also investigate the

spectral stability of the u = 0 and u = 1 constant solutions, and prove for certain a

and b that receding travelling waves are spectrally stable. Additionally, we introduce an
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new shock condition where the diffusivity and flux are continuous across the shock. For

diffusivity symmetric about the midpoint of its zeros, this condition recovers the well-

known equal-area rule, but for non-symmetric diffusivity it results in a different shock

position.

Keywords: non-classical symmetry, spectral stability, phase plane analysis, aggrega-

tion, travelling wave, equal-area rule

1 Introduction

Reaction–diffusion equations (RDEs) are partial differential equation (PDE) models that

have countless applications, including in wound healing [31], biological invasion [21], and

movement through porous media [26]. The simplest reaction–diffusion models consider

the evolution of one population in one spatial dimension. Mathematically, these models

have the general form
∂u

∂t
= ∂

∂x

(
D(u)∂u

∂x

)
+ R(u), (1)

where u(x, t) is the density as a function of space, x, and time, t. In (1), the symbol

D(u) is the diffusion coefficient and the function R(u) is the reaction term capturing

local changes in density. In standard linear Fickian diffusion, D(u) = D, where D > 0

is a constant. However, many phenomena do not undergo linear diffusion, and in these

scenarios, D(u) is non-constant. This phenomenon is known as nonlinear diffusion.

Reaction–diffusion models with nonlinear diffusion commonly have D(u) ≥ 0 for all fea-

sible values of u. Positive diffusivity results in the population dispersing from regions of

high density to regions of low density. However, many natural phenomena involve aggre-

gation, whereby members of the population move up density gradients from regions of low

density to regions of high density. For example, a near-universal phenomenon in ecology

is animal populations aggregating for social reasons including mating, prey detection, or

predator avoidance [15]. One way to model aggregation is to allow the diffusivity D(u)
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to become negative for some values of u. Negative diffusivity can arise in the continuum

limit of discrete models with social aggregation [30, 33]. In [30], the strength of inter-

particle attraction influences when the diffusion becomes negative. In [33], by considering

a random walk with attraction among individuals Turchin [33] derived a model with a

diffusivity that could become negative. Johnston et al. [18] showed that an agent-based

model containing both isolated and group-associated individuals which can have different

rates of birth, death and movement gives rise to an RDE model with a region of negative

diffusivity. In this work, we focus on models with D(a) = D(b) = 0, with D(u) < 0 for

a < u < b, where a and b are constants such that 0 < a < b < 1, with D(u) ≥ 0 otherwise.

Allowing negative diffusivity causes diffusion equations of the form ut = (D(u)ux)x to

become ill-posed [1, 2]. In these ill-posed problems, solutions for u have very steep gradi-

ents [33], and can even become multi-valued. Inserting a jump discontinuity (or shock) in

a multi-valued solution enables a single-valued solution to be obtained. A shock involves

an instantaneous (with respect to x) jump from one density, ur, to another, ul, such that

u never takes the values between ur ≥ b and ul ≤ a. Consequently both the region of neg-

ative diffusivity u ∈ (a, b), and the region where the solution is multi-valued are avoided

altogether. Inserting a shock is an established technique for obtaining single-valued solu-

tions to hyperbolic equations of the form ρt + c(ρ)ρx = 0 [35]. Witelski [36] expanded this

technique to construct a solution for a diffusion equation with a region of negative diffu-

sivity. Furthermore, some reaction–diffusion models with a region of negative diffusivity

admit travelling wave solutions where the density profile moves at constant speed while

maintaining its shape [13, 20, 22, 23, 25]. Of particular interest to this work, Li et al.

[23] proved the existence of shock-fronted travelling waves for one such reaction–diffusion

model.

We use a non-classical Lie symmetry to construct a multi-valued analytic solution to the

RDE (1) with a region of negative diffusivity. Lie symmetry analysis was first proposed

by Sophus Lie in the late 19th century [24] and involves finding invariant quantities in an
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equation and using them to construct solutions (see [17, 27] for more detail). The non-

classical (or Q-conditional) method is an extension to Lie symmetry analysis introduced

by Bluman and Cole [4], where in addition to requiring invariance of the PDE the invariant

surface condition must also be satisfied. Non-classical symmetry analysis can sometimes

uncover symmetries not found by the classical method.

We use a special non-classical symmetry found independently by Arrigo and Hill [3]

and Goard and Broadbridge [14] to construct analytic solutions for an arbitrary diffu-

sivity provided that the reaction and diffusion terms satisfy the relationship

R(u) =
(

A

D(u) + κ

)∫ u

u∗
D(u′) du′, (2)

where u∗ is a zero of the reaction term, and A and κ are free parameters that arise from

the symmetry analysis. Generally this reaction term contains singularities when D(u) = 0

(that is, at u = a and u = b), however inserting a shock avoids these singularities. This

symmetry can be used to transform the RDE (1) to the Helmholtz (or modified Helmholtz)

equation [7]
d2Ψ
dx2 + κΨ = 0. (3)

The new dependent variable Ψ(x) is related to the density u(x, t) via the Kirchhoff trans-

formation

Φ(u) =
∫ u

u∗
D(ū) dū = eAtΨ(x), (4)

where Φ(u) is the Kirchhoff variable, sometimes known as the diffusive flux or potential.

After solving the Helmholtz equation (3), inverting the Kirchhoff transformation (4) re-

covers the solution for u(x, t). We restrict our attention to the choice κ = −k2 < 0, such

that the solution to the Helmholtz equation (3) is in terms of exponential functions,

Ψ(x) = c1e
kx + c2e

−kx. (5)

In summary, we will specify a diffusivity with a region of negative diffusion and calculate

4



the related reaction term (2). We then construct analytic solutions by inverting the

transformation (4) using the exact form of Ψ(x) (5).

In Section 2, we investigate a model where D(u) is a quadratic function with two zeros

on u ∈ (0, 1), such that there is a region u ∈ (a, b), where 0 < a < b < 1, such that

D(u) < 0. We consider three types of analytic solutions. The first two are time-dependent

solutions, which can represent both a receding front with non-constant speed and a pair of

colliding waves. The third is a receding sharp-fronted travelling wave, where the solution

moves leftward at constant speed. Since the solutions with negative diffusivity are multi-

valued, we create shock-fronted solutions by inserting a jump in u around values for

which D(u) < 0, such that the shock satisfies a Φ(u) ∈ C1 rule. After developing

the shock-fronted solutions, we analyse the stability of the constant and travelling wave

solutions. Section 3 examines the relationship between the Φ(u) ∈ C1 rule and the more

common equal area in Φ(u) rule [28, 36]. We provide discussion and concluding remarks

in Section 4. The existence of an analytic solution obtained using non-classical symmetry

analysis underpins the analysis in each section of the paper.

2 Analytic travelling wave and time-dependent solu-

tions for quadratic diffusivity

We consider three analytic solutions for the RDE (1) with a quadratic diffusivity that

is negative only for values of u between the two roots of the quadratic. This diffusivity

takes the form

D(u) = (u − a) (u − b) , (6)

where a, b ∈ (0, 1) and we impose a < b. Johnston et al. [18] derived a reaction–diffusion

model with diffusivity (6) in the continuum limit of a discrete model where isolated and

group-associated individuals had different rates of birth, death and movement. Turchin

[33] also derived a diffusion equation with a negative diffusivity from a discrete model
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where individuals move towards regions of higher population density [33]. Li et al. [22, 23]

then showed that travelling wave solutions exist for the RDE with quadratic diffusivity (6).

We extend these works by using a non-classical symmetry to construct solutions with

shocks, and analyse the spectral stability of travelling wave solutions.

Figure 1a shows an example quadratic diffusivity of the form (6), with a = 0.2 and

b = 0.4. To use the special non-classical symmetry, we obtain the corresponding reaction

term using (2). By choosing u∗ = 1, we fix one of the zeros of the reaction term to be

at u = 1, that is, Φ(1) = 0, and so R(1) = 0. Since A is a free parameter, we choose

A = −κD(0), to enforce R(0) = 0. The reaction term R(u) (2) has a third zero at

u = a + b. Therefore, there are two types of reaction terms possible for this quadratic

diffusivity. If a + b ≥ 1, the reaction term is typically negative for all values of u in the

range of interest. Since a negative reaction term would cause a decrease in population

for all densities, we do not investigate this case further. If a + b < 1, the reaction term

is typically negative for lower densities and positive for higher densities. This scenario

is loosely analogous to cubic reaction term commonly used to model changes in gene

frequencies [6], or population dynamics due to the Allee effect [8, 32]. Figure 1b shows

the shape of this reaction term. The reaction term has singularities at a and b, as the solid

vertical lines in Figure 1b indicate. Between the vertical lines the reaction term becomes

large and positive. However, the shock solutions we construct avoid the u values in this

region.

We construct an analytic solution to (1) with diffusivity (6) and reaction term (2) by

solving the Helmholtz equation (3) for Ψ(x), and inverting the Kirchhoff transformation

(4) to find u(x, t). Since the diffusivity is quadratic, the Kirchhoff variable Φ(u) will be

cubic in u(x, t). The Kirchhoff transformation (4) then determines the solution implicitly.

That is,

Φ(u) = 1
6 (u − 1)

(
2u2 + (2 − 3a − 3b) u + 2 − 3a − 3b + 6ab

)
= eAt

(
c1ekx + c2e−kx

)
,

(7)
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(a) (b)

(c)

Figure 1: Example nonlinear (a) diffusivity, (b) reaction function, and (c) flux potential.
Here, κ = −1, A = 0.08, u∗ = 1, a = 0.2 and b = 0.4. The vertical lines (red) show the
location of the zeros of the diffusivity. The reaction term has zeros at u = 0, u = a + b =
0.6, and u = 1. Between the vertical (red) lines R(u) becomes large and positive.
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where c1 and c2 are constants of integration whose values will be governed by the boundary

conditions, and where we have chosen κ = −k2 < 0. Some sections of the solution for

u(x, t) are multi-valued, because Φ(u) is a cubic function. Since A = −κD(0) > 0,

we require Ψ(x) < 0 so that the solution does not approach infinity as t → ∞. As a

consequence, we require Φ(u) < 0 for u ∈ [0, 1), so that we must have b < (a + 2)/3.

Figure 1c shows Φ(u) which is increasing except where u ∈ (a, b) where the diffusivity

is negative. Consequently the solution is multi-valued for values of u surrounding this

region.

2.1 Constructing single-valued solutions by inserting shock dis-

continuities

With quadratic diffusivity (6), the solutions (7) obtained using the non-classical symmetry

solutions described here are multi-valued with three branches in a region centred about

the points where the diffusivity is zero, i.e. where u = a and u = b. That is, the

solution is multi-valued when u(x, t) ∈ [(3a − b)/2, (3b − a)/2]. To recover a single-valued

solution, we insert a shock discontinuity. Due to the form of transformation (4), the flux

potential Φ(u) is always conserved across the shock so that in principle, a shock could be

inserted anywhere in the multi-valued region. To specify a second condition, we notice

that equation (1) can be rewritten in the form

∂u

∂t
= ∂2

∂x2 Φ(u) + R(u), (8)

and consequently we impose that Φ′(u) = D(u) is also continuous across the shock. That

is, the shock position is determined by the following two conditions

Φ(ul) = Φ(ur), and Φ′(ul) = D(ul) = D(ur) = Φ′(ur), (9)
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where ul and ur are the left (lower) and right (upper) endpoints of the shock. For quadratic

diffusivity (6), these points are

ul =
a + b −

√
3(a − b)2

2 and ur =
a + b +

√
3(a − b)2

2 , (10)

where we also assume that b < a(2 +
√

3) so that ul > 0. Due to the relationship between

the diffusivity and the reaction term (2), R(u) is also preserved across the shock. In

addition, both ux and ut are preserved across the shock. Figure 2 shows the behaviour

both the diffusivity and the reaction across the shock. In Figure 2a, the dashed horizontal

line shows that the solution jumps over both the zeros of the diffusivity, u = a, b and

the region where D(u) < 0 demonstrating that Φ′(u) = D(u) is conserved. Likewise,

in Figure 2b the solution jumps over the locations where the reaction term is singular,

and the region between the vertical lines where the reaction term is positive. Figure 2c

shows the flux potential around the shock, demonstrating that Φ(u) is conserved across

the shock.

2.2 Examples of analytic time-dependent solutions

We obtain different analytic solutions by adjusting the constants c1 and c2 in (7). For

example, setting c1 < 0 and c2 = −c1 gives rise to a receding solution that satisfies

u(0, t) = 1 for all t. Although the receding solution u(x, t) gets steeper as the front

approaches x = 0, the shock persists because the underlying analytic solution remains

multi-valued. This solution is shown in Figure 3a. Alternatively, if we remove the rela-

tionship between c1 and c2 and instead merely impose c1 < 0 and c2 < 0, we obtain the

colliding wave solution shown in Figure 3b. In the colliding wave case, there is a time

where the solution lies completely below the values of u for which D(u) < 0 and becomes

smooth; at later times the solution becomes zero everywhere.

One feature of these solutions is that they are sharp-fronted (or compactly supported).

That is, in the solutions shown in Figure 3 the density u(x, t) becomes zero at the point x =
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(a) (b)

(c)

Figure 2: Nonlinear (a) diffusivity, (b) reaction function, and (c) flux potential around
the shock. Here, κ = −1, A = 0.08, u∗ = 1, a = 0.2 and b = 0.4. The vertical lines
(red) show the location of the zeros of the diffusivity. Horizontal dashed lines indicate the
transition across the shock, and the stars (red) indicate the end points of the shock. The
reaction term is zero at u = 0, u = a + b = 0.6, u = 1.
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(a) (b)

Figure 3: Time-dependent solutions. Curves (blue) show the solution at different times
and the arrows indicate how the solutions move with time. Stars (red) indicate the
beginning and end of the vertical shock. Horizontal lines (red) show when the diffusivity
is zero. In both solutions κ = −1, A = 0.08, u∗ = 1, a = 0.2, b = 0.4. (a) Solution which
satisfies the condition that at u(1, t) = 1, it has c1 = Φ(0) and c2 = −c1 = −Φ(0). (b)
Colliding wave solution, with c1 = c2 = Φ(0).

L(t) such that u(L(t), t) = 0 and u′(L(t), t) ̸= 0. The function L(t) describes the position

of the sharp front in the moving-boundary problem. A well-known moving-boundary

problem is the classical Stefan problem, which involves solving the linear heat equation

on x ∈ [0, L(t)], where the boundary evolves according to the Stefan condition (11)

du

dx

∣∣∣∣∣
x=L(t)

= −β
dL

dt
, (11)

where β is the Stefan parameter. Some recent works consider adapting the classical

Stefan model to solve general reaction–diffusion moving-boundary problems [9, 10, 11, 12].

Using the analytic solutions presented here, we can directly calculate both the speed of

the moving boundary and the flux at the moving boundary exactly. Our solutions do

not satisfy the regular Stefan condition (11), but instead satisfy an alternate condition

whereby the speed is inversely proportional to the gradient so that

∂u

∂x

∣∣∣∣∣
x=L(t)

= κΦ(0)
L′(t) . (12)

Both the time-dependent and colliding wave solutions in Figure 3 satisfy this condition
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(in the case of colliding waves, both boundaries satisfy the condition). Because of the

inverse relationship between the gradient and the speed of the boundary, steeper density

gradients lead to slow-moving fronts, whereas shallower gradients increase front speed.

Large flux at the boundary (D(u)ux)|x=L(t) thus corresponds to slow fronts, and small

flux corresponds to fast fronts.

2.3 Analysis of a receding travelling wave solution

While the time-dependent solutions in Section 2 involve non-zero c1 and c2, we can obtain

a travelling wave solution by choosing c1 < 0, c2 = 0. The implicit solution (7) for Φ(u)

then becomes

Φ(u) = c1ekx+At. (13)

We can write Equation (13) in terms of the travelling wave coordinate z = x − ct, where

c = −A/k = −kD(0). The travelling wave solution then has an implicit form, expressed

in terms of z as

z = x − ct = 1
k

log
(

Φ(u)
c1

)
. (14)

As described above, the travelling wave solution (14) obtained using the non-classical

symmetry is multi-valued around the region where the diffusivity takes negative values.

Figure 4 shows a shock inserted so that the diffusion is constant across the shock, that

is, according to conditions (9). The start and end of the shock are marked by stars (red)

while the horizontal lines (red) show the zeros of the diffusivity; between these lines, the

diffusivity is negative. The arrow shows that this travelling wave solution moves leftward

(c < 0), and is a receding front. This is a consequence of requiring R(0) = 0, which

means that A = −κD(0) > 0. The shock avoids both the region of negative diffusivity

and the singularities in the reaction term, and both the diffusivity and reaction terms

are continuous across the shock. The behaviour of D(u) and R(u) across the shock

corresponds to the horizontal dashed lines in Figure 2a and Figure 2b respectively.

Like the time-dependent solutions in Figure 3, the travelling wave solution in Figure 4 also

12



(a) (b)

Figure 4: Travelling wave solution. Curves (blue) show the solution at different times and
the arrow indicates how the solution moves with time. Stars (red) indicated the beginning
and end of the vertical shock. Horizontal lines (red) show where the diffusivity is zero.
(b) The dashed curve shows the multi-valued part of the solution at a single time. Here
κ = −1, A = 0.08, u∗ = 1, a = 0.2, b = 0.4, c1 = Φ(0) and c2 = 0.

satisfies the Stefan-like condition (12) at the location where u = 0. Choosing c1 = Φ(0)

means that the sharp front in u coincides with z = 0 (that is, u(0) = 0). Figure 5a shows

the location of the boundary and Figure 5b shows the flux at the boundary. For the

travelling wave solution, the speed at the moving boundary and the flux at the boundary

are both constant. In contrast, time-dependent solutions have an inverse relationship

between the speed of the moving boundary and the flux. In the receding time-dependent

solution, as the moving boundary approaches zero its speed decreases while the flux grows.

For the colliding wave solution, the dash-dot curves (green) in Figure 5 are multi-valued

because of the two contact lines; as the two boundaries approach zero the speed of the

moving boundaries starts to increase and the flux at both boundaries approaches zero.

The time-dependent and travelling wave solutions are both left-moving (receding) solu-

tions. Li et al. [23] derive a necessary condition for the existence of left-moving travelling

waves satisfying the usual far-field boundary conditions (that is, u → 0, 1 and uz → 0 as

z → ±∞ respectively). For a sharp-fronted wave, the condition of Li et al. [23] changes

from ∫ ua

0
D(u)R(u) du < −1

2 (g(ua))2 < 0, for all ua ∈ (0, ul), (15)
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(a) Boundary position, L(t). (b) Flux, −D(u)ux at x = L(t).

Figure 5: Comparison of the boundary position L(t) and the flux −D(u)ux at x = L(t) for
the receding time-dependent, colliding wave, and travelling wave solutions. The dash-dot
curves (green) are multi-valued because it corresponds to the colliding wave solution and
has two boundaries. Solutions obtained using parameter values κ = −1, A = 0.08, u∗ = 1,
a = 0.2, b = 0.4. For the time-dependent solution, we set c1 = −c2 = −0.0153, for the
colliding wave solution we have c1 = c2 = −0.0153, and for the travelling wave solution
we use c1 = −0.0153, c2 = 0.

to ∫ ua

0
D(u)R(u) du < −1

2 (g(ua))2 + 1
2 (g(0))2 , for all ua ∈ (0, ul), (16)

where g(u) = D(u)uz. Consequently, while a model with a reaction term that is positive

in (0, ua) cannot support a smooth-fronted receding travelling wave (that is, a solution

where uz → 0 as z → ∞), a compactly-supported sharp-fronted receding travelling wave

(for which g(0) ̸= 0) can be supported.

To analyse the receding travelling wave solution further, we apply the transformation

z = x − ct to the RDE (1) to obtain the ordinary differential equation

d
dz

(
D(u)du

dz

)
+ c

du

dz
+ R(u) = 0. (17)

The implicit solution (14) with c2 = 0 is a travelling wave solution u(z) that satisfies (17).
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Following Li et al. [22], we write (17) as the system

D(u)du

dz
= q, (18a)

D(u)dq

dz
= −cq − D(u)R(u). (18b)

The left-hand sides of (18) vanish when D(u) = 0, giving rise to a wall of singularities

at u = a and u = b [16, 22, 29, 34], i.e., solutions of (18) will, in general, cease to

exist when reaching these walls of singularities due to a finite-time blow-up. Possible

exceptions are points known as holes in the walls [16, 22, 29, 34] where the left-hand and

right-hand sides of (18) both vanish. However, the conditions D(u) = 0 and q = 0 do

not correspond to holes in the wall; although the right-hand side of (18a) vanishes when

q = 0, the right-hand side of (18b) does not vanish when D(u) = 0 since the product

D(u)R(u) = (A + κD(u))
∫ u

u∗
D(u′) du′ = (A + κD(u)) Φ(u),

is non-zero at the walls of singularities, i.e., A
∫ u=a,b

u∗ D(u′) du′ ̸= 0. Thus, smooth solutions

between u = 0 and u = 1 are not possible in system (18) and shocks are a necessary

ingredient.

Nevertheless, we can use our analytic multi-valued solution to calculate solution trajecto-

ries in the phase space. Figure 6 shows a phase plane portrait of (18) with the trajectory

of our multi-valued solution. The phase plane also shows why a shock is required: be-

tween the walls the diffusivity is negative and the direction of the flow switches. As a

consequence, our solution cannot be represented by a single trajectory and instead is a

combination of two solution branches. The phase portrait in Figure 6 also demonstrates

that the sharp-fronted receding travelling wave has non-zero flux at the moving boundary

(where u = 0).
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Figure 6: Phase portrait of (18). The arrows (green) indicate the direction field of the
system. The dashed curve (magenta) is the solution trajectory of our analytic solution,
which emanates from (1, 0) and terminates at (0, −q0) satisfying the boundary condi-
tion (12). The vertical lines (red) are walls of singularities. The solid horizontal line and
the solid curve (black) are the nullclines of the system.

2.4 Stability analysis

We analyse the spectral stability of the constant and travelling wave solutions to (1),

relative to perturbations in an appropriately chosen space. To that end, we first derive the

linearised equation, linearised about a solution ū, which we write in the form pt = L(ū)p,

where p is a perturbation to the solution ū and L(ū) is the linearised operator. To derive

the linearised equation, we consider solutions to (1) of the form u = ū + εp(x, t), where

ε ≪ 1. Collecting terms of O(ε) as ε → 0, we arrive at a PDE for the perturbation p,

pt = (D(ū)p)xx + R′(ū)p =: L(ū)p. (19)

For a general solution of (1), the right hand side of (19), and in particular the operator

L(ū) will depend on both x and t. However, for the special solutions we consider, L will

either be a constant coefficient operator, or depend on a single variable only.
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2.4.1 Linear stability analysis of the constant solutions

We suppose first that our solution ū is a constant solution, either 0 or 1. Then, (19)

becomes a constant-coefficient second-order PDE, which is solvable via separation of vari-

ables. Supposing that p(x, t) takes the form p(x, t) = eλtp(x) we obtain the ordinary

differential equation

λp = D(ū)pxx + R′(ū)p. (20)

We choose the domain of our perturbations to be p ∈ L2(R), which provides the boundary

conditions limx→±∞ p = 0, and enables us to solve (20) via the Fourier transform. We are

led to the dispersion relation,

λ = −α2D(ū) + R′(ū), (21)

where α is the Fourier variable in space. If Re(λ) < 0 then, to first order, the perturbation

will decay to the constant solution ū, indicating that u = 0, or u = 1 is linearly stable to

L2(R) perturbations. In contrast, if Re(λ) > 0 the perturbation to the constant solution

ū will grow with time.

For u = 0, the quadratic diffusivity satisfies D(0) > 0, so −α2D(0) < 0 for all real wave

numbers α. Stability of the constant solution u = 0 then depends on the sign of R′(0).

The derivative of the reaction term (with A = −κD(0)) is

R′(u) =
(

κD(0)D′(u)
D(u)2

)
Φ(u) +

(
−κD(0)

D(u) + κ

)
D(u). (22)

At u = 0 we have

R′(0) =
(

κD′(0)
D(0)

)
Φ(0). (23)

Since κ < 0, Φ(0) < 0, and D(0) > 0, the derivative R′(0) has the same sign as D′(0) =

−a − b, which is always negative as 0 < a < b. Therefore, small perturbations around the

constant solution u = 0 will decay, and the constant solution u = 0 is (linearly) stable.
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Likewise, we can consider the stability of the constant solution u = 1. Since D(1) > 0,

stability depends on the value of R′(1), which is

R′(1) = −κD(1)
(

D(0)
D(1) − 1

)
. (24)

Since −κD(1) > 0 for quadratic diffusivity, the sign of R′(1) depends on the sign of

(D(0)/D(1) − 1) . This term is positive if D(1) < D(0), negative if D(0) < D(1), and is

zero if D(1) = D(0). Therefore, R′(1) is positive if a + b > 1, is negative if a + b < 1 and

is zero when a + b = 1. Quadratic diffusivity with a + b > 1 thus admits long-wavelength

instabilities for sufficiently small α. The solutions presented in Figure 4 are for a + b < 1,

for which so u = 1 is stable relative to perturbations in L2(R).

2.4.2 Stability analysis of the receding travelling wave solution

Having considered constant ū, we now address the linearisation of (1) in the moving frame

(z, t) = (x − ct, t), about the receding travelling wave solution described in Section 2.3.

Again, we subject the solution to perturbations of the form p(z)eλt, where p(z) will be in

an appropriate space. Our equation for the perturbation is

λp = L(ū)p := (D(ū)p)zz + cpz + R′(ū)p. (25)

The right hand side of (25) depends only on z. We require that p(z) be a solution to (25)

which is square integrable on (−∞, 0) which also vanishes at z = 0 (i.e. in L2
0((−∞, 0))).

This means that we impose the boundary conditions p(0) = 0 and limz→−∞ p(z) = 0.

To uniquely solve the linearised ODE (25), we need to impose conditions across the shock.

To this end, we ask that p be C1 across the shock. We note that this means that the

coefficient of the highest derivative of D(ū) will be continuous across the shock, but the

lower order coefficients may not be. We remark that since the shock occurs at a single

point, the set of functions which are C1 across the shock is still a densely defined subset

of L2
0((−∞, 0)), so imposing this condition will not affect the spectrum of L(ū).
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For our discussion on spectral stability of the receding travelling wave solution, we use

the language and notation outlined in Chapters 2 and 3 of the textbook by Kapitula and

Promislow [19]. The set of λ ∈ C such that L(ū) − λ does not have a bounded inverse on

L2
0((−∞, 0)), will be called the spectrum of L(ū), and denoted σ(L(ū)). We note that the

spectrum of a closed linear operator on a Hilbert space is a (topologically) closed set, so

if we can find an open set which is in the spectrum, then its closure must be as well. We

will call the wave ū spectrally stable, if λ ∈ σ(L(ū)) means that Re(λ) < 0.

Theorem 2.1. The travelling wave solution found in Section 2.3 is spectrally stable,

provided a and b are such that 1
2D(ū)zz + R′(ū) < 0 for u ∈ [0, ul] ∪ [ur, 1].

Remark. Due to the condition 1
2D(ū)zz + R′(ū) < 0, we require R′(1) < 0.

Remark. Sometimes waves are referred to as spectrally stable if they have spectrum in

the left-half plane, and perhaps a simple eigenvalue associated with translation invariance

at the origin. As our perturbations are in L2
0((−∞, 0)), the eigenvalue associated with

translation invariance λ = 0 will not be an eigenvalue of the linearised operator.

Proof. We begin with an analysis of the so-called far-field operator of (25). Letting

z → −∞, we have that solutions to (25) will asymptotically behave like solutions to the

constant coefficient ordinary differential equation

λp = D(1)pzz − kD(0)pz + R′(1)p, (26)

where we recall that c = −kD(0). The characteristic equation of ODE (26) is

λ = D(1)r2 − kD(0)r + R′(1), (27)

with characteristic exponents given as the roots

r± :=
kD(0) ±

√
k2D(0)2 − 4D(1)(R′(1) − λ)

2D(1) .
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We are interested in the sign of the real parts of r± for a given value of λ. Supposing that

r = iα for α ∈ R, we have the dispersion relation

λ = −α2D(1) − ikD(0)α + R′(1). (28)

Equation (28) is a parametrised curve for λ in the complex plane, parametrised by α, and

divides the complex plane into two disjoint regions. We denote the region to the right of

the curve by Ω, while the region to the left of the curve we will call B, see Figure 7. For

λ ∈ Ω we have that Re(r+) > 0, while Re(r−) < 0. However, for λ ∈ B we have that both

Re(r±) > 0, meaning that L(ū) − λ is not invertible here. As both r± have positive real

parts, we have a spanning set of solutions to (25) which decay to 0 as z → −∞. Then

the solution satisfying the right-hand boundary condition would necessarily be a linear

combination of these solutions, and would hence lie in the kernel of L(ū) − λ. Owing to

our remark above about the spectrum being closed, we conclude that the spectrum at

least contains the closure of the set B.

We have that D(1) > 0, so the maximum real value of λ in (28) depends on R′(1), which

we know is negative provided that the conditions in the statement of Theorem 2.1 are

satisfied. Thus this part of the spectrum at least is contained entirely in the left half

plane.

Remark. In fact, what the above calculation partially shows is that the so-called Fred-

holm index of L(ū) − λ is not zero for λ ∈ B (it is in fact 2), but as we can show lack of

invertibility of L(ū) − λ for λ ∈ B directly, we avoid the diversion into functional analysis

terminology. For a more complete description of why the previous calculation computes

the Fredholm index of L(ū) − λ, we refer the reader to [19].

The previous computation shows that for λ ∈ Ω we can compute the Green’s function

of (25), and thus invert L(ū) − λ, provided we do not have an eigenvalue/eigenfunction

to (25). We first show that any eigenvalues must be real, and then show that for any a
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Figure 7: Schematic of the dispersion relation (28) in the complex plane dividing the
plane into two disjoint regions, denoted B and Ω.

and b satisfying the conditions in the statement of Theorem 2.1 the eigenvalues must be

negative.

To see that eigenvalues of (25) with λ ∈ Ω must be real, we multiply (25) by the integrating

factor

D(ū)2 exp
(

−kD(0)
∫ 1

D(ū) dz

)
, (29)

so that equation (25) is put into Sturm–Liouville form

Mp := (S1(z)p′)′ + S2(z)p = λS3(z)p, (30)
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where the three z-dependent functions are

S1 = D(ū)2 exp
(

−kD(0)
∫ 1

D(ū) dz

)
(31a)

S2 = D(ū) (R′(ū) + D(ū)zz) exp
(

−kD(0)
∫ 1

D(ū) dz

)
(31b)

S3 = D(ū) exp
(

−kD(0)
∫ 1

D(ū) dz

)
. (31c)

Noting that S3 is a positive, bounded, continuous function (even across the shock because

u always takes values where D(u) > 0 and D(u) is continuous across the shock (9)), a

calculation shows that for λ ∈ Ω, if λ is an eigenvalue of L(ū), then it will be an eigenvalue

of 1
S3(z)M in the weighted Hilbert space (L2

0((−∞, 0)))S3 with the (usual) weighted norm

< v, v >S3 :=
∫

vv̄S3 dz.

Indeed we have that for z ≪ −1, D(ū) ∼ D(1). Solutions when λ ∈ Ω will decay

like eRe (r+)z, and we have that 2 Re (r+) − kD(0)/D(1) > 0 when λ ∈ Ω. Therefore,

eigenfunctions when λ ∈ Ω will be in (L2
0((−∞, 0)))S3 (note: this does not happen for

λ ∈ B or its closure). But such an operator is self-adjoint in this space, and hence only

has real eigenvalues. Thus for λ ∈ Ω, if it is an eigenvalue of L(ū) in L2
0((−∞, 0)), then

it must be real.

Lastly to see that any eigenvalues λ ∈ Ω must be negative, we note that if λ is real, the

corresponding eigenfunction will also be real. We multiply (25) by p and integrate,

∫ zs

−∞
λp2 dz +

∫ 0

zs

λp2 dz =
∫ zs

−∞
(D(ū)p)zz p dz +

∫ 0

zs

(D(ū)p)zz p dz

+
∫ zs

−∞
cppz dz +

∫ 0

zs

cppz dz +
∫ zs

−∞
R′(ū)p2 dz +

∫ 0

zs

R′(ū)p2 dz,

(32)
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where zs is the location of the shock. Integrating the speed terms results in

∫ zs

−∞
cppz dz +

∫ 0

zs

cppz dz = c

2
(
p(z−

s )2 − p(z+
s )2

)
, (33)

where p(z−
s ) is the value of p(z) as z → zs from below and p(z+

s ) is the value of p(z) as

z → zs from above. For the diffusion term, using integration by parts twice we arrive at

∫ zs

−∞
(D(ū)p)zz p dz +

∫ 0

zs

(D(ū)p)zz p dz =
∫ zs

−∞

1
2D(ū)zzp2 dz +

∫ 0

zs

1
2D(ū)zzp2 dz

−
∫ zs

−∞
D(ū)p2

z dz −
∫ 0

zs

D(ū)p2
z dz

+ [(D(ū)p)z p]z=z−
s

− [(D(ū)p)z p]z=z+
s

−
[1
2D(ū)zp2

]
z=z−

s

+
[1
2D(ū)zp2

]
z=z+

s

. (34)

In total we have

∫ zs

−∞
λp2 dz +

∫ 0

zs

λp2 dz =
∫ zs

−∞

(1
2D(ū)zz + R′(ū)

)
p2 dz +

∫ 0

zs

(1
2D(ū)zz + R′(ū)

)
p2 dz

−
∫ zs

−∞
D(ū)p2

z dz −
∫ 0

zs

D(ū)p2
z dz + S, (35)

where

S = c

2
(
p(z−

s )2 − p(z+
s )2

)
+
[1
2D(ū)zp2

]
z=z−

s

−
[1
2D(ū)zp2

]
z=z+

s

+ [D(ū)ppz]z=z−
s

− [D(ū)ppz]z=z+
s

. (36)

We have D(ū)z = D′(ū)ūz, and for quadratic diffusion D′(ū) > 0 when ū > (a+b)/2 which

is in the region to the left of the shock z ∈ (−∞, zs) and D′(ū) < 0 when ū < (a + b)/2

which is in the region to the right of the shock z ∈ (zs, 0]. Also ūz < 0, therefore

[D(ū)zp2/2]z=z−
s

and − [D(ū)zp2/2]z=z+
s

are both negative. The term (p(z−
s )2 − p(z+

s )2)

will vanish if p is continuous at the shock, and because D(ū) is conserved across the shock

the term [D(ū)ppz]z=z−
s

− [D(ū)ppz]z=z+
s

will vanish if pz is also continuous across the
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shock. Alternatively this entire term will vanish if p also vanishes at the shock.

With S < 0 the right-hand side of Equation (35) will always be negative since D(ū) is

always positive (since the shock avoids the regions of negative diffusivity) and D(ū)zz/2+

R′(ū) is assumed to be negative. We then need to have λ < 0 for the left-hand side of (35)

to be negative as well. Hence, any real eigenvalues of L(ū) in Ω will be negative. This

completes the proof of Theorem 2.1.

We have proven that receding travelling waves with quadratic diffusivity are spectrally

stable whenever D(ū)zz/2 + R′(ū) < 0. We now explore numerically the values of a and b

for which the stability analysis applies. Figure 8 shows (a, b) pairs where a + b < 1 and

0 < a < b < 1. The circles (blue) indicate the pairs of (a, b) which satisfy the stability

condition D(ū)zz/2 + R′(ū) < 0 as well as b < a(2 +
√

3) so that the lower shock value

ul > 0 (10). The crosses (red) indicate where these conditions are not all satisfied. The

left border of the circle (blue) region is determined by the condition b < a(2 +
√

3), while

the top right border is determined by the stability condition D(ū)zz/2 + R′(ū) < 0.

24



Figure 8: Values of a and b for which a + b < 1 and 0 < a < b < 1. Circles (blue) indicate
the pairs that satisfy the conditions for spectral stability outlined in Theorem 2.1, and the
condition b < a(2+

√
3), which guarantees ul > 0 (10). Crosses (red) indicate combinations

of a and b that do not satisfy both conditions. Our analysis proves spectral stability for
(a, b) pairs denoted by blue circles, but makes no statement about the stability of (a, b)
pairs denoted by red crosses.
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3 The equal area rule and non-symmetric diffusivity

As described in Section 2.1, our shock solutions are constructed by connecting two

branches of an analytic multi-valued solution; here we choose the shock location according

to the conditions described in equation (9) and as shown in Figure 9. In practice, the

shock could be located anywhere in the multi-valued region with two conditions required

to locate the shock. The first condition in (9) requires the diffusive flux to be continuous

across the shock and is a constraint used almost universally (see for example [23, 36]).

Historically, the second condition has been chosen to correspond to the equal area in Φ(u)

rule,

∫ ur

ul

Φ(u) − Φ(ul) du = 0 (37)

as illustrated in Figure 9b. The horizontal line indicates the value of Φ(u) at the shock

chosen so that the two shaded regions have equal area. Pego [28] used the equal-area rule

to describe solutions of the nonlinear Cahn–Hilliard equation for phase separation, and

Witelski [36] showed how the equal-area rule arises when constructing a shock solution to

the diffusion equation using a non-local regularisation

∂u

∂t
= ∂

∂x

(
D(u)∂u

∂x
− ε2 ∂3u

∂x3

)
, (38)

where ε ≪ 1 is a small parameter. Li et al. [23] showed that the equal-area rule also arises

as a shock solution for reaction–diffusion equations using the same type of regularisation

(that is, equation (38) with a reaction term added). Other types of regularisations,

including composite regularisations, have also been used to construct shock solutions [23,

5].

In Section 2 the location of the shock was determined by the requirement that the flux

potential be C1, that is, conditions (9) must be satisfied across the shock. As a conse-

quence, the diffusivity is constant across the shock (in the case of the symmetry solution
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(a) (b)

Figure 9: (a) Stars (red) show the shock position for the solutions shown in Figures 3
and 4 and the dashed line (blue) shows that Φ′(u) = D(u) is conserved across the shock.
(b) The equal area rule for Φ(u). The curve (blue) is Φ(u) and the horizontal line (red) is
the value of Φ(u) at the shocks, Φ(ul) = Φ(ur). The equal area rule in Φ(u) requires that
the areas in the two lobes cut off by the horizontal line (the shaded regions) are equal.

presented here, relationship (2) means that the reaction term is also constant across the

shock, but this may not be true in general). In the case of quadratic diffusivity above,

the condition on the first derivative recovers the more commonly imposed equal area rule

(37). Here we show that this is true for any diffusivity that has two zeros and is symmetric

about the midpoint of its zeros.

Consider a diffusivity with two zeros such that D(a) = D(b) = 0 and D(u) < 0 for

a < u < b. Let ū = u − (a + b)/2 so that D(±ā) = 0 where ā = (a − b)/2. If

D(u) is symmetric about the midpoint of its zeros, D(ū) is an even function. Since

Φ(u) =
∫ u

u∗ D(u′) du′, Φ̄ = Φ(ū) is a vertical translation of an odd function. That is,

f(ū) = Φ̄ − Φ̄|ū=0 (39)

is odd. Also, since Φ′(ū) = D(ū) is even, the requirement that Φ′(ūl) = Φ′(ūr) is satisfied

by ūl = −ūr, because Φ̄ is a vertical translation of the odd function f(ū) and the require-

ment that Φ(ūl) = Φ(−ūl) means that Φ(ūl) = Φ̄|ū=0. The left-hand side of the equal
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area condition (37) then becomes

∫ ūr

ūl

f(ū) dū =
∫ −ūl

ūl

f(ū) dū

= F (−ūl) − F (ūl)

= F (ūl) − F (ūl) = 0

where
∫

f(ū) dū = F (ū), and F (ū) is an even function since f(ū) is odd. That is, the equal

area rule is a consequence of the requirement that Φ(u) be C1, providing the diffusivity

is symmetric about the midpoint of its two zeros.

In contrast, if the diffusivity is not symmetric about the midpoint of its two zeros, the

requirement that Φ(u) be C1 does not recover the familiar equal area rule. For example,

consider a quartic diffusivity given by

D(u) = (u − a)(u − b)
(
(u − c)2 + d

)
, (40)

where a < b, a, b ∈ (0, 1), c arbitrary and d > 0 are constants. This diffusivity has two

zeros (D(a) = D(b) = 0), and is not symmetric about their midpoint. Figure 10(a) shows

this diffusivity, where the parameters have been chosen to mimic the diffusivity examined

in Section 2. Figure 10(b) shows a possible corresponding (through (2)) reaction-term

chosen to have similar characteristics to that discussed in Section 2; vertical red lines

indicate the location of the zeros of the diffusivity. In both panels, the horizontal blue

dashed line indicates the transition across the shock as chosen by enforcing that Φ(u) is

C1. A direct consequence of this choice is that both D(u) and R(u) are continuous across

the shock. The green dash-dot lines indicate the transition across the shock if the equal

area rule is imposed. Notice that location of the shock is different, and also that neither

the diffusivity or reaction is continuous across a shock chosen in this way.

An implicit solution to equation (1) with (40) and (2) can be constructed using the non-

classical symmetry described in Section 1. Figure 10(b-c) shows a receding travelling wave
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solution. The dashed line in panel (d) indicates the difference in shock location as chosen

by the requirement that Φ(u) be C1 and the equal area rule.

(a) (b)

(c) (d)

Figure 10: Analytic solution to reaction–diffusion equation (1) with non-symmetric dif-
fusivity (40). Parameter values are κ = −1, A = 0.0448, a = 0.2, b = 0.4, c = 0.6, and
d = 0.2. (a) Diffusivity D(u) (40). Inset shows the transition across the shock: horizontal
dashed line (light blue) indicates the position chosen if Φ(u) is C1, dash-dot line (green)
shows the position chosen by the equal area rule. (b) Corresponding reaction term R(u),
given by (2). (c) Multi-valued travelling wave solution. Curves (blue) show the solution
at different times, the arrow indicates the direction of travel. Horizontal lines (red) show
where the diffusivity is zero. (d) Enlargement of the multi-valued part of the solution
at a single time. Stars (red) show the end points of two possible shock positions. The
dashed line (left, light blue) corresponds to Φ(u) ∈ C1. The dash-dot line (right, green)
corresponds to the equal-area rule.
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4 Discussion and conclusion

Analysis of nonlinear reaction–diffusion equations has wide-ranging application in the

physical sciences. Unfortunately, many reaction–diffusion equations do not admit ana-

lytic solutions. However, non-classical symmetry analysis can recover analytic solutions

for specific diffusivity and reaction terms, including where diffusivity is negative. Neg-

ative diffusivity provides a phenomenological description of aggregation, and also arises

in the continuum limit of aggregative discrete models. We analyse analytic solutions to

a reaction–diffusion equation with nonlinear diffusivity that is negative for some values

of the density. These solutions are multi-valued, requiring the insertion of shock discon-

tinuities. The combination of negative diffusivity and shock-fronted analytic solutions

provides rich opportunities for analysis, which we explore in this work.

We consider three types of analytic solutions — a receding time-dependent solution, col-

liding waves, and receding travelling waves. These solutions are all sharp-fronted, such

that the density u = 0 at some x = L(t) with u′(L(t), t) ̸= 0. In all solutions, the boundary

L(t) evolves according to a Stefan-like condition. We insert shocks in the density profile

to resolve regions where u(x, t) is multi-valued. We place shocks such that the flux po-

tential Φ(u) and its derivative Φ′(u) are continuous across the shock. For diffusivity that

is symmetric about the midpoint of its zeros (e.g. the quadratic (6)), these conditions are

equivalent to the more commonly-used equal-area rule. With symmetric diffusivity, the

continuity and equal-area requirements recover the shock with longest possible length.

For a non-symmetric diffusivity, the largest jump coincides with the continuity condition

only. Since another way to write equation (1) is equation (8), the requirement for Φ to

be C1 has stronger foundation than imposing equal-area.

In addition to presenting the analytic solutions, we perform spectral stability analysis

for constant and travelling wave solutions. We show that the constant solution u = 0 is

stable, but that u = 1 admits long-wavelength instability for quadratic diffusivity with

a+b > 1. We also prove spectral stability of travelling wave solutions to (1) with quadratic
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diffusivity (6), for some combinations of a and b. However, open problems remain in the

analysis of analytic solutions to reaction–diffusion equations with negative diffusivity. For

non-symmetric diffusivity, the continuity of flux Φ(u) and its derivative Φ′(u) conditions

for defining shocks do not yield an equal-area rule. The regularisation to the nonlinear

reaction–diffusion equation (1) corresponding to the C1 requirement for Φ(u) remains

unknown. Investigation of this and other regularisations will be the subject of future

work.
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