
HAMILTONIAN SPECTRAL FLOWS, THE MASLOV INDEX, AND THE

STABILITY OF STANDING WAVES IN THE NONLINEAR
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Abstract. We use the Maslov index to study the spectrum of a class of linear Hamil-
tonian differential operators. We provide a lower bound on the number of positive real
eigenvalues, which includes a contribution to the Maslov index from a non-regular crossing.
A close study of the eigenvalue curves, which represent the evolution of the eigenvalues as
the domain is shrunk or expanded, yields formulas for their concavity at the non-regular
crossing in terms of the corresponding Jordan chains. This enables the computation of
the Maslov index at such a crossing via a homotopy argument. We apply our theory to
study the spectral (in)stability of standing waves in the nonlinear Schrödinger equation on
a compact interval. We derive stability results in the spirit of the Jones–Grillakis instability
theorem and the Vakhitov–Kolokolov criterion, both originally formulated on the real line.
A fundamental difference upon passing from the real line to the compact interval is the
loss of translational invariance, in which case the zero eigenvalue of the linearised operator
is (typically) geometrically simple. Consequently, the stability results differ depending on
the boundary conditions satisfied by the wave. We compare our lower bound to existing
results involving constrained eigenvalue counts, finding a direct relationship between the
correction factors found therein and the objects of our analysis, including the second-order
Maslov crossing form.
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1. Introduction

We use the Maslov index to study the real spectrum of Hamiltonian differential operators of
the form

N =

(
0 −L−
L+ 0

)
,

where L± are scalar-valued Schrödinger operators with arbitrary C2 potentials on a com-
pact interval [0, `]. In particular, we provide a lower bound on the number of positive real
eigenvalues of the operator N (Theorem 2.2).

Our approach is to restrict N to a subinterval [0, s`], s ∈ (0, 1], and, rescaling back to [0, `],
study the s-dependent spectrum of the one-parameter family of operators in the spatial
parameter s. We are thus led to a characterisation of the eigenvalues of the rescaled operators
as a locus of points in the λs-plane (with λ the spectral parameter), which we refer to as
eigenvalue curves. We interpret the eigenvalue curves as loci of intersections, or crossings,
of a path in the manifold of Lagrangian planes with a certain codimension one subvariety.
This affords the use of the Maslov index, a signed count of such crossings. Formulas for the
concavity of the eigenvalue curves are given (Theorems 2.9, 4.5 and 4.6), and are used to
compute a correction term appearing in the lower bound in Theorem 2.2.

Operators of the form of N arise in the linearisation about a standing wave solution ψ̂(x, t) =
eiβtφ(x) of the nonlinear Schrödinger (NLS) equation

iψt = ψxx + f
(
|ψ|2

)
ψ, (1.1)

where ψ : [0, `]× [0,∞) −→ C, the nonlinearity f : R+ −→ R is a C3 function and β ∈ R is
the temporal frequency. The wave around which we linearise is said to be spectrally unstable
if there exists spectrum of N in the open right half plane, and spectrally stable otherwise.
By applying Theorem 2.2, we establish stability criteria for standing waves in the NLS equa-
tion on a compact interval subject to perturbations satisfying Dirichlet boundary conditions.
Namely, we derive analogues of the Jones–Grillakis instability theorem (Corollary 2.7) and
the Vakhitov–Kolokolov (VK) criterion (Theorem 2.11). While Corollary 2.7 is also a con-
sequence of the abstract result of [KP12, Theorem 3.2], Theorem 2.11, which makes use of
the concavity formulas of Theorem 2.9, appears to be new for the case of the compact inter-
val. These two stability results actually remain valid for a spatially dependent nonlinearity
f(x, |ψ|2); see Remark 2.6.

Along the way, we find Hadamard-type formulas for the slope of the eigenvalue curves as the
ratio of certain quadratic forms, called crossing forms, whose signatures locally determine the
Maslov index (Proposition 4.2 and Corollary 4.4). Variational formulas for the eigenvalues
of boundary value problems with respect to perturbation of the domain are classical and
go back to the work of Hadamard [Had68], Rayleigh [Ray45] and Rellich [Rel69]; see also
[Hen05, Gri10] and [Kat80, §VII.6.5]. Recently such formulas have been given in terms of
the (Maslov) crossing form for families of Schrödinger [LS17,LS20b] and abstract selfadjoint
operators [LS20a]. Our formulas agree with and build on those found therein.

We also encounter a non-regular crossing when λ = 0, corresponding to a degeneracy of the
associated crossing form and points of zero slope for the eigenvalue curves. Geometrically,
this corresponds to the Lagrangian path tangentially intersecting the relevant codimension
one subvariety. Some care is then required in order to compute the Maslov index, and it is
a key feature of the current work that we are able to do so (Theorem 4.14). In particular, it
is sufficient to know the concavity of the eigenvalue curve through the non-regular crossing,
as well as whether or not the operators L+ and L− have a nontrivial kernel. To the best of
our knowledge, no such computation has previously been made in the literature. Analysing
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the non-regular crossing in the context of the NLS equation leads to stability criteria that
resemble the VK criterion in certain cases, furnishing an interesting connection between the
concavity of the eigenvalue curve at the non-regular crossing, the Maslov index there, and
the classical VK result; see Section 5.

In the case when the spatial domain is the entire real line, if zero is a hyperbolic fixed point
of the standing wave equation

φxx + f(φ2)φ+ βφ = 0 (1.2)

and there exists an orbit that is homoclinic to it in the phase plane, a localised solution to
(1.1) exists and belongs to L2(R) for all time. In this case L+ and L−, which are unbounded
operators on L2(R), both have a nontrivial kernel. Indeed, the stationary state φ and its
derivative φx satisfy L−φ = 0 (the stationary equation (1.2)) and L+φx = 0 (the associated
variational equation) respectively, and decay exponentially as x → ±∞. By the results of
Jones [Jon88] and Grillakis [Gri88], one then has that if P − Q 6= 0, 1, where P and Q
are the numbers of negative eigenvalues (or Morse indices) of L+ and L−, then N has at
least one positive real eigenvalue, and hence the standing wave solution to (1.1) is unstable.
In the edge case when P = 1 and Q = 0, the results of Vakhitov and Kolokolov [VK73]
and Grillakis, Shatah and Strauss [GSS87, GSS90] dictate that the wave is spectrally (and
orbitally) stable if the β-derivative of the mass of the wave

∂

∂β

∫ ∞
−∞

φ2 dx, (1.3)

is negative, and spectrally unstable if (1.3) is positive (see [Pel11, Theorem 4.4, p.215]).

One of the key differences upon passing from the real line to the compact interval is that,
generically, the operators L+ and L− (equipped with Dirichlet boundary conditions) do not
simultaneously have a nontrivial kernel. Depending on the boundary conditions satisfied by
the wave profile φ, typically zero will lie in the spectrum of either L+ or L− (or neither). A
physical reason for this is the loss of translational invariance, which manifests in the failure of
the relevant boundary conditions of arbitrary translates of φ. As a consequence, our stability
results (Corollary 2.7 and Theorem 2.11) will differ depending on which of the operators L±
has a nontrivial kernel. In the case that L− has a nontrivial kernel, we can recover the
integral expression (1.3) appearing in the classical VK criterion. Such a recovery is not
possible when L+ has a nontrivial kernel; for details, see the discussion in Section 5.3.2.

There is a large body of work relating the Morse index of a selfadjoint operator and its number
of conjugate points (which was later interpreted as the Maslov index of an associated La-
grangian path), going back to the middle of last century [Arn67,Arn85,Bot56,Dui76,Edw64,
Sma65]. Most of these theorems can be viewed as generalisations of the classical Sturmian
theory, and indeed in [Bot56,Edw64,Sma65] they are framed as such, where the nodal count of
an eigenfunction indicates where in the sequence of eigenvalues the corresponding eigenvalue
sits. Following on from Jones’ seminal work [Jon88], the idea of using the Maslov index for
spatially Hamiltonian systems to extrapolate temporal spectral information has proven quite
fruitful in the ensuing years (see, for example, [JLM13,CJLS16,CJM15,HS16,HLS18,LS18]
and the references therein for a partial list of results).

In more recent times, Deng and Jones in [DJ11] (see also [CJLS16,CJM15]), used the Maslov
index to analyse second-order elliptic eigenvalue problems on bounded domains. An impor-
tant feature of this analysis, as well as that of [BCJ+18, HS16, HLS18, HS22, HJK18], is
monotonicity of the Maslov index in the spectral parameter. Monotonicity also holds in
the spatial parameter under certain boundary conditions [CJLS16, HLS17, JLM13]. This
property is convenient since it enables an equality of the Morse index with the Maslov in-
dex of the Lagrangian path corresponding to λ = 0. Importantly, as in [Jon88], we do not
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have monotonicity in either the spatial or the spectral parameter. However, the signature of
crossings in the s-direction when λ = 0 can always be accounted for, and, consequently, a
nonzero Maslov index can nonetheless be used to detect a real, unstable eigenvalue, just as
in [MJS10,MSJ12,JMS14,RMS20]. This lack of monotonicity thus leads to the inequality in
Theorem 2.2.

Another feature in the aforementioned references, as well as in [BJ95,CH07,CH14,CDB09a,
CDB09b,CDB11,Cor19,CJ18,CJ20,How21] is a dynamical systems approach to eigenvalue
problems. In these works, the eigenvalue equations associated with the linearised operators
are Hamiltonian, or can be made Hamiltonian under a suitable change of variables. The
critical feature of such systems is that they induce a symplectically invariant flow and hence
preserve the manifold of Lagrangian planes, which affords the application of the Maslov index.
For recent works where the Hamiltonian requirement is relaxed, see [Cor19, CJ18, CJ20].
In [CJ18, CJ20], a change of variables is used to recover the Hamiltonian structure, and
in [Cor19] the system, while not Hamiltonian, still preserves the space of Lagrangian planes.
For an example of where the Hamiltonian requirement is dropped altogether, see [BCC+22].

Existing results on the stability of standing wave solutions of (1.1) on a compact spatial
interval have been given for periodic solutions of (1.2), with (quasi)periodic perturbations,
and predominantly for cubic focusing (f(φ2) = φ2) or defocusing (f(φ2) = −φ2) NLS.
Rowlands in [Row74] studied the spectral stability of spatially periodic elliptic solutions
to the cubic NLS, subject to long wavelength disturbances. Pava [Pav07] showed that the
Jacobi dnoidal solutions to cubic focusing NLS were orbitally stable with respect to co-
periodic perturbations. In [GH07a], Gallay and Hǎrǎgus showed the orbital stability of
spatially periodic and quasiperiodic travelling waves with complex-valued profile for small
amplitude solutions in both the focusing and defocusing case. They extended this result
to waves of arbitrary amplitude in [GH07b]. For the real-valued (cnoidal) waves, their
orbital stability result is restricted to perturbations that are anti-periodic on a half period.
This latter condition was done away with in [IL08], wherein Ivey and Lafortune undertook
a spectral stability analysis of the cnoidal travelling wave solutions of the focusing NLS,
showing stability with respect to co-periodic perturbations. In [BDN11, GP15] the authors
extend the orbital stability results for both real- and complex-valued wave profiles to the
class of subharmonic perturbations (i.e. perturbations with period an integer multiple of
the period of the wave profile) in the defocusing case. In [DS17,DU20] the authors examine
the spectral stability of the elliptic solutions with respect to subharmonic perturbations in
the focusing case. Unlike the above works, we are interested in the spectral stability of real-
valued solutions of (1.2), for an arbitrary C3 nonlinearity f , that are subject to perturbations
satisfying Dirichlet boundary conditions. Moreover, as previously stated, many of our results
hold for a spatially dependent f .

Our theory can be extended in several possible directions. In particular, our theory should
hold for the case of quasi-periodic boundary conditions on the perturbations, which is natural
to consider given that many of the solutions φ to (1.2) that satisfy Dirichlet boundary
conditions are periodic. The Maslov index has already been used to develop eigenvalue
counts for selfadjoint matrix-valued Schrödinger operators with such boundary conditions
in [JLM13, JLS17]. Our theory should also hold when the Schrödinger operators L± are
selfadjoint and matrix-valued, and indeed in Sections 3 and 4 many of our results are stated
for the operator N with an n-dimensional kernel to accommodate this scenario. Finally,
while the analysis is significantly more involved, it should be possible to extend to the case
where the spatial domain is multidimensional, as in [CJM15,CJLS16,CM19].

The paper is organised as follows. In Section 2 we set up the eigenvalue problem and state the
main results. In Section 3 we provide background material on the Maslov index, interpret the
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(real) eigenvalue problem symplectically and prove Theorem 2.2. In Section 4 we analyse the
eigenvalue curves. After computing formulas for their derivatives and relating these to the
Maslov crossing forms (Proposition 4.2 and Corollary 4.4), we compute their concavities at
the zero eigenvalue (Theorems 4.5 and 4.6), facilitating the computation of the Maslov index
at the non-regular crossing (Theorem 4.14). We conclude the section by confirming that
the signature of the second -order Maslov crossing form provides the correct contribution
to the Maslov index at this crossing, which is consistent with [DJ11]. In Section 5 we
provide some applications of Theorems 2.2 and 2.9. In particular, we prove Corollaries 2.7
and 2.8 and Theorem 2.11. We also compute expressions for the concavity (at s = 1) of
the eigenvalue curve passing through (λ, s) = (0, 1) for linearised NLS, in each of the cases
when L+ and L− has a nontrivial kernel (Propositions 5.3 and 5.7). In the latter case, we
recover a compact-interval analogue of the classical VK criterion. We conclude the paper
with a comparison of the lower bound in Theorem 2.2 with existing results which make use
of constrained eigenvalue counts. We find that the “correction” terms appearing in our lower
bound and others in the literature are equivalent (Proposition 5.11), applying our formulas
to provide new versions of the Hamiltonian–Krein index theorem in terms of the Maslov
index (Proposition 5.12).

Notation: We let In and 0n denote the n × n identity and zero matrices respectively. We
denote the canonical 2n× 2n symplectic matrix and the first Pauli matrix by

J =

(
0n −In
In 0n

)
, S =

(
0 1
1 0

)
, (1.4)

respectively. We let 〈·, ·〉 and ‖ · ‖ denote the L2 inner product and norm, respectively.
Subscripts s or λ will indicate dependence of a quantity on these parameters (not derivatives).
The spectrum of a linear operator T will be denoted by Spec(T ), and its kernel by ker(T ).

2. Set-up and statement of main results

The basic set-up is an eigenvalue problem of the form

N

(
u
v

)
= λ

(
u
v

)
,

(
u(0)
v(0)

)
=

(
u(`)
v(`)

)
=

(
0
0

)
, (2.1)

where N is given by

N :=

(
0 −L−
L+ 0

)
(2.2)

and L± are the Schrödinger operators

L+ = −∂xx − g(x), L− = −∂xx − h(x), (2.3)

with g and h arbitrary functions in C2([0, `],R). To be precise, we consider N as an un-
bounded operator in L2(0, `)× L2(0, `) with dense domain

dom(N) =
(
H2(0, `) ∩H1

0 (0, `)
)
×
(
H2(0, `) ∩H1

0 (0, `)
)
⊂ L2(0, `)× L2(0, `). (2.4)

Hereafter, we drop the product notation on the relevant spaces; it will be clear from the
context whether the functions are scalar- or vector-valued. An eigenvalue of N is thus a
value of λ ∈ C for which there exists a nontrivial solution u := (u, v)> to the boundary value
problem (2.1). Eigenvalues for the unbounded operators L±, with dense domains

dom(L±) = H2(0, `) ∩H1
0 (0, `) ⊂ L2(0, `), (2.5)

are similarly defined. Note that the unbounded operators L± = L∗± with domain (2.5) are
selfadjoint, while N is not.
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Remark 2.1. Notationally, we will not distinguish between the formal differential expres-
sions N and L± and the unbounded operators with domains (2.4) and (2.5) whose spectra
we wish to study. It will be clear from the context in what sense we refer to these objects.

While it is possible for N to have complex eigenvalues, we will restrict our analysis of (2.1) to
the case when λ is real and positive. The existence of such an eigenvalue implies instability.
On the other hand, there are cases where the spectrum of N lies entirely on the real and
imaginary axes, in which case the absence of a real positive eigenvalue implies stability; see
Theorem 2.11 for an example.

Our first result is a lower bound for the number of positive real eigenvalues of N . It follows
from an application of the Maslov index. The idea is to study the spectral problem in (2.1)
via a rescaling of the domain. We restrict (2.1) to a family of subdomains [0, s`] using a
parameter s ∈ (0, 1],

Nu = λu, u(0) = u(s`) = 0, (2.6)

and define a conjugate point to be a value of s for which there exists a nontrivial solution to
(2.6) with λ = 0. We then deduce the existence of unstable eigenvalues of (2.1) by counting
conjugate points (via the Maslov index) as s varies from 0 to 1. Defining the quantities

P := #{negative eigenvalues of L+},
Q := #{negative eigenvalues of L−},

n+(N) := #{positive real eigenvalues of N},
we have:

Theorem 2.2. Let N be an operator as in (2.2)–(2.3). The number of positive real eigen-
values of N satisfies

n+(N) ≥ |P −Q− c|, (2.7)

where c (given in Definition 3.14) is the total contribution to the Maslov index in the s and
λ directions from the conjugate point at s = 1. (If there is no such conjugate point, c = 0.)

Remark 2.3. One of the main results of this paper is that we are able to give explicit
formulas for this so-called “corner term” c which has the property that c ∈ {−1, 0, 1}. The
name derives from the location of the associated crossing in terms of the so-called Maslov
box. For precise statements see Sections 3 and 4, in particular Theorem 4.14.

Remark 2.4. In (2.6) the symbol N denotes a differential expression. For the associated
unbounded operator we define

N |[0,s`]u := Nu, u ∈ dom(N |[0,s`]) = H2(0, s`) ∩H1
0 (0, s`) ⊂ L2(0, s`), (2.8)

so that λ ∈ Spec(N |[0,s`]) if and only if (2.6) has a non-trivial solution.

Theorem 2.2 (the proof of which is given in Section 3.4) is in the spirit of a number of lower
bounds in the literature. In contrast to [HK08, Assumption 2.1(b)], we do not assume that
the operators L± are invertible. If both L+ and L− are invertible, it will follow that there
is no conjugate point at s = 1, and therefore c = 0. In this case we recover the inequality
in [HK08, Theorem 2.25]. The lower bound for n+(N) in the case when one or both of L+ and
L− has a nontrivial kernel has been studied in [KP12, Thm 3.2], [KM14, Thm 5.6], [LZ22,
Thm 2.3] and [Gri88, Thm 1.2], to name a few; see also [KP13, §7.1.3]. In these works, the
authors typically project off the kernels of L+ and L−, and give the lower bound in terms of
the associated constrained eigenvalue counts for L+ and L−. By contrast, we require no such
projections. The constrained counts for L+ and L− (given in the current work in (5.31))
involve the number of negative eigenvalues of certain matrices denoted D±. In Section 5.4,
we will show that our “correction” factor – given by the corner term c – is equivalent to the
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“correction” factor in [KP13, Theorem 7.1.16], given by the difference n−(D+) − n−(D−)
of negative indices of D+ and D− (see Proposition 5.11). Thus, Theorem 2.2 together with
Proposition 5.11 recovers [KP13, Theorem 7.1.16]. The Maslov index interpretation afforded
by c is convenient because it provides a way of computing the difference n−(D+)− n−(D−).
Namely, (5.38) shows that the signs of D± (which in our set-up are scalars) are given by the
signs of the concavities of the eigenvalue curves at (λ, s) = (0, 1).

Our main application will be to the linearisation of (1.1) about a standing wave solution.

This is a solution to (1.1) of the form ψ̂(x, t) = eiβtφ(x) for some β ∈ R, where the real-valued
wave profile or stationary state φ : [0, `]→ R solves the time-independent equation

φxx + f(φ2)φ+ βφ = 0. (2.9)

The results of this paper hold under fairly general boundary conditions on φ. Two examples
that we will often focus on are Dirichlet conditions

φ(0) = φ(`) = 0, (2.10)

or Neumann conditions

φ′(0) = φ′(`) = 0. (2.11)

In these cases, one possible choice for the interval length ` is to fix a T -periodic solution to
(2.9), and to set ` = kT/2 for some k ∈ N. Some example phase portraits for (2.9) featuring
periodic orbits are given in Fig. 1. As an aside, note that the homoclinic orbits in Fig. 1a
correspond to strictly positive or negative localised solutions on R.

A natural question to ask is whether the standing wave ψ̂ is stable in time with respect to
small perturbations in φ. Substituting the perturbative solution

ψ(x, t) = eiβt
[
φ(x) + εeλt(u(x) + iv(x))

]
into (1.1) and collecting O(ε) terms, we arrive at the differential equations in (2.1), where

g(x) = 2f ′(φ2(x))φ2(x) + f(φ2(x)) + β,

h(x) = f(φ2(x)) + β.
(2.12)

Then, subject to the class of perturbations u = (u, v)> that vanish at both endpoints, the

standing wave ψ̂ is spectrally stable if the spectrum of the linearised operator N is contained
in the imaginary axis, since the eigenvalues of N are symmetric with respect to the real and
imaginary axes.

When λ = 0 the differential equations in (2.1) decouple into two independent equations:
Nu = 0 if and only if L+u = 0 and L−v = 0. Thus ker(N) = ker(L+) ⊕ ker(L−), and
0 ∈ Spec(N) if and only if 0 ∈ Spec(L+) ∪ Spec(L−). Furthermore, because the eigenvalues
of the Sturm-Liouville operators L± are simple,

dim ker(N) = 1 ⇐⇒ 0 ∈ Spec(L−)4Spec(L+),

dim ker(N) = 2 ⇐⇒ 0 ∈ Spec(L−) ∩ Spec(L+),
(2.13)

where A4B := A ∪ B \ A ∩ B denotes the symmetric difference. In our application to the
stability of standing waves of (1.1), note that (2.9) is equivalent to L−φ = 0, while autonomy
of this equation yields L+φ

′ = 0. The boundary conditions satisfied by φ therefore influence
whether 0 ∈ Spec(L±). For instance, if φ satisfies the Dirichlet conditions (2.10), then
0 ∈ Spec(L−) with eigenfunction φ, whereas if φ satisfies the Neumann conditions (2.11),
then 0 ∈ Spec(L+) with eigenfunction φ′, provided φ is nonconstant. It is also possible
that 0 /∈ Spec(L+) ∪ Spec(L−) if, for example, more general Robin boundary conditions are
imposed on φ.



8 G. COX, M. CURRAN, Y. LATUSHKIN, R. MARANGELL

-2 -1 0 1 2

-2

-1

0

1

2

ϕ

ϕ′

(a)

-2 -1 0 1 2

-2

-1

0

1

2

ϕ

ϕ′

(b)

-2 -1 0 1 2

-2

-1

0

1

2

ϕ

ϕ′

(c)

Figure 1. Examples of phase portraits for equation (2.9). In (a) we have cubic focusing
nonlinearity f(φ2) = φ2 and β < 0. The homoclinic orbits in black, representing localised
solutions on R, separate those inside (nonzero Jacobi dnoidal functions) and those outside
(Jacobi cnoidal functions that oscillate evenly about φ = 0). In (b) we have cubic defo-
cusing nonlinearity f(φ2) = −φ2 and β > 0, with periodic orbits existing only inside the
heteroclinic cycle in black. In (c) we have f(φ2) = φ2 and β > 0.

In any of these cases, that L+ and L− have nontrivial kernel simultaneously is nongeneric,
and so we make this an assumption when studying the stability of NLS standing waves.
We stress that the general set-up of the paper is given by (2.1)–(2.3), and the following
hypothesis is not assumed throughout; we will explicitly state whenever we make use of it.

Hypothesis 2.5. N is of the form (2.2)–(2.3), where

(i) the potentials g and h come from the linearisation of the NLS equation (1.1) about a

standing wave ψ̂ (and hence are given by (2.12)), and
(ii) 0 /∈ Spec(L−) ∩ Spec(L+).

Remark 2.6. With g and h arbitrary functions of x in general, the results of this paper con-
cerning the stability of NLS standing waves are valid for a spatially dependent nonlinearity
f(x, |ψ|2) as appearing in, for example, [Jon88,Gri88]. In this case, the loss of autonomy in
the standing wave equation (2.9) means that L+φ

′ 6= 0; thus, only the results which rely on
φ′ being an eigenfunction for L+ (Corollary 2.8, Proposition 5.3 and Corollary 5.5) do not
generalise to the non-autonomous case.

Under the assumptions of Hypothesis 2.5, our analogue of the Jones–Grillakis instability
theorem will follow from both Theorem 2.2 and a computation of the values of c given in
Theorem 4.14.

Corollary 2.7. Let N be an operator as in (2.2)–(2.3). If 0 ∈ Spec(L+) \ Spec(L−) and
P − Q 6= −1, 0, or 0 ∈ Spec(L−) \ Spec(L+) and P − Q 6= 0, 1, then n+(N) ≥ 1. Under

Hypothesis 2.5, ψ̂ is spectrally unstable in these cases.

(The proof is given in Section 5.1.) This criterion leads to the following instability result.
The waves described correspond, for example, to the periodic orbits represented by the phase
curves that are contained inside either of the orbits homoclinic to (0, 0) in Fig. 1a.

Corollary 2.8. Assume Hypothesis 2.5. Standing waves satisfying the Neumann boundary
conditions (2.11) that are nonconstant and nonvanishing over [0, `], and have one or more
critical points in (0, `), are unstable.

(The proof is given in Section 5.1.) To effectively use Theorem 2.2, we need to understand
the quantity c appearing in (2.7). Its definition involves the Maslov index at a potentially
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degenerate crossing, and hence requires some work to calculate. We do this by analysing the
curves in the λs-plane that describe the evolution of the real eigenvalues λ of the restricted
problem (2.6) as s is varied. As will be seen in Theorem 4.14, c is determined by the concavity
of these curves. Below, dot denotes d/dλ. The proof of the following theorem is given in
Section 4.2.

Theorem 2.9. Let N be an operator as in (2.2)–(2.3). If dim ker(N) = 1, then there exists a
smooth function s(λ), defined for |λ| � 1, such that s(0) = 1 and λ is an eigenvalue of (2.6)
on [0, s(λ)`]. Moreover, ṡ(0) = 0 and the concavity of s(λ) can be determined as follows:

(1) If 0 ∈ Spec(L−) \ Spec(L+) with eigenfunction v ∈ ker(L−), then

s̈(0) =
2

`

〈û, v〉
(v′(`))2 (2.14)

where û ∈ H2(0, `) ∩H1
0 (0, `) is the unique solution to L+û = v.

(2) If 0 ∈ Spec(L+) \ Spec(L−) with eigenfunction u ∈ ker(L+), then

s̈(0) = −2

`

〈v̂, u〉
(u′(`))2 (2.15)

where v̂ ∈ H2(0, `) ∩H1
0 (0, `) is the unique solution to −L−v̂ = u.

Remark 2.10. In applications, we will primarily be interested in the sign of s̈(0), for which
(2.14) and (2.15) give

sign s̈(0) = sign

∫ `

0
û v dx and sign s̈(0) = − sign

∫ `

0
v̂ u dx, (2.16)

respectively. The integrals in (2.16) can be rewritten as∫ `

0
û v dx =

∫ `

0
û (L+û) dx and

∫ `

0
v̂ u dx =

∫ `

0
v̂ (L−v̂) dx. (2.17)

Consequently, s̈(0) > 0 if 0 ∈ Spec(L−) and L+ is a strictly positive operator, or if 0 ∈
Spec(L+) and L− is strictly positive.

In Section 4 we will prove a more general version of Theorem 2.9; see Theorem 4.5. An anal-
ogous result for the case when dim ker(N) = 2 is given in Theorem 4.6. Using these results,
we give a computation of the Maslov index at the non-regular crossing in Theorem 4.14.

As an application of our theory, working under Hypothesis 2.5, we provide a new formula for
the sign of s̈(0) by evaluating the integral expression in (2.15) for stationary states satisfying
(2.11); see Proposition 5.3. In the edge cases when P −Q = 1 and 0 ∈ Spec(L−) \Spec(L+),
or P − Q = −1 and 0 ∈ Spec(L+) \ Spec(L−), we show (see Theorem 2.11) that spectral

stability of the standing wave ψ̂ is determined by the sign of s̈(0). This suggests that on a
bounded interval, the integrals 〈·, ·〉 in (2.14) and (2.15) play the same role that (1.3) plays
in the well known VK criterion on the real line. We thus refer to the two integral expressions
in (2.16) as VK-type integrals. In Section 5.3.2 we show that it is possible to recover the
classical VK criterion on a compact interval using the numerator in (2.14) (but not (2.15)).

Theorem 2.11. Let N be an operator as in (2.2)–(2.3). Consider the case when P = 1,
Q = 0, and 0 ∈ Spec(L−)\Spec(L+). If the associated VK-type integral in (2.14) is positive,
then n+(N) = 1, while if the integral is negative, then Spec(N) ⊂ iR. In particular, under

Hypothesis 2.5, ψ̂ is spectrally unstable if (2.14) is positive, and spectrally stable if (2.14) is
negative.

Similarly, consider the case when Q = 1, P = 0, and 0 ∈ Spec(L+) \ Spec(L−). If the
VK-type integral in (2.15) is negative, then n+(N) = 1, while if the integral is positive,
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then Spec(N) ⊂ iR. In particular, under Hypothesis 2.5, ψ̂ is spectrally unstable if (2.15) is
positive, and spectrally stable if (2.15) is negative.

(The proof is given in Section 5.2.) The proofs that n+(N) = 1 rely on an argument that
allows the replacement of the inequality in (2.7) with an equality, as well as a computation
of c that yields 1 on the right hand side of (2.7). The former comes from the fact that the
Maslov index is monotone in λ provided either P or Q is zero (see Lemma 5.2). On the other
hand, to prove Spec(N) ⊂ iR in the cases described in Theorem 2.11, it will be shown (see
Lemma 5.1) that the nonnegativity of L+ or L− forces the spectrum of N to be confined to
the real and imaginary axes. It will then follow from monotonicity in λ (i.e. Lemma 5.2)
that n+(N) = 0 (and therefore that Spec(N) ⊂ iR).

Remark 2.12. In Theorem 2.11 we recover the equality in [HK08, Theorem 2.25] without
the assumption that the operators L± are invertible (albeit in the case when P = 0 or
Q = 0). Recovering the equality (when L+ and L− are invertible) in cases when both P and
Q are nonzero via our Maslov index calculations remains an open question.

3. A symplectic approach to the eigenvalue problem

In this section we review the definition of the Maslov index and give a symplectic formulation
of the eigenvalue problem (2.1), culminating in the proof of Theorem 2.2.

3.1. The Maslov index. We begin with some background material on the Maslov index
[Mas65]. We follow the definition given by Robbin and Salamon [RS93], wherein the Maslov
index is first defined for regular paths, and then extended to arbitrary continuous paths
by a homotopy argument. For more on the topological properties of the spaces discussed,
see [Arn67]. For a systematic and unified treatement of the Maslov index, featuring an
axiomatic description and four equivalent definitions, see [CLM94].

The starting point is R2n equipped with the nondegenerate, skew-symmetric bilinear form

ω : R2n × R2n −→ R, ω(x, y) = Jx · y (3.1)

called a symplectic form, where “·” is the dot product in R2n and J is given in (1.4). A
Lagrangian subspace or plane Λ of R2n is an n-dimensional subspace on which the symplec-
tic form vanishes. The Lagrangian Grassmannian is the set of all Lagrangian subspaces,
L(n) =

{
Λ ⊂ R2n : dim(Λ) = n, ω(x, y) = 0, ∀ x, y ∈ Λ

}
. This space has infinite cyclic

fundamental group, i.e. π1(L(n)) = Z. A notion of winding therefore exists for paths in
L(n); this is the Maslov index. Namely, the Maslov index of a loop in L(n) is its equivalence
class in the fundamental group. Poincaré duality [Hat02, §3.3] affords an interpretation of
this winding number as the (signed) number of intersections with a distinguished codimen-
sion one submanifold, and this allows one to extend the definition to any path in L(n). This
is the approach of Arnol’d, which we briefly review.

Fix a reference plane Λ0 ∈ L(n). The distinguished codimension one submanifold of L(n) is
given by the top stratum T1(Λ0) of the train of Λ0,

T (Λ0) =
{

Λ ∈ L(n) : Λ ∩ Λ0 6= {0}
}

=
n⋃
k=1

Tk(Λ0),

where Tk(Λ0) = {Λ ∈ L(n) : dim(Λ ∩ Λ0) = k}. As the fundamental lemma of [Arn67] states,
T1(Λ0) is two sidedly imbedded in L(n). This means there exists a continuous vector field
transverse to T1(Λ0) and tangent to L(n). One can therefore assign a signature to each
transverse intersection of a path in L(n) with T1(Λ0). Any Lagrangian path with endpoints
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not in T (Λ0) can be perturbed to one that only intersects the top stratum T1(Λ0) of the
train, and only does so transversally; the Maslov index is then defined to be the sum of the
signatures of all such intersections.

We next recall the approach of Robbin and Salamon [RS93], which requires additional regu-
larity but applies to paths whose endpoints are in the train, and also allows for intersections
with Tk(Λ0) when k ≥ 2. This approach, while less geometric than the above interpretation
of the Maslov index as an intersection number, is more suited to practical computations.

Given a smooth path Λ : [a, b] −→ L(n), a crossing is a point t = t0 where Λ(t0) ∈ T (Λ0).
Let Λ⊥0 ⊂ R2n be a subspace transverse to Λ(t0). Then Λ⊥0 is transverse to Λ(t) for all
t ∈ [t0 − ε, t0 + ε] for ε small enough. Thus, there exists a smooth family of matrices
Rt : Λ(t0)→ Λ⊥0 such that

Λ(t) = graph(Rt) = {q +Rtq : q ∈ Λ(t0)} (3.2)

for |t− t0| ≤ ε, where Rt0 |Λ(t0) ≡ 0. At a crossing t0, the crossing form is the quadratic form

mt0(q) =
d

dt
ω(q, q +Rtq)

∣∣∣
t=t0

= ω(q, Ṙt0q), q ∈ Λ(t0) ∩ Λ0, (3.3)

on the intersection Λ(t0)∩Λ0. The full symmetric bilinear form associated with the quadratic
form (3.3) may be recovered using the polarisation identity; see, for example, the proof of
Corollary 3.10. A crossing is called regular if the form (3.3) is nondegenerate, and simple if
Λ(t0) ∈ T1(Λ0). Since mt0 is quadratic, it may be diagonalised; we let n+(mt0) and n−(mt0)
be the number of positive and negative squares obtained in so doing. The signature of mt0

is the integer sign(mt0) = n+(mt0)− n−(mt0). We then define the Maslov index as follows.

Definition 3.1. The Maslov index for a path Λ : [a, b] −→ L(n) having only regular crossings
is given by

Mas(Λ(t),Λ0; [a, b]) := −n−(ma) +
∑

a<t0<b

sign(mt0) + n+(mb), (3.4)

where the sum is taken over all crossings t0 ∈ (a, b).

One can show that regular crossings are isolated and therefore the sum is well-defined. Note
the convention at the endpoints: at t = a only the negative squares contribute to the Maslov
index, while at t = b only the positive squares contribute. Other conventions are possible,
see e.g. [RS93, §2], but we choose the above in order to ensure the Maslov index is an integer.

The Maslov index of an arbitrary continuous path Λ1 : [a, b] −→ L(n) is then defined to be
Mas(Λ2(t),Λ0; [a, b]), where Λ2 is any path that is homotopic (with fixed endpoints) to Λ1

and has only regular crossings. It is guaranteed by [RS93, Lemmas 2.1 and 2.2] that such a
path exists, and any two such paths have the same index, so the Maslov index of Λ1 is well
defined.

The essential properties of the Maslov index that we will use are given in the following
proposition, see [RS93, Theorem 2.3].

Proposition 3.2. The Maslov index enjoys

(1) Homotopy invariance: if two paths Λ1,Λ2 : [a, b] −→ L(n) are homotopic with fixed
endpoints, then

Mas(Λ1(t),Λ0; [a, b]) = Mas(Λ2(t),Λ0; [a, b]). (3.5)

(2) Additivity under concatenation: for Λ(t) : [a, c] −→ L(n) and a < b < c,

Mas(Λ(t),Λ0; [a, c]) = Mas(Λ(t),Λ0; [a, b]) + Mas(Λ(t),Λ0; [b, c]). (3.6)
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To conclude our discussion of the Maslov index, we expound the notion of a non-regular
crossing, that is, a crossing with degenerate crossing form. Consider a Lagrangian path
Λ : [a, b] −→ L(n) with a non-regular crossing t = t0. In the case that mt0 is identically zero,
in [DJ11, Proposition 3.10] the authors state that the contribution to the Maslov index is
determined by the second-order crossing form

m
(2)
t0

(q) :=
d2

dt2
ω(q, q +Rtq)

∣∣∣
t=t0

= ω(q, R̈t0q), q ∈ Λ(t0) ∩ Λ0, (3.7)

provided it is nondegenerate. Such a crossing can only contribute to the Maslov index if it

occurs at one of the endpoints: if t0 = a then it contributes −n−(m
(2)
a ), and if t0 = b then it

contributes n+(m
(2)
b ).

As an example, consider the case of a simple crossing with mt0 = 0 but m
(2)
t0
6= 0. In the

Lagrangian Grassmannian, this corresponds to our path Λ tangentially intersecting the train
T (Λ0) of the fixed reference plane to quadratic order; i.e. Λ “bounces off” the train as t
passes through t0. Provided t0 lies in the interior of [a, b], the contribution to the Maslov
index will be zero: clearly the path can locally be homotoped to one with no crossings at all.
If t0 = a, the contribution is −1 provided the path leaves in the negative direction (and zero
otherwise), while if t0 = b, the contribution is +1 provided the path arrives in the positive

direction (and zero otherwise). If the second order form is degenerate, i.e. m
(2)
t0

= 0, higher
order derivatives are needed in order to determine the local behaviour of the path Λ.

In the present setting, with the spectral parameter λ acting as the independent variable, we
will observe that a non-regular crossing occurs at λ = 0. To determine the contribution to
the Maslov index of this non-regular crossing, we use a homotopy argument, made possible
by our analysis of the local behaviour of the eigenvalue curves in Section 4.4. We confirm
that our computation agrees with the number of negative squares of the second order form
(3.7) used in [DJ11]. For a further discussion of non-regular crossings and an alternate way
to compute the Maslov index at such points, see [GPP04,GPP03].

3.2. Spatial rescaling and construction of the Lagrangian path. We now view the
problem through the lens of the Lagrangian formalism by interpreting eigenvalues as non-
trivial intersections of Lagrangian planes. Following the approach of [DJ11], we restrict the
eigenvalue problem to a family of subintervals [0, s`] for s ∈ (0, 1]. Rescaling the equations to
the full domain [0, `], we construct a two-parameter family of Lagrangian subspaces in s and
λ via rescaled boundary traces of solutions to the system of differential equations without
any boundary conditions at all. An eigenvalue is produced when this family of subspaces
nontrivially intersects a fixed reference plane that encodes Dirichlet boundary conditions.
Identifying a Lagrangian structure boils down to a judicious choice of both the symplectic
form and the definition of the trace map: if we employ the standard symplectic form ω in
(3.1), then we need to carefully define the trace map (3.10) such that the space of boundary
traces is Lagrangian with respect to ω. We begin by introducing some notation.

We let

N = D +B(x), D :=

(
0 ∂xx
−∂xx 0

)
, B(x) :=

(
0 h(x)

−g(x) 0

)
, (3.8)

and introduce the s-dependent operators acting on functions on [0, `],

Bs(x) := s2B(sx), Ns :=

(
0 −Ls−
Ls+ 0

)
,

{
Ls+ := −∂xx − s2g(sx)

Ls− := −∂xx − s2h(sx)
(3.9)
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so that Ns = D+Bs(x). We define the rescaled trace of u = (u, v)> ∈ H2(0, `) as the vector

Trs u :=

(
u(0), v(0), u(`), v(`),−1

s
u′(0),

1

s
v′(0),

1

s
u′(`),−1

s
v′(`))

)>
∈ R8, (3.10)

and denote the vertical subspace of R8 by D := {0} × R4. Using the above notation, we
may rewrite the restricted problem (2.6) as a boundary value problem on [0, `]. Indeed, if
u(x) ∈ H2(0, s`)∩H1

0 (0, s`) then us(x) := u(sx) ∈ H2(0, `)∩H1
0 (0, `). It follows from (3.10)

that u(0) = u(s`) = 0 if and only if Trs us ∈ D. Thus, rescaled to [0, `], (2.6) reads

Nsus = s2λus, Trs us ∈ D. (3.11)

Note that the solution spaces of the boundary value problems (2.6) and (3.11) are isomorphic:
u = (u, v)> ∈ dom(N |[0,s`]) solves (2.6) if and only if us = (us, vs)

> ∈ dom(Ns) solves (3.11).

Consequently, λ is an eigenvalue of N |[0,s`] if and only if s2λ is an eigenvalue of Ns.

Remark 3.3. The rescaled problem (3.11) is well-defined for s > 1 provided the potentials g
and h are defined for x > `. In this case the “restricted” eigenvalue problem (2.6) corresponds
to a stretching of the domain.

Remark 3.4. As per Remark 2.1, notationally we will not distinguish between Ns and Ls±
as differential expressions and as unbounded operators with dense domains given by (2.4)
and (2.5), respectively. Thus, when we write s2λ ∈ Spec(Ns) or us ∈ ker(Ns−s2λ), we mean
that (3.11) is solved for some eigenfunction us; similar statements hold when λ ∈ Spec(Ls±).

That the formulation (3.11) lends itself to a symplectic interpretation can be seen via the
following modified version of Green’s second identity. Using our definition of the rescaled
trace map (3.10) and the symplectic form (3.1), one can verify that for each s ∈ (0, 1] and
all u,v ∈ H2(0, `),

〈S(Ns − s2λ)u,v〉 − 〈u, S(Ns − s2λ)v〉 = sω(Trs u,Trs v), (3.12)

where S is defined in (1.4). Now define the space

Kλ,s :=
{
u ∈ H2(0, `) : (Ns − s2λ)u = 0 in L2(0, `)

}
(3.13)

of all solutions to the homogeneous differential equation Nsu = s2λu without any reference
to the boundary conditions, so that ker(Ns − s2λ) = Kλ,s ∩H1

0 (0, `).

Remark 3.5. The trace map is an injective linear operator on the space Kλ,s. If us ∈ Kλ0,s,
then Trs us = 0 implies us = 0, since us solves a system of second order equations.

Taking the (rescaled) boundary trace leads to the desired family of Lagrangian subspaces,
with respect to the form ω in (3.1).

Lemma 3.6. The space

Λ(λ, s) := Trs(Kλ,s) = {Trs(u) : u ∈ Kλ,s} (3.14)

is a Lagrangian subspace of R8 for all s ∈ (0, 1] and all λ ∈ R.

Proof. Fix λ ∈ R and s ∈ (0, 1]. From (3.12), for u,v ∈ Kλ,s we have ω(Trs u,Trs v) = 0.
Since Kλ,s is the space of solutions to a system of two second-order differential equations,
dimKλ,s = 4. Hence dim Trs(Kλ,s) = 4, and Trs(Kλ,s) ∈ L(4) is Lagrangian. �

We now have the desired interpretation of eigenvalues as nontrivial intersections of La-
grangian subspaces.
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Figure 2. Maslov box in the λs-plane.

Proposition 3.7. s2λ ∈ Spec(Ns) if and only if Λ(λ, s)∩D 6= {0}. Moreover, the geometric
multiplicity of the eigenvalue is equal to the dimension of the Lagrangian intersection,

dim ker(Ns − s2λ) = dim Λ(λ, s) ∩ D. (3.15)

Proof. The first statement follows from the definition of Λ. Equality (3.15) follows from
the injectivity (and thus bijectivity) of the trace map acting between the finite dimensional
spaces ker(Ns0 − s2

0λ0) = Kλ0,s0 ∩H1
0 (0, `) and Trs0(Kλ0,s0 ∩H1

0 (0, `)) = Λ(λ0, s0) ∩ D. �

Hereafter, a crossing refers to a pair (λ, s) = (λ0, s0) such that Λ(λ0, s0) ∩ D 6= {0}, while
a conjugate point refers to a crossing for which λ0 = 0. It follows from Proposition 3.7 that
crossings where s0 = 1 correspond to eigenvalues of the operator N on [0, `].

To prove Theorem 2.2, our goal then is to bound from below the number of crossings for
which s0 = 1, λ0 > 0. To do so we use a homotopy argument that involves appropriately
counting conjugate points. In order to set this argument up, we introduce in Fig. 2 the so-
called Maslov box, given by the boundary Γ of the rectangle [0, λ∞]× [τ, 1] in the λs-plane,
where τ > 0 is small and λ∞ > 0 is large.

Since Λ : [0, λ∞]× [τ, 1] −→ L(4) is a continuous map, the image Λ(Γ) of the Maslov box is
null homotopic, and so

Mas(Λ,D; Γ) = 0. (3.16)

We partition Γ into its constituent sides such that Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where

Γ1 : s = τ, 0 ≤ λ ≤ λ∞ Γ3 : s = 1, 0 ≤ λ ≤ λ∞
Γ2 : λ = 0, τ ≤ s ≤ 1 Γ4 : λ = λ∞, τ ≤ s ≤ 1

(3.17)

(see Fig. 2) and assign a direction to each of these intervals such that the entirety of the
Maslov box is oriented in a clockwise fashion. We then appeal to the concatenation property
in Proposition 3.2 to rewrite (3.16) as

Mas(Λ,D; Γ1) + Mas(Λ,D; Γ2) + Mas(Λ,D; Γ3) + Mas(Λ,D; Γ4) = 0. (3.18)

Taking λ = λ∞ large enough and s = τ small enough, it will follow (see Lemma 3.23) that
there are no crossings along Γ1 and Γ4, and therefore that the Maslov indices of these pieces
are zero. The crossing forms needed to analyse Mas(Λ,D; Γ2) and Mas(Λ,D; Γ3) are given
in the next section.

3.3. Crossing forms. Our next task is the calculation of the crossing forms (3.3) associated
with the trajectories through the crossing (λ0, s0) where λ = λ0 is held constant and s
increases, and vice versa. The key ingredient will be the Green’s-type identity (3.12). The
approach is inspired by Lemma 4.18 and the proof of Theorem 4.19 in [LS20a], as well as the
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crossing form calculation in [CJLS16, Lemma 5.2]. Before proceeding, we set some notation
that will be useful in this section and throughout the rest of the paper.

Remark 3.8. We denote by us0 any eigenfunction us0 ∈ ker(Ns0 − s2
0λ0), and when s0 = 1

we drop the subscript. If dim ker(Ns0 − s2
0λ0) = n, we denote a basis for this space by{

u
(1)
s0 , . . . ,u

(n)
s0

}
, where u

(i)
s0 =

(
u

(i)
s0 , v

(i)
s0

)>
. The set

{
Su

(1)
s0 , . . . , Su

(n)
s0

}
is then a basis for the

kernel of the adjoint operator, ker(N∗s0 − s
2
0λ0), since λ0 is real. Note that S (given in (1.4))

merely swaps the entries of the vector it acts on. When s0 = 1 we denote:

ui := u
(i)
1 , ui := u

(i)
1 , vi := v

(i)
1 . (3.19)

Because ker(Ns0) = ker(Ls0+ )⊕ ker(Ls0− ), when λ0 = 0 and dim ker(Ns0) = 1 we have

us0 =

{
(us0 , 0)>, 0 ∈ Spec(Ls0+ ) \ Spec(Ls0− ), ker(Ls0+ ) = Span{us0},
(0, vs0)>, 0 ∈ Spec(Ls0− ) \ Spec(Ls0+ ), ker(Ls0− ) = Span{vs0}.

(3.20)

When λ0 = 0 and dim ker(Ns0) = 2, we denote

u(1)
s0 =

(
u

(1)
s0

0

)
, u(2)

s0 =

(
0

v
(2)
s0

)
, (3.21)

where ker(Ls0+ ) = Span{u(1)
s0 } and ker(Ls0− ) = Span{v(2)

s0 }.

In the current paper where the potentials g and h from (2.3) are scalar-valued, we will
always have n ≤ 2. However, if g and h are matrix-valued (and symmetric), so that L±
are systems of selfadjoint Schrödinger operators, or if the operator N acts on functions on a
multidimensional domain, then we may have n > 2. The results in this section and Section 4
have been stated for a general n to indicate how the theory extends to these cases.

Returning to our computation of crossing forms, we first compute the crossing form (3.3) for
the path of Lagrangian planes s 7→ Λ(λ0, s), holding λ = λ0 fixed. Recall that Ns = D+Bs,
as in (3.9), and that S = S>.

Lemma 3.9. Let (λ0, s0) be a crossing and fix any nonzero q ∈ Λ(λ0, s0) ∩ D. Then there
exists a unique us0 ∈ Kλ0,s0 such that q = Trs0 us0, and the crossing form for the Lagrangian
path s 7→ Λ(λ0, s) at s = s0 is given by

ms0(q) =
1

s0

〈(
∂sBs0 − 2s0λ0

)
us0 , Sus0

〉
, (3.22)

where ∂sBs = 2sB(sx) + s2B′(sx)x. In particular, along Γ2 where λ0 = 0, we have

ms0(q) =
`

s2
0

[
−
(
u′s0(`)

)2
+
(
v′s0(`)

)2]
. (3.23)

In this case, if the crossing (0, s0) is simple, then the form (3.23) is non-degenerate.

Proof. Consider a C1 family of vectors s 7→ ws ∈ Kλ0,s satisfying

Nsws = s2λ0ws, x ∈ [0, `], s ∈ (s0 − ε, s0 + ε), (3.24a)

Trs ws = Trs0 us0 +Rs Trs0 us0 , ws0 = us0 , (3.24b)

where Rs : Λ(λ0, s0)→ D⊥ is the smooth family of matrices such that Λ(λ0, s) = graph(Rs),
cf. (3.2). To prove the existence of such a family s 7→ ws, consider the smooth family of
vectors hs := q + Rsq ∈ Λ(λ0, s), where hs0 = q since Rs0q = 0 for all q ∈ Λ(λ0, s0). The
injectivity (and thus bijectivity) of the linear map

Trs : Kλ0,s −→ Trs(Kλ0,s) = Λ(λ0, s)
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(see Remark 3.5) then implies that for each hs ∈ Λ(λ0, s) there exists a unique ws ∈ Kλ0,s
such that Trs ws = hs, and in particular Trs0 ws0 = hs0 = q.

We now turn to the computation of (3.3). We have

ms0(q) =
d

ds
ω(q,Rsq)

∣∣∣∣
s=s0

=
d

ds
ω(Trs0 us0 ,Trs ws)

∣∣∣∣
s=s0

= ω

(
Trs0 us0 ,

d

ds
Trs
∣∣
s=s0

us0

)
+ ω

(
Trs0 us0 ,Trs0

d

ds
ws

∣∣
s=s0

)
.

The first term is zero since Trs0 us0 ∈ D implies Trs0 us0 =
(
0, s−1

0 γNus0
)

and d
dsTrs

∣∣
s=s0

us0 =(
0,−s−2

0 γNus0
)
, where γNu := (−u′(0), v′(0), u′(`),−v′(`)))>. For the second term, we dif-

ferentiate the equation in (3.24a) with respect to s and apply 〈·, Sws〉,

〈(∂sBs − 2sλ0)ws, Sws〉+ 〈(Ns − s2λ0) ∂sws, Sws〉 = 0. (3.25)

From the Green’s-type identity (3.12) with u = ws and v = ∂sws, we have

s ω(Trs ws,Trs ∂sws) = 〈(Ns − s2λ0)ws, S ∂sws〉 − 〈Sws, (Ns − s2λ0)∂sws〉,
and using (3.24a) and (3.25) this reduces to

s ω(Trs ws,Trs ∂sws) = 〈(∂sBs − 2sλ0)ws, Sws〉. (3.26)

Evaluating (3.26) at s = s0 and dividing by s0, (3.22) follows. When λ0 = 0, substituting
the stated expression for ∂sBs0 in (3.22) gives

ms0(q) =
〈(

2B(s0x) + s0B
′(s0x)x

)
us0 , Sus0

〉
=

∫ `

0

{ [
2h(s0x) + s0xh

′(s0x)
]
v2
s0(x)−

[
2g(s0x) + s0xg

′(s0x)
]
u2
s0(x)

}
dx.

A direct calculation using the equation Ls0− vs0 = 0, i.e. v′′s0(x) + s2
0h(s0x)vs0(x) = 0, gives

d

dx

[
1

s2
0

x
(
v′s0(x)

)2
+ xv2

s0(x)h(s0x)− 1

s2
0

vs0(x)v′s0(x)

]
=
[
2h(s0x) + s0xh

′(s0x)
]
v2
s0(x).

Integrating and using the fact that vs0(0) = vs0(`) = 0, we get∫ `

0

[
2h(s0x) + s0xh

′(s0x)
]
v2
s0(x)dx =

`

s2
0

(
v′s0(`)

)2
.

Computing similarly for the second term, we arrive at (3.23). That the form is nondegenerate
in the simple case follows from (3.20): if dim ker(Ns0) = 1 then exactly one of the entries of
us = (us, vs)

> ∈ ker(Ns0) is nontrivial. Since this function satisfies a second order differential
equation with Dirichlet boundary conditions, its derivative is nonzero at x = `, and therefore
(3.23) is nonzero. �

Corollary 3.10. Assume dim ker(Ns0−s2
0λ0) = n and let {u(1)

s0 ,u
(2)
s0 , . . . ,u

(n)
s0 } be a basis for

ker(Ns0 − s2
0λ0). The n × n symmetric matrix Ms0 induced from the quadratic form (3.22)

is given by

[Ms0 ]ij =
1

s0

〈(
∂sBs0 − 2s0λ0

)
u(i)
s0 , Su(j)

s0

〉
, i, j = 1, . . . , n. (3.27)

Consequently, when λ0 = 0 and n = 2, the form ms0 is nondegenerate.

Proof. Letting qi := Trs0 u
(i)
s0 , it follows from the linearity and injectivity of the trace map

that {qi}ni=1 is a basis for Λ(λ0, s0)∩D. To construct the symmetric bilinear form associated
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with the quadratic form (3.22), we compute the off-diagonal terms ms0(qi, qj) via the real
polarisation identity

ms0(qi, qj) =
1

4

[
ms0(qi + qj)−ms0(qi − qj)

]
. (3.28)

Since both S and S (∂sBs0) are symmetric, we obtain

ms0(qi, qj) =
1

4

〈(
∂sBs0 − 2s0λ0

)(
u(i)
s0 + u(j)

s0

)
, S
(
u(i)
s0 + u(j)

s0

)〉
− 1

4

〈(
∂sBs0 − 2s0λ0

)(
u(i)
s0 − u(j)

s0

)
, S
(
u(i)
s0 − u(j)

s0

)〉
=
〈(
∂sBs0 − 2s0λ0

)
u(i)
s0 , Su(j)

s0

〉
.

The corresponding matrix elements with respect to the basis {qi} are [Ms0 ]ij = ms0(qi, qj),

and the first statement of the corollary follows. In the case λ0 = 0 and n = 2, using (3.23)
and recalling (3.21), the matrix (3.27) reduces to

Ms0 =
`

s2
0

(
−
(
∂xu

(1)
s0 (`)

)2
0

0
(
∂xv

(2)
s0 (`)

)2
)
, (3.29)

which clearly has full rank. Nondegeneracy of the quadratic form ms0 follows. �

We now move to the λ-direction. Holding s = s0 fixed, we compute the crossing form (3.3)
with respect to λ. We denote d/dλ with a dot.

Lemma 3.11. Let (λ0, s0) be a crossing and fix any nonzero q ∈ Λ(λ0, s0) ∩ D. Then there
exists a unique us0 ∈ Kλ0,s0 such that q = Trs0 us0, and the crossing form for the Lagrangian
path λ 7→ Λ(λ, s0) at λ = λ0 is given by

mλ0(q) = −s0 〈us0 , Sus0〉 = −2s0 〈us0 , vs0〉 . (3.30)

Proof. The argument is virtually identical to that in the s direction. Fixing s = s0, we
consider a C1 family of vectors λ 7→ wλ ∈ Kλ,s0 satisfying

Ns0wλ = s2
0λwλ, x ∈ [0, `], λ ∈ (λ0 − ε, λ0 + ε) (3.31a)

Trs0 wλ = Trs0 us0 +Rλ Trs0 us0 , wλ0 = us0 , (3.31b)

where now Rλ : Λ(λ0, s0) −→ D⊥ is such that Λ(λ, s0) = graph(Rλ). Similar to (3.25) we
have

〈−s2
0wλ, Swλ〉+ 〈(Ns0 − s2

0λ)ẇλ, Swλ〉 = 0,

and using the identity (3.12) with u = wλ and v = ẇλ yields

s0 ω(Trs0 wλ,Trs0 ẇλ) = 〈(Ns0 − s2
0λ)wλ, Sẇλ〉 − 〈Swλ, (Ns0 − s2

0λ)ẇλ〉.
The previous two equations along with (3.31a) give

s0 ω(Trs0 wλ,Trs0 ẇλ) = −〈s2
0wλ, Swλ〉. (3.32)

Therefore the crossing form (3.3) is

mλ0(q) = ω
(

Trs0 us0 ,Trs0 ẇλ

∣∣
λ=λ0

)
= −s0〈us0 , Sus0〉 = −2s0 〈us0 , vs0〉 ,

where we used (3.32) evaluated at λ = λ0. �

Recalling (3.20), at a simple crossing (0, s0) one of us0 or vs0 is always trivial. Degeneracy
of the λ-crossing form immediately follows.

Corollary 3.12. All conjugate points (0, s0) for which dim ker(Ns0) = 1 are non-regular in
the λ direction, i.e. at all such points mλ0 = 0.
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For the case of higher dimensional crossings, we have the following corollary to Lemma 3.11.

Corollary 3.13. Assume dim ker(Ns0−s2
0λ0) = n and let {u(1)

s0 ,u
(2)
s0 , . . . ,u

(n)
s0 } be a basis for

ker(Ns0−s2
0λ0). The n×n symmetric matrix Mλ0 induced from the n-dimensional quadratic

form (3.30) is given by

[Mλ0 ]ij = −s0

〈
u(i)
s0 , Su(j)

s0

〉
, i, j = 1, . . . n. (3.33)

Consequently, when λ0 = 0 and n = 2, mλ0 is nondegenerate if and only if
〈
u

(1)
s0 , v

(2)
s0

〉
6= 0.

Proof. The first statement is proved as in Corollary 3.10. When λ0 = 0 and n = 2, due to
(3.21), (3.33) reduces to

Mλ0 = −s0

〈u(1)
s0 , Su

(1)
s0

〉 〈
u

(1)
s0 , Su

(2)
s0

〉
〈
u

(2)
s0 , Su

(1)
s0

〉 〈
u

(2)
s0 , Su

(2)
s0

〉
 = −s0

 0
〈
u

(1)
s0 , v

(2)
s0

〉
〈
u

(1)
s0 , v

(2)
s0

〉
0

 , (3.34)

from which nondegeneracy of mλ0 occurs if and only if the condition stated holds. �

It follows from Corollaries 3.12 and 3.13 that a calculation of the Maslov index at λ = 0 in
the λ-direction is not possible using the first order crossing form (3.3) if dim ker(Ns0) = 1,

or if dim ker(Ns0) = 2 and
〈
u

(1)
s0 , v

(2)
s0

〉
= 0. In light of this, we define:

Definition 3.14. The correction term c is

c := Mas
(
Λ(s, λ),D; s ∈ [1− ε, 1]

)
+ Mas

(
Λ(λ, 1),D;λ ∈ [0, ε]

)
(3.35)

for 0 < ε� 1.

That is, c denotes the contribution to the Maslov index from the top left corner of the Maslov
box (consisting of the arrival along Γ2 and the departure along Γ3).

Remark 3.15. To see that this does not depend on the choice of 0 < ε � 1, we observe
that (0, 1) is an isolated crossing for both Γ2 and Γ3. For Γ2 this follows from the non-
degeneracy of ms0 in Lemma 3.9 and Corollary 3.10. For Γ3 we use the fact that the set
{λ : Λ(λ, 1) ∩ D 6= {0}} = Spec(N) ∩ R is discrete (because N has compact resolvent), so

there exists λ̂ > 0 such that Λ(λ, 1) ∩ D = {0} for 0 < λ < λ̂.

We circumvent the issue of the non-regular crossing in Section 4.4 via a homotopy argument.
This will be possible after having analysed the local behaviour of the eigenvalue curves in
Section 4. In the meantime, we compute the second order crossing form (3.7) from [DJ11,
Proposition 3.10].

Lemma 3.16. Assume the conditions of Lemma 3.11. If the first order quadratic form in
(3.30) is identically zero, then the second order quadratic form (3.7) is given by

m
(2)
λ0

(q) = −2s3
0〈vs0 , Sus0〉, q = Trs0 us0 , (3.36)

where us0 ∈ ker(Ns0 − s2
0λ0) and vs0 ∈ dom(Ns0) solves (Ns0 − s2

0λ0)vs0 = us0. The n × n
matrix M

(2)
λ0

of the symmetric bilinear form associated with m
(2)
λ0

has entries[
M

(2)
λ0

]
ij

= −2s3
0

〈
v(i)
s0 , Su(j)

s0

〉
, (3.37)

where v
(i)
s0 ∈ dom(Ns0) solves (Ns0 − s2

0λ0)v
(i)
s0 = u

(i)
s0 . In the case λ0 = 0 and n = 1, we have

m
(2)
λ0

(q) =

{
−2s3

0 〈v̂s0 , us0〉 0 ∈ Spec(Ls0+ ) \ Spec(Ls0− ),

−2s3
0 〈ûs0 , vs0〉 0 ∈ Spec(Ls0− ) \ Spec(Ls0+ ),

(3.38)
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where v̂s0 ∈ dom(Ls0− ) and ûs0 ∈ dom(Ls0+ ) solve −Ls0− v̂s0 = us0 and Ls0+ ûs0 = vs0 respectively.
In the case λ0 = 0 and n = 2 we have

M
(2)
λ0

= −2s3
0

(〈
v̂

(1)
s0 , u

(1)
s0

〉
0

0
〈
û

(2)
s0 , v

(2)
s0

〉) , (3.39)

where v̂
(1)
s0 ∈ dom(Ls0− ) and û

(2)
s0 ∈ dom(Ls0+ ) solve −Ls0− v̂

(1)
s0 = u

(1)
s0 and Ls0+ û

(2)
s0 = v

(2)
s0

respectively.

Remark 3.17. The equation (Ns0 − s2
0λ0)v

(i)
s0 = u

(i)
s0 is always solvable by virtue of the

Fredholm Alternative, since ms0 = 0 means 〈u(i)
s0 , Su

(j)
s0 〉 = 0 for all i, j and hence implies

u
(i)
s0 is orthogonal to ker(N∗s0 − s2

0λ0). Such a solution is not unique; however, only the

component of the solution in ker(Ns0 − s2
0λ0)⊥ (which is unique) contributes to (3.36). It

therefore suffices to consider those v
(i)
s0 satisfying v

(i)
s0 ⊥ u

(j)
s0 for all j = 1, . . . , n. Notice that

the v
(i)
s0 are generalised eigenfunctions: if mλ0 = 0, the eigenvalue s2

0λ0 ∈ Spec(Ns0) has n
Jordan chains of length (at least) two. We thus see that loss of regularity of the crossing
coincides precisely with loss of semisimplicity of the eigenvalue, which agrees with the result
of [Cor19, Theorem 6.1].

Proof. Consider a C2 family of vectors λ 7→ wλ satisfying (3.31). Then

m
(2)
λ0

(q) = ω (Trs0 us0 ,Trs0 ẅλ)
∣∣
λ=λ0

.

Differentiating (3.31a) twice with respect to λ, applying 〈·, Swλ〉 and rearranging yields〈
(Ns0 − s2

0λ)ẅλ, Swλ

〉
= 2s2

0〈ẇλ, Swλ〉.

Now using (3.12) with u = wλ and v = ẅλ, we have

s0 ω(Trs0 wλ,Trs0 ẅλ) = 〈(Ns0 − s2
0λ)wλ, Sẅλ〉 − 〈Swλ, (Ns0 − s2

0λ)ẅλ〉.

Combining (3.31a) with the previous two equations, we get

s0 ω(Trs0 wλ,Trs0 ẅλ) = −2s2
0〈ẇλ, Swλ〉.

Evaluating this last equation at λ = λ0 and dividing through by s0, we see that

m
(2)
λ0

(q) = ω(Trs0 us0 ,Trs0 ẅλ)
∣∣
λ=λ0

= −2s0〈ẇλ0 , Sus0〉.

To compute ẇλ0 , we see that differentiating (3.31a) with respect to λ, evaluating at λ = λ0

and rearranging yields (
Ns0 − s2

0λ0

)
ẇλ0 = s2

0us0 . (3.40)

Setting s2
0 vs0 = ẇλ0 , equation (3.36) follows.

The same arguments as in the proof of Corollary 3.10 are used to prove (3.37). Equations
(3.38) and (3.39) follow from the structure of the eigenvectors and generalised eigenvectors
when λ0 = 0. If 0 ∈ Spec(Ls0− ) \ Spec(Ls0+ ) and ûs0 is as stated in the lemma, we have(

0 −Ls0−
Ls0+ 0

)(
ûs0
0

)
=

(
0
vs0

)
= us0 ,

so vs0 = (ûs0 , 0)> and hence
〈
vs0 , Sus0

〉
= 〈ûs0 , vs0〉. If 0 ∈ Spec(Ls0+ ) \ Spec(Ls0− ), we simi-

larly find that vs0 = (0, v̂s0)> and hence
〈
vs0 , Sus0

〉
= 〈v̂s0 , us0〉. Finally, if dim ker(Ns0) = 2,

we have

v(1)
s0 =

(
0

v̂
(1)
s0

)
, v(2)

s0 =

(
û

(2)
s0

0

)
, (3.41)
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with u
(i)
s0 given by (3.21). It follows that

〈
v

(1)
s0 , Su

(2)
s0

〉
=
〈
v

(2)
s0 , Su

(1)
s0

〉
= 0 and〈

v(1)
s0 , Su(1)

s0

〉
= 〈v̂(1)

s0 , u
(1)
s0 〉,

〈
v(2)
s0 , Su(2)

s0

〉
= 〈û(2)

s0 , v
(2)
s0 〉, (3.42)

which completes the proof. �

Remark 3.18. The Maslov index is in general not monotone in λ, in the sense that the form
(3.30) is indefinite. Consequently, it does not necessarily give an exact count of the crossings
along Γ3 for λ > 0, which by Proposition 3.7 equals the number of real positive eigenvalues
of N . Nonetheless, the Maslov index always provides a lower bound for this count, and this
will be used in the proof of Theorem 2.2. In special cases it is possible to have monotonicity
in λ; this will be used to obtain stability results in Theorem 2.11, cf. Lemma 5.2.

3.4. Bounding the real eigenvalue count. Before proving Theorem 2.2, we list some pre-
liminary results. The first is a version of the Morse Index theorem (see [Mil63, §15], [Sma65])
for scalar-valued Schrödinger operators on bounded domains with Dirichlet boundary con-
ditions. Recall that the Morse indices P and Q are the numbers of negative eigenvalues of
the operators L+ and L−, respectively.

Lemma 3.19. The Morse index of L+ equals the number of conjugate points for L+ in
(0, 1),

P = #{s0 ∈ (0, 1) : 0 ∈ Spec(Ls0+ )}, (3.43)

and likewise for L− and Q.

The following lemma will not be needed until the proof of Lemma 5.1, but we list it here
since its proof uses the same ideas that are used to prove the previous lemma.

Lemma 3.20. If Q = 0 (respectively, P = 0) then Ls− (respectively, Ls+) is a strictly positive
operator for all s ∈ (0, 1), and is nonnegative for s = 1.

Proof. This follows from monotonicity of the eigenvalues of the Schrödinger operators Ls± in

the spatial parameter s, see [Sma65]. Indeed, the eigenvalues λ±j (s) ∈ Spec(Ls±) are strictly

decreasing functions of s, so λ±j (1) ≥ 0 implies λ±j (s) > 0 for s ∈ (0, 1). �

The following selfadjoint formulation of the eigenvalue problem will be needed in Lemma 3.23.
Some of the ideas used here, especially the use of the square root of a strictly positive operator
to convert the eigenvalue problem to a selfadjoint one, can be found in [Pel11, §4].

Lemma 3.21. Fix s ∈ (0, 1] and suppose λ ∈ C\{0}. If Ls− is a nonnegative operator, the
eigenvalue problem{

There exists vs ∈ dom(Ls−), us ∈ dom(Ls+) such that:

−Ls−vs = s2λus, Ls+us = s2λvs
(3.44)

is equivalent to
There exists ws ∈ dom

(
Ls−|Xc

)1/2
with Π

(
Ls−|Xc

)1/2
ws ∈ dom(Ls+)

and Ls+Π
(
Ls−|Xc

)1/2
ws ∈ dom(Ls−), such that:(

Ls−|Xc

)1/2
ΠLs+Π

(
Ls−|Xc

)1/2
ws = −s4λ2ws,

(3.45)
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where the domains dom(Ls±) are given by (2.5), Xc := ker(Ls−)⊥ ⊆ L2(0, `) and Π is the
orthogonal projection Π : L2(0, `)→ Xc. If Ls+ is nonnegative, then (3.44) is equivalent to

There exists ws ∈ dom
(
Ls+|Xc

)1/2
with Π

(
Ls+|Xc

)1/2
ws ∈ dom(Ls−)

and Ls−Π
(
Ls+|Xc

)1/2
ws ∈ dom(Ls+), such that:(

Ls+|Xc

)1/2
ΠLs−Π

(
Ls+|Xc

)1/2
ws = −s4λ2ws,

(3.46)

where now Xc := ker(Ls+)⊥ ⊆ L2(0, `).

Proof. We begin with the case Ls− ≥ 0. We prove the equivalence of (3.44) and (3.45) via
their equivalence with:{

There exists us ∈ dom(Ls+) ∩Xc with Ls+us ∈ dom(Ls−), such that:

Ls−L
s
+us = −s4λ2us.

(3.47)

Defining the restricted operator Ls−|Xc acting in Xc by

Ls−|Xcv := Ls−v, v ∈ dom(Ls−|Xc) := dom(Ls−) ∩Xc,

note that Ls−|Xc > 0 and
(
Ls−|Xc

)1/2
is a well-defined and invertible operator acting in Xc.

(3.44) =⇒ (3.47): Clearly Ls+us = s2λvs ∈ dom(Ls−), and us = − 1
s2λ
Ls−vs ∈ ranLs− = Xc

because Ls− is selfadjoint and Fredholm. Applying Ls− to the second equation in (3.44) yields
the equation in (3.47).

(3.47) =⇒ (3.45): Set ws :=
(
Ls−|Xc

)−1/2
us. Then ws ∈ dom

(
Ls−|Xc

)1/2
, and since

us ∈ Xc we have Π
(
Ls−|Xc

)1/2
ws = Πus = us ∈ dom(Ls+), and Ls+Πus = Ls+us ∈ dom(Ls−).

Now Ls+us = ΠLs+us + (I − Π)Ls+us, where the projection (I − Π) : L2(0, `) → ker(Ls−) ⊂
dom(Ls−). Then ΠLs+us ∈ dom(Ls−) ∩ Xc = dom(Ls−|Xc). Thus Ls−L

s
+us = Ls−ΠLs+Πus =

Ls−|XcΠL
s
+Πus =

(
Ls−|Xc

)1/2 (
Ls−|Xc

)1/2
ΠLs+Πus. Substituting this into the equation in

(3.47) and multiplying by
(
Ls−|Xc

)−1/2
gives the equation in (3.45).

(3.45) =⇒ (3.44): Set us := Π
(
Ls−|Xc

)1/2
ws ∈ dom(Ls+) and vs := 1

s2λ
Ls+Π

(
Ls−|Xc

)1/2
ws ∈

dom(Ls−). Then Ls+us = Ls+Π
(
Ls−|Xc

)1/2
ws = s2λvs, and since Π projects onto ran(Ls−),

−Ls−vs = −ΠLs−vs = −1
s2λ

ΠLs−L
s
+Π
(
Ls−|Xc

)1/2
ws = −1

s2λ
ΠLs−(Π + (I −Π)Ls+Π

(
Ls−|Xc

)1/2
ws

= −1
s2λ

ΠLs−ΠLs+Π
(
Ls−|Xc

)1/2
ws = s2λΠ

(
Ls−|Xc

)1/2
ws = s2λus.

The case Ls+ ≥ 0 uses similar arguments, except now (3.44) and (3.46) are equivalent via:{
There exists vs ∈ dom(Ls−) ∩Xc with Ls−vs ∈ dom(Ls+), such that:

Ls+L
s
−vs = −s4λ2vs.

We omit the details. �

We are now ready to compute the Maslov index of Γε2, the restriction of Γ2 to [τ, 1− ε].

Lemma 3.22. The Maslov index of the Lagrangian path s 7→ Λ(0, s) ⊂ R8, s ∈ [τ, 1− ε] is

Mas(Λ,D; Γε2) = Q− P. (3.48)

Proof. Consider the crossing form

ms0(q) =
`

s2
0

[
−
(
u′s0(`)

)2
+
(
v′s0(`)

)2]
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from (3.23) and recall (3.20). If (0, s0) is a simple crossing, we obtain ms0 < 0 if 0 ∈ Spec(Ls0+ )
and ms0 > 0 if 0 ∈ Spec(Ls0− ). On the other hand, if 0 ∈ Spec(Ls0+ ) ∩ Spec(Ls0− ), the 2 × 2
matrix Ms0 in (3.29) has eigenvalues of opposite sign, so we conclude that

sign(ms0) =


−1 0 ∈ Spec(Ls0+ ) \ Spec(Ls0− ),

+1 0 ∈ Spec(Ls0− ) \ Spec(Ls0+ ),

0 0 ∈ Spec(Ls0+ ) ∩ Spec(Ls0− ).

(3.49)

From the definition (3.4) we then have

Mas(Λ(0, s),D; s ∈ [τ, 1− ε]) = −#{s0 ∈ [τ, 1− ε] : 0 ∈ Spec(Ls0+ ) \ Spec(Ls0− )}
+ #{s0 ∈ [τ, 1− ε] : 0 ∈ Spec(Ls0− ) \ Spec(Ls0+ )}

= −#{s0 ∈ [τ, 1− ε] : 0 ∈ Spec(Ls0+ )}
+ #{s0 ∈ [τ, 1− ε] : 0 ∈ Spec(Ls0− )},

and the result follows using Lemma 3.19. �

Next, we prove that there are no crossings along Γ1 and Γ4; we refer to Fig. 2.

Lemma 3.23. Mas(Λ,D; Γ1) = Mas(Λ,D; Γ4) = 0 provided τ > 0 is sufficiently small and
λ∞ > 0 is sufficiently large.

Proof. For the case of no crossings along Γ1, we prove that Ns has no real eigenvalues for
s = τ small enough. Seeking a contradiction, assume there exists τ2λ ∈ Spec(Nτ ) ∩ R with
eigenfunction uτ = (uτ , vτ )>.

First, note that the operators Lτ± with domains given by (2.5) are strictly positive: by the
Poincaré and Cauchy-Schwarz inequalities,

〈Lτ+v, v〉 = ‖v′‖2 − 〈τ2g(τx)v, v〉 ≥ C‖v‖2 − τ2‖g‖∞‖v‖2

for some C > 0 and all v ∈ dom(Lτ+), so we choose τ small enough that C > τ2‖g‖∞.
Owing to the decoupling of the eigenvalue equations for Nτ when λ = 0, it follows that
0 /∈ Spec(Nτ ).

Next, for λ ∈ R\{0}, we note that by Lemma 3.21 the eigenvalue equations for Nτ are
equivalent to (

Lτ−
)1/2

Lτ+
(
Lτ−
)1/2

wτ = −τ4λ2wτ , (3.50)

since the positivity of Lτ− implies that Xc = ker(Lτ−)⊥ is all of L2(0, `) and hence the resulting
projection Π is the identity. Applying 〈 ·, wτ 〉 to (3.50), we immediately see that the right
hand side is negative, while for the left hand side we obtain

〈
(
Lτ−
)1/2

Lτ+
(
Lτ−
)1/2

wτ , wτ 〉 = 〈Lτ+
(
Lτ−
)1/2

wτ ,
(
Lτ−
)1/2

wτ 〉

≥ C+〈
(
Lτ−
)1/2

wτ ,
(
Lτ−
)1/2

wτ 〉
= C+〈Lτ−wτ , wτ 〉
≥ C+C−‖wτ‖2 > 0,

for some positive constants C± (using the positivity of Lτ± and selfadjointness of
(
Lτ−
)1/2

),

a contradiction. We conclude that no such real τ2λ ∈ Spec(Nτ ) exists, and there are no
crossings along Γ1.

Moving to Γ4, we show that the spectrum of Ns lies in a vertical strip around the imaginary
axis in the complex plane for all s ∈ (0, 1]). For this, it suffices to show that Spec(iNs) lies
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in a horizontal strip around the real axis, since Spec(Ns) = −i Spec(iNs) by the spectral
mapping theorem. Fixing s ∈ (0, 1] we have

iNs = iD + iBs(x) (3.51)

where iD is selfadjoint and iBs(x) is bounded. It then follows from [Kat80, Remark 3.2,
p.208] and [Kat80, eq.(3.16), p.272] that

ζ ∈ Spec(iD + iBs(x)) =⇒ | Im ζ| ≤ ‖iBs(x)‖, (3.52)

as required. Choosing λ∞ > sups∈(0,1] ‖Bs(x)‖ ensures there are no crossings along Γ4. �

We are our ready to prove our first main result.

Proof of Theorem 2.2. As already observed in (3.18), the homotopy invariance and additivity
of the Maslov index yield

Mas(Λ,D; Γ1) + Mas(Λ,D; Γ2) + Mas(Λ,D; Γ3) + Mas(Λ,D; Γ4) = 0, (3.53)

hence

Mas(Λ,D; Γ2) + Mas(Λ,D; Γ3) = 0 (3.54)

by Lemma 3.23. Again using additivity and recalling the definition of c in Definition 3.14,
we rewrite this as

Mas(Λ,D; Γε2) + c + Mas(Λ,D; Γε3) = 0, (3.55)

where Γε2 was defined in Lemma 3.22 and Γε3 is the restriction of Γ3 to [ε, λ∞]. Using
Lemma 3.22 we thus obtain

Mas(Λ,D; Γε3) = P −Q− c. (3.56)

As discussed in Remark 3.18, the lack of monotonicity in λ means that Mas(Λ,D; Γε3) does
not necessarily count the number of real, positive eigenvalues of N . Nonetheless, we still
have that

n+(N) ≥ |Mas(Λ,D; Γε3)|, (3.57)

and (2.7) follows. �

4. The eigenvalue curves

In this section we analyse the real eigenvalue curves of Ns in the λs-plane. We consider
the general case of a crossing (λ0, s0) corresponding to an eigenvalue s2

0λ0 ∈ Spec(Ns0) with
dim ker(Ns0 − s2

0λ0) = n, paying special attention to the cases λ0 = 0 and n = 1, 2. We
use the results obtained to compute the correction term c from Theorem 2.2, and relate a
component of it to the signature of the second order crossing form (3.36) in Proposition 4.15.

4.1. Numerical description. We begin with a brief description of a tool that is useful
for numerically computing the eigenvalue curves. The idea is to globally characterise the
set of points (λ, s) such that s2λ ∈ Spec(Ns) ∩ R as the zero set of a function called the
characteristic determinant.

Converting the restricted problem (2.6) with y ∈ [0, s`] to a first order system yields

d

dy


u
v
r
z

 =


0 0 1 0
0 0 0 −1

−g(y) −λ 0 0
−λ h(y) 0 0




u
v
r
z

 . (4.1)
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Notice that we use the substitution ∂yv = −z in order to preserve the Hamiltonian structure.
Rescaling as in Section 3.2, we define us(x) := u(sx) for x ∈ [0, `], and similarly for vs, rs
and zs. Then, the equivalent system on [0, `] is

d

dx


us
vs
rs
zs

 =


0 0 s 0
0 0 0 −s

−sg(sx) −sλ 0 0
−sλ sh(sx) 0 0




us
vs
rs
zs

 . (4.2)

Consider a fundamental matrix solution Φ(x;λ, s) ∈ R4×4 to (4.2) with Φ(0;λ, s) = I4. For
convenience, we write Φ as the block matrix

Φ(x;λ, s) =

(
U(x;λ, s) X(x;λ, s)
V (x;λ, s) Y (x;λ, s)

)
, U, V,X, Y ∈ R2×2,

where

U(0;λ, s) = Y (0;λ, s) = I2, V (0;λ, s) = X(0;λ, s) = 02. (4.3)

Because Φ is a matrix solution for (4.2), we have

d

dx

(
U X
V Y

)
=

(
0 sσ3

s (SB(sx)− λS) 0

)(
U X
V Y

)
, σ3 =

(
1 0
0 −1

)
. (4.4)

Proposition 4.1. For all (λ, s) ∈ R× (0, 1], the following are equivalent:

(1) λ ∈ Spec(N |[0,s`]) ∩ R,

(2) s2λ ∈ Spec(Ns) ∩ R,
(3) Λ(λ, s) ∩ D 6= {0},
(4) detX(`;λ, s) = 0.

We thus call detX(`;λ, s) the characteristic determinant : the real eigenvalue curves in the
λs-plane are given by the zero set {(λ, s) : detX(`;λ, s) = 0}. Figure 3 illustrates some
examples of these curves under Hypothesis 2.5.

Proof. The discussion following (3.11) gives the equivalence of (1) and (2), while the equiv-
alence of (2) and (3) was given in Proposition 3.7. We show the equivalence of (3) and (4).
Fix s ∈ (0, 1] and λ ∈ R and consider the 8× 4 matrix

Z(λ, s) :=


U(0;λ, s) X(0;λ, s)
U(`;λ, s) X(`;λ, s)
−V (0;λ, s) −Y (0;λ, s)
V (`;λ, s) Y (`;λ, s)

 =


I2 02

U(`;λ, s) X(`;λ, s)
02 −I2

V (`;λ, s) Y (`;λ, s)

 .

Notice that the columns of Z(λ, s) are precisely the rescaled trace (cf. (3.10)) of four linearly
independent functions in Kλ,s (recall that the entries of Y (· ;λ, s) and V (· ;λ, s) satisfy rs =
s−1∂xus and zs = −s−1∂xvs), and thus are a basis for our Lagrangian subspace Λ(λ, s).

A nontrivial intersection of the four-dimensional linear subspaces Λ(λ, s) and D of R8 occurs
if and only if the 8× 8 matrix formed by their bases has zero determinant. Therefore,

Λ(λ, s) ∩ D 6= {0} ⇐⇒ det


I 0 0 0

U(`;λ, s) X(`;λ, s) 0 0
−0 −I I 0

V (`;λ, s) Y (`;λ, s) 0 I

 = 0 ⇐⇒ detX(`;λ, s) = 0,

as required. �
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Figure 3. Real eigenvalue curves s2λ ∈ Spec(Ns) ∩ R under Hypothesis 2.5(i) associated
with a T -periodic stationary state φ0 with nonlinearity f(φ2) = φ2 and β = −2. In (a) φ0

is a positive Jacobi dnoidal function (i.e. an orbit located inside the homoclinic orbit in
the right half plane in Fig. 1a) satisfying φ′0(0) = φ′0(`) = 0 with ` = 3T = 9.9398. In (b)
φ0 is a Jacobi cnoidal function (i.e. an orbit located outside the homoclinic orbit in Fig. 1a)
satisfying φ0(0) = φ0(`) = 0 with ` = 3T/2 = 10.0391.

4.2. Analytic description. We will generalise Theorem 2.9 to Theorem 4.5, which is a
consequence of the following general result. We remind the reader that n ≤ 2 in the current
paper; see Remark 3.8. Below, dot denotes d/dλ.

Proposition 4.2. Assume dim ker(Ns0 − s2
0λ0) = n with basis {u(1)

s0 , . . . ,u
(n)
s0 }. There exists

an n × n matrix M(λ, s), defined near (λ0, s0), such that s2λ ∈ Spec(Ns) if and only if
detM(λ, s) = 0. This matrix satisfies M(λ0, s0) = 0 and

∂Mij

∂λ
(λ0, s0) = −s2

0

〈
u(i)
s0 , Su(j)

s0

〉
,

∂Mij

∂s
(λ0, s0) =

〈(
∂sBs0 − 2s0λ0

)
u(i)
s0 , Su(j)

s0

〉
. (4.5)

Moreover, if
〈
u

(i)
s0 , Su

(j)
s0

〉
= 0 for all i, j = 1, . . . , n, then

∂2Mij

∂λ2
(λ0, s0) = −2s4

0

〈
v(i)
s0 , Su(j)

s0

〉
, (4.6)

where v
(i)
s0 ∈ dom(Ns0) solves the inhomogeneous equation (Ns0 − s2

0λ0)v
(i)
s0 = u

(i)
s0 .

Remark 4.3. Just as in Remark 3.17, for (4.6) it suffices to consider those solutions to the

inhomogeneous equation that satisfy v
(i)
s0 ⊥ u

(j)
s0 for i, j = 1, . . . , n.

The definition of M , which requires some preparation, is given in (4.14).

Proof. We construct M(λ, s) using Lyapunov–Schmidt reduction. The first step is to split
the eigenvalue equation (Ns − s2λ)u = 0 into two parts, one of which can always be solved
uniquely. Let P denote the L2-orthogonal projection onto ker(N∗s0 − s

2
0λ0), so that I − P is

the projection onto ker(N∗s0 − s
2
0λ0)⊥ = ran(Ns0 − s2

0λ0). It follows that s2λ is an eigenvalue
of Ns if and only if there exists a nonzero u ∈ dom(Ns) such that both

P (Ns − s2λ)u = 0 (4.7)

and
(I − P )(Ns − s2λ)u = 0 (4.8)

hold.
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We first consider (4.8). Defining X0 = ker(Ns0 − s2
0λ0)⊥ ∩H2(0, `) ∩H1

0 (0, `), we have that
any u ∈ H2(0, `) ∩H1

0 (0, `) can be written uniquely as

u =

n∑
i=1

tiu
(i)
s0 + ũ,

where ti ∈ R and ũ ∈ X0. This means (4.8) holds if and only if there exists a vector
t = (t1, . . . , tn) ∈ Rn and a function ũ ∈ X0 such that

(I − P )(Ns − s2λ)

(
n∑
i=1

tiu
(i)
s0 + ũ

)
= 0. (4.9)

We claim that for each (t, λ, s) there exists a unique ũ = ũ(t, λ, s) ∈ X0 satisfying (4.9).
Writing this equation out explicitly, it is

(I − P )(Ns − s2λ)ũ(t, λ, s) = −(I − P )(Ns − s2λ)
n∑
i=1

tiu
(i)
s0 .

We define

T (λ, s) : X0 → ran(Ns0 − s2
0λ0), T (λ, s) = (I − P )

(
Ns − s2λ

)∣∣∣
X0

,

and observe that T (λ0, s0) is invertible, hence T (λ, s) is also invertible for nearby (λ, s).
Defining

A(λ, s) : X⊥0 → X0, A(λ, s) = −T−1(λ, s)(I − P )
(
Ns − s2λ

)∣∣∣
X⊥0

,

where X⊥0 = ker(Ns0 − s2
0λ0), the unique solution to (4.9) is thus

ũ(t, λ, s) = A(λ, s)

n∑
i=1

tiu
(i)
s0 . (4.10)

So far we have shown that the equation (I − P )(Ns − s2λ)u = 0 is satisfied if and only if u
has the form

u =
n∑
i=1

tiu
(i)
s0 +A(λ, s)

n∑
i=1

tiu
(i)
s0 =

(
I +A(λ, s)

) n∑
i=1

tiu
(i)
s0 (4.11)

for some t ∈ Rn. We conclude that there exists u for which (Ns − s2λ)u = 0 holds if and
only if

P (Ns − s2λ)
(
I +A(λ, s)

)( n∑
i=1

tiu
(i)
s0

)
= 0 (4.12)

for some t ∈ Rn. Moreover, u is nonzero if and only if t is nonzero. Finally, we observe that

ker(N∗s0 − s
2
0λ0) is spanned by {Su

(1)
s0 , Su

(2)
s0 , . . . , Su

(n)
s0 }, and so (4.12) is equivalent to〈

(Ns − s2λ)
(
I +A(λ, s)

)( n∑
i=1

tiu
(i)
s0

)
, Su(j)

s0

〉
= 0, j = 1, . . . , n. (4.13)

Defining the n× n matrix M(λ, s) by

Mji(λ, s) =
〈

(Ns − s2λ)
(
I +A(λ, s)

)
u(i)
s0 , Su(j)

s0

〉
, i, j = 1, . . . , n, (4.14)

the system of n equations (4.13) may be written as M(λ, s)t = 0, which is satisfied for a
nonzero vector t if and only if detM(λ, s) = 0. This completes the first part of the proof.

It follows that M(λ0, s0) = 0. We then compute

∂Mij

∂λ
(λ0, s0) =

〈
−s2

0

(
I +A(λ0, s0)

)
u(i)
s0 + (Ns0 − s2

0λ0)∂λA(λ0, s0)u(i)
s0 , Su(j)

s0

〉
(4.15)
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= −s2
0

〈
u(i)
s0 , Su(j)

s0

〉
, (4.16)

where in the second line we have used the fact that A(λ0, s0)u
(i)
s0 = 0 and〈

(Ns0 − s2
0λ0)∂λA(λ0, s0)u(i)

s0 , Su(j)
s0

〉
=
〈
∂λA(λ0, s0)u(i)

s0 , (N
∗
s0 − s

2
0λ0)Su(j)

s0

〉
= 0,

because Su
(j)
s0 ∈ ker(N∗s0 − s

2
0λ0). The s derivative is computed similarly.

Finally, if ∂λM(λ0, s0) = 0, we have

∂2Mij

∂λ2
(λ0, s0) = −2s2

0

〈
∂λA(λ0, s0)u(i)

s0 , Su(j)
s0

〉
, (4.17)

where
〈
(Ns0 − s2

0λ0)∂λλA(λ0, s0)u
(i)
s0 , Su

(j)
s0

〉
= 0 again using Su

(j)
s0 ∈ ker(N∗s0 − s

2
0λ0). To

compute ∂λA(λ0, s0)u
(i)
s0 , we use the definition of A(λ, s) to write

T (λ, s)A(λ, s)u(i)
s0 = −(I − P )

(
Ns − s2λ

)
u(i)
s0 .

Differentiating in λ and again using the fact that A(λ0, s0)u
(i)
s0 = 0, we get

T (λ0, s0)∂λA(λ0, s0)u(i)
s0 = s2

0(I − P )u(i)
s0 .

The fact that
〈
u

(i)
s0 , Su

(j)
s0

〉
= 0 for all i, j implies (I − P )u

(i)
s0 = u

(i)
s0 . Setting s2

0v
(i)
s0 =

∂λA(λ0, s0)u
(i)
s0 , we see from the definition of T that

T (λ0, s0)(s2
0v

(i)
s0 ) = s2

0(I − P )(Ns0 − s2
0λ0)v(i)

s0 = s2
0(Ns0 − s2

0λ0)v(i)
s0

and the result follows. �

Comparison with the symmetric matrices (3.27), (3.33) and (3.37) associated with the first
and second order crossing forms reveals that the partial derivatives of the matrix M satisfy

∂M

∂s
(λ0, s0) = s0 Ms0 ,

∂M

∂λ
(λ0, s0) = s0 Mλ0 ,

∂2M

∂λ2
(λ0, s0) = s0 M

(2)
λ0
, (4.18)

where the last formula holds when ∂λM(λ0, s0) = 0. In particular, in the case dim ker(Ns0 −
s2

0λ0) = 1 (so that M is a scalar), we have

∂M

∂s
(λ0, s0) = s0 ms0(q),

∂M

∂λ
(λ0, s0) = s0 mλ0(q),

∂2M

∂λ2
(λ0, s0) = s0m

(2)
λ0

(q), (4.19)

where again the last formula holds when ∂λM(λ0, s0) = 0. Combining (4.19) with the
implicit function theorem immediately yields the following Hadamard-type formulas for the
derivatives of the real eigenvalue curves in terms of the crossing forms.

Corollary 4.4. Under the assumption that dim ker(Ns0 − s2
0λ0) = 1, the following hold:

(1) If mλ0 6= 0, then there exists a C2 curve λ(s) near s0 such that

λ′(s0) = −ms0(q)

mλ0(q)
. (4.20)

(2) If ms0 6= 0, then there exists a C2 curve s(λ) near λ0 such that

ṡ(λ0) = −mλ0(q)

ms0(q)
. (4.21)

Moreover, ṡ(λ0) = 0 if and only if mλ0(q) = 0, and in this case

s̈(λ0) = −
m

(2)
λ0

(q)

ms0(q)
. (4.22)
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Using this, we can construct a curve s(λ) through any simple conjugate point and determine
its concavity by an explicit formula.

Theorem 4.5. If dim kerNs0 = 1, then for |λ| � 1 there exists a C2 curve s(λ) such that
s(λ)2λ ∈ Spec(Ns(λ)), and a continuous curve us(λ) of eigenfunctions such that us(λ) → us0
as λ → 0. Moreover, s(0) = s0, ṡ(0) = 0, and the concavity of s(λ) can be determined as
follows:

(1) If 0 ∈ Spec(Ls0− ) \ Spec(Ls0+ ) with eigenfunction vs0 ∈ kerLs0− , then

s̈(0) =
2s5

0

`

〈ûs0 , vs0〉(
v′s0(`)

)2 (4.23)

where ûs0 ∈ H2(0, `) ∩H1
0 (0, `) is the unique solution to Ls0+ ûs0 = vs0.

(2) If 0 ∈ Spec(Ls0+ ) \ Spec(Ls0− ) with eigenfunction us0 ∈ kerLs0+ , then

s̈(0) = −2s5
0

`

〈v̂s0 , us0〉(
u′s0(`)

)2 (4.24)

where v̂s0 ∈ H2(0, `) ∩H1
0 (0, `) is the unique solution to −Ls0− v̂s0 = us0.

Proof. Lemma 3.9 implies ms0 6= 0, so the existence of s(λ) follows from Corollary 4.4.
Corollary 3.12 then gives ṡ(0) = 0. From (4.11) we see that us(λ) =

(
I + A(λ, s(λ))

)
us0 is

an eigenfunction of Ns(λ) for the eigenvalue s2(λ)λ. Since A(λ, s(λ)) is continuous in λ and
A(0, s0)us0 = 0, the convergence of us(λ) to us0 follows.

It thus remains to prove (4.23) and (4.24). If 0 ∈ Spec(Ls0− ) \ Spec(Ls0+ ) then us0 is trivial,
so equations (3.23) and (3.38) give

ms0(q) =
`

s2
0

(
v′s0(`)

)2
, m

(2)
λ0

(q) = −2s3
0〈ûs0 , vs0〉. (4.25)

Substituting these into (4.22) immediately gives (4.23). The case 0 ∈ Spec(Ls0+ ) \ Spec(Ls0− )
is almost identical. Here we have

ms0(q) = − `

s2
0

(
u′s0(`)

)2
, m

(2)
λ0

(q) = −2s3
0〈v̂s0 , us0〉,

and (4.24) follows. �

4.3. When λ0 = 0 has geometric multiplicity two. In this section we focus on the
case of a geometrically double eigenvalue at zero. Since 0 ∈ Spec(Ls0+ ) ∩ Spec(Ls0− ), we have

ker(Ns0) = Span{u(1)
s0 ,u

(2)
s0 } where the u

(i)
s0 are given in (3.21). Applying Proposition 4.2

with λ0 = 0 and n = 2, we will show the following. Again, dot denotes d/dλ.

Theorem 4.6. Suppose dim kerNs0 = 2, and denote the corresponding eigenfunctions of

Ls0+ and Ls0− by u
(1)
s0 and v

(2)
s0 , respectively.

(1) If
〈
u

(1)
s0 , v

(2)
s0

〉
6= 0, then s2λ /∈ Spec(Ns) for (λ, s) in a punctured neighbourhood of

(0, s0).

(2) If
〈
u

(1)
s0 , v

(2)
s0

〉
= 0 and 〈

v̂
(1)
s0 , u

(1)
s0

〉(
∂xu

(1)
s0 (`)

)2 +

〈
û

(2)
s0 , v

(2)
s0

〉(
∂xv

(2)
s0 (`)

)2 6= 0, (4.26)
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where û
(2)
s0 ∈ dom(Ls0+ ) and v̂

(1)
s0 ∈ dom(Ls0− ) denote solutions to

Ls0+ û
(2)
s0 = v(2)

s0 , −Ls0− v̂(1)
s0 = u(1)

s0 , (4.27)

then for |λ| � 1 there exist C2 curves s1(λ) and s2(λ) such that
(i) s2

1,2(λ)λ ∈ Spec
(
Ns1,2(λ)

)
,

(ii) s1,2(0) = s0,
(iii) ṡ1,2(0) = 0,
and the concavities satisfy

s̈1(0) = −2s5
0

`

〈
v̂

(1)
s0 , u

(1)
s0

〉(
∂xu

(1)
s0 (`)

)2 , s̈2(0) =
2s5

0

`

〈
û

(2)
s0 , v

(2)
s0

〉(
∂xv

(2)
s0 (`)

)2 . (4.28)

Moreover, there exist continuous curves us1(λ) and us2(λ) of eigenfunctions such that

us1(λ) → u(1)
s0 =

(
u

(1)
s0

0

)
, us2(λ) → u(2)

s0 =

(
0

v
(2)
s0

)
(4.29)

as λ→ 0.

The condition (4.26) will be discussed in Remark 4.10 below.

Remark 4.7. As in Remark 3.17 the solutions û
(2)
s0 and v̂

(1)
s0 in (4.27) are not unique, but

the expressions in (4.26) and (4.28) do not depend on the choice of solution.

We prove the theorem by studying the zero set of m(λ, s) := detM(λ, s), where M is given
in (4.14). We thus start with some elementary calculations for the higher order derivatives
of m. These will be used to prove the existence of the eigenvalue curves s1,2(λ) and also to
evaluate their first and second derivatives.

Lemma 4.8. Under the assumptions of Theorem 4.6, we have

m(0, s0) =
∂m

∂s
(0, s0) =

∂m

∂λ
(0, s0) =

∂2m

∂s∂λ
(0, s0) = 0 (4.30)

and

∂2m

∂s2
(0, s0) = −2`2

s2
0

(
∂xu

(1)
s0 (`)

)2 (
∂xv

(2)
s0 (`)

)2
,

∂2m

∂λ2
(0, s0) = −2s4

0

〈
u(1)
s0 , v

(2)
s0

〉2
. (4.31)

Moreover, if
〈
u

(1)
s0 , v

(2)
s0

〉
= 0, then

∂3m

∂s∂λ2
(0, s0) = 2`s3

0

(
∂xu

(1)
s0 (`)

)2 〈
û(2)
s0 , v

(2)
s0

〉
− 2`s3

0

(
∂xv

(2)
s0 (`)

)2 〈
v̂(1)
s0 , u

(1)
s0

〉
(4.32)

∂3m

∂λ3
(0, s0) = 0,

∂4m

∂λ4
(0, s0) = 24s8

0

〈
û(2)
s0 , v

(2)
s0

〉〈
v̂(1)
s0 , u

(1)
s0

〉
(4.33)

with û
(2)
s0 and v̂

(1)
s0 as in (4.27).

Proof. Writing M =

(
a b
c d

)
, so that m = ad− bc, we compute

∂sm = (∂sa) d+ a (∂sd)− (∂sb) c− b (∂sc),

∂2
sm = (∂2

sa) d+ 2 (∂sa) (∂sd) + a (∂2
sd)− (∂2

s b) c− 2 (∂sb) (∂sc)− b (∂2
s c)

and so at (0, s0) we have

∂sm = 0, ∂2
sm = 2 (∂sa) (∂sd)− 2 (∂sb) (∂sc) (4.34a)

because a = b = c = d = 0 there (recall that M(λ0, s0) = 0). Similarly, we find that

∂λm = 0, (4.34b)
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∂2
λm = 2(∂λa)(∂λd)− 2(∂λb)(∂λc), (4.34c)

∂sλm = (∂sa)(∂λd) + (∂λa)(∂sd)− (∂sb)(∂λc)− (∂λb)(∂sc). (4.34d)

at (0, s0). To evaluate the second derivatives, it remains to differentiate the components of
M . By Proposition 4.2, for i, j = 1, 2 we have

∂Mij

∂λ
(0, s0) = −s2

0

〈
u(i)
s0 , Su(j)

s0

〉
,

∂Mij

∂s
(0, s0) =

〈
∂sBs0u

(i)
s0 , Su(j)

s0

〉
. (4.35)

It follows from (4.18) and (3.34) that

∂M

∂λ
(0, s0) = −s2

0

(
0

〈
u

(1)
s0 , v

(2)
s0

〉〈
u

(1)
s0 , v

(2)
s0

〉
0

)
,

so that at (0, s0), we have ∂λa = ∂λd = 0 and ∂λb = ∂λc = −s2
0

〈
u

(1)
s0 , v

(2)
s0

〉
. Similarly, it

follows from (4.18) and (3.29) that

∂M

∂s
(0, s0) =

`

s0

(
−
(
∂xu

(1)
s0 (`)

)2
0

0
(
∂xv

(2)
s0 (`)

)2
)
, (4.36)

hence at (0, s0) we have ∂sa = −s−1
0 `
(
∂xu

(1)
s0 (`)

)2
, ∂sd = s−1

0 `
(
∂xv

(2)
s0 (`)

)2
and ∂sb = ∂sc = 0.

The claimed formulas for ∂2
sm, ∂sλm and ∂2

λm now follow from (4.34).

If
〈
u

(1)
s0 , v

(2)
s0

〉
= 0, then ∂λb = ∂λc = 0 at (0, s0). This implies that ∂3

λm = 0 and

∂4
λm = 6

(
(∂2
λa) (∂2

λd)− (∂2
λb) (∂2

λc)
)
, ∂sλλm = (∂sa) (∂2

λd) + (∂2
λa) (∂sd) (4.37)

at (0, s0). Using (4.18) and (3.39) we obtain

∂2M

∂λ2
(0, s0) = −2s4

0

(〈
v̂

(1)
s0 , u

(1)
s0

〉
0

0
〈
û

(2)
s0 , v

(2)
s0

〉) , (4.38)

hence ∂2
λb = ∂2

λc = 0 and it follows that

∂4
λm = 6(∂2

λa)(∂2
λd) = 24s8

0

〈
v̂(1)
s0 , u

(1)
s0

〉〈
û(2)
s0 , v

(2)
s0

〉
.

The claimed formula for ∂sλλm follows directly from (4.37). �

The next elementary lemma will be used to prove differentiability of the eigenvalue curves
in the second part of Theorem 4.6. In what follows, dot denotes d/dλ.

Lemma 4.9. If ∆ is a smooth function with ∆(λ) = αλ4 +O(λ5) as |λ| → 0 for some α > 0,

then δ(λ) :=
√

∆(λ) is C2 near λ = 0, with δ̇(0) = 0 and δ̈(0) = 2
√
α.

Proof. It is clear that δ is smooth except possibly at λ = 0. For the first derivative we note
that δ(λ)/λ→ 0 as λ→ 0, so δ̇(0) = 0. For λ 6= 0 we compute

δ̇(λ) =
1

2
∆(λ)−1/2∆̇(λ).

Using ∆(λ) = αλ4 + O(λ5) and ∆̇(λ) = 4αλ3 + O(λ4), we see that δ̇(λ) → 0 as λ → 0 and
conclude that δ is C1. Next, we observe that

δ̇(λ)− δ̇(0)

λ
=

1

2

λ2√
∆(λ)

∆̇(λ)

λ3
→ 2
√
α,

and hence δ̈(0) exists. A similar argument gives

δ̈(λ) = −1

4

∆̇(λ)2

∆(λ)3/2
+

1

2

∆̈(λ)√
∆(λ)

→ 2
√
α
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as λ→ 0, so δ is C2. �

Proof of Theorem 4.6. By assumption we have m(0, s0) = 0. If
〈
u

(1)
s0 , v

(2)
s0

〉
6= 0, Lemma 4.8

implies m has a strict local maximum at (0, s0), so m is negative (and in particular nonzero)
in a punctured neighborhood of (0, s0). This proves the first case.

For the second case we use the Malgrange preparation theorem (see [GG73, §IV.2]). We
know from Lemma 4.8 that m(0, s0) = ∂sm(0, s0) = 0 and ∂2

sm(0, s0) < 0, so we can write

m(λ, s) = Q(λ, s)P (λ, s) (4.39)

in a neighbourhood of (0, s0), where

P (λ, s) = (s− s0)2 +B(λ)(s− s0) + C(λ), (4.40)

Q, B and C are smooth, real-valued functions, and Q does not vanish in a neighbourhood
of (0, s0). This means m locally has the same zero set as P .

We claim that the discriminant ∆(λ) = B2(λ)− 4C(λ) satisfies

∆(λ) = αλ4 +O(λ5) as |λ| → 0, α =
B̈(0)2

4
− C(4)(0)

6
> 0. (4.41)

To see this, we compute the Taylor expansion of ∆(λ) = B(λ)2 − 4C(λ) about λ = 0 and

show that ∆(0) = ∆̇(0) = ∆̈(0) =
...
∆(0) = 0. For this it suffices to show that B(0) = Ḃ(0) =

C(0) = Ċ(0) = C̈(0) =
...
C(0) = 0. That ∆(4)(0) = 4!α follows from the definition of ∆(λ).

Using Lemma 4.8 we obtain

m(0, s0) = Q(0, s0)C(0) = 0.

Since Q(0, s0) 6= 0, this implies C(0) = 0. Similarly, we find that

∂λm(0, s0) = Q(0, s0)Ċ(0) = 0

∂2
λm(0, s0) = Q(0, s0)C̈(0) = 0

∂3
λm(0, s0) = Q(0, s0)

...
C(0) = 0

∂4
λm(0, s0) = Q(0, s0)C(4)(0)

and

∂sm(0, s0) = Q(0, s0)B(0) = 0

∂sλm(0, s0) = Q(0, s0)Ḃ(0) = 0

∂sλλm(0, s0) = Q(0, s0)B̈(0),

which gives

B(0) = Ḃ(0) = C(0) = Ċ(0) = C̈(0) =
...
C(0) = 0.

We now observe that

∂2
sm(0, s0) = Q(0, s0) ∂2

sP (0, s0) = 2Q(0, s0).

Using the first formula from (4.31), this implies that

Q(0, s0) = − `
2

s2
0

(
∂xu

(1)
s0 (`)

)2 (
∂xv

(2)
s0 (`)

)2
. (4.42)

Therefore, using (4.33),

C(4)(0) =
∂4
λm(0, s0)

Q(0, s0)
= −24

s10
0

`2

〈
v̂

(1)
s0 , u

(1)
s0

〉〈
û

(2)
s0 , v

(2)
s0

〉(
∂xu

(1)
s0 (`)

)2(
∂xv

(2)
s0 (`)

)2 . (4.43)
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We similarly use (4.32) to compute

B̈(0) =
∂sλλm(0, s0)

Q(0, s0)
=

2s5
0

`

{ 〈
v̂

(1)
s0 , u

(1)
s0

〉(
∂xu

(1)
s0 (`)

)2 −
〈
û

(2)
s0 , v

(2)
s0

〉(
∂xv

(2)
s0 (`)

)2
}
. (4.44)

Therefore

α =
B̈(0)2

4
− C(4)(0)

6
=
s10

0

`2

( 〈
v̂

(1)
s0 , u

(1)
s0

〉(
∂xu

(1)
s0 (`)

)2 +

〈
û

(2)
s0 , v

(2)
s0

〉(
∂xv

(2)
s0 (`)

)2
)2

> 0 (4.45)

on account of (4.26), thus proving the claim.

Given (4.41), we have ∆(λ) > 0 for small nonzero λ, and so the equation P (λ, s) = 0 has
two solutions in s,

s±(λ) :=
−B(λ)±

√
∆(λ)

2
+ s0. (4.46)

It then follows from Lemma 4.9 that both s±(λ) are C2 in a neighbourhood of λ = 0, with

ṡ±(0) = −Ḃ(0)/2 = 0 and

s̈±(0) =
−B̈(0)± 2

√
α

2
, (4.47)

so the curves s±(λ) satisfy properties (i)–(iii) in the theorem. Substituting (4.44) and (4.45)
into (4.47), we obtain

s̈±(0) =
s5

0

`

{ 〈
û

(2)
s0 , v

(2)
s0

〉(
∂xv

(2)
s0 (`)

)2 −
〈
v̂

(1)
s0 , u

(1)
s0

〉(
∂xu

(1)
s0 (`)

)2 ±
∣∣∣∣∣
〈
v̂

(1)
s0 , u

(1)
s0

〉(
∂xu

(1)
s0 (`)

)2 +

〈
û

(2)
s0 , v

(2)
s0

〉(
∂xv

(2)
s0 (`)

)2
∣∣∣∣∣
}
. (4.48)

If the quantity inside the absolute value (which is nonzero by (4.26)) is positive, we get

s̈+(0) =
2s5

0

`

〈
û

(2)
s0 , v

(2)
s0

〉(
∂xv

(2)
s0 (`)

)2 , s̈−(0) = −2s5
0

`

〈
v̂

(1)
s0 , u

(1)
s0

〉(
∂xu

(1)
s0 (`)

)2 , (4.49)

in which case we define s1 := s− and s2 := s+. If it is negative we get

s̈−(0) =
2s5

0

`

〈
û

(2)
s0 , v

(2)
s0

〉(
∂xv

(2)
s0 (`)

)2 , s̈+(0) = −2s5
0

`

〈
v̂

(1)
s0 , u

(1)
s0

〉(
∂xu

(1)
s0 (`)

)2 , (4.50)

and we define s1 := s+ and s2 := s−.

To prove the existence of a continuous family of eigenfunctions, we defineM1(λ) = M(λ, s1(λ)).

If
(
t1(λ), t2(λ)

)> ∈ kerM1(λ) is nonzero, we know from (4.11) that

us1(λ) =
(
I +A(λ, s1(λ))

) (
t1(λ)u(1)

s0 + t2(λ)u(2)
s0

)
is an eigenfunction of Ns1(λ) for the eigenvalue s2

1(λ)λ. We therefore need to understand the
kernel of M1(λ).

By construction we have M1(0) = 0. Since (∂λM)(0, s0) = 0 and ṡ1(0) = 0, we find that

Ṁ1(0) = 0 and M̈1(0) = (∂2
λM)(0, s0) + (∂sM)(0, s0)s̈1(0). Using (4.28), (4.36) and (4.38),

we get

M̈1(0) = −2s4
0

(
∂xv

(2)
s0 (`)

)2( 〈
v̂

(1)
s0 , u

(1)
s0

〉(
∂xu

(1)
s0 (`)

)2 +

〈
û

(2)
s0 , v

(2)
s0

〉(
∂xv

(2)
s0 (`)

)2
)(

0 0
0 1

)
, (4.51)
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Figure 4. Imaginary eigenvalue curves s2λ ∈ Spec(Ns)∩iR, where Ls
− = Ls

+ = −∂xx−4s2

and ` = 12. Viewed from the ηs-plane where η = Re(λ), a series of isolated crossings appear
at η = 0 as s increases from 0 to 1.

which is nonzero by (4.26). Writing M1(λ) =
(
a(λ) b(λ)
c(λ) d(λ)

)
, it follows that d(λ) 6= 0 for small,

nonzero values of λ, and so we can choose(
t1(λ)
t2(λ)

)
=

(
1

−c(λ)/d(λ)

)
∈ kerM1(λ)

for λ 6= 0. Since c(0) = ċ(0) = c̈(0) = d(0) = ḋ(0) = 0 but d̈(0) 6= 0, we get c(λ)/d(λ)→ 0 as
λ→ 0, and so

lim
λ→0

(
I +A(λ, s1(λ))

) (
t1(λ)u(1)

s0 + t2(λ)u(2)
s0

)
= u(1)

s0

as claimed. The result for us2(λ) is proved in the same way. �

Remark 4.10. The condition (4.26) implies ∆(λ) > 0 for small nonzero λ, and hence
guarantees the existence of s±(λ). It also guarantees that s̈+(0) 6= s̈−(0), as can be seen
from (4.48). If (4.26) fails then α = 0 and we cannot use the result of Lemma 4.9. In this
(nongeneric) case one may compute higher derivatives of m in order to determine higher
order coefficients in the Taylor expansion of ∆(λ), but we do not pursue this here.

The following examples illustrate the two scenarios detailed in Theorem 4.6.

Example 4.11. The conditions in case (1) of Theorem 4.6 are satisfied if we take Ls+ = Ls−,

in which case u
(1)
s0 = v

(2)
s0 at any crossing (0, s0), so that 〈u(1)

s0 , v
(2)
s0 〉 6= 0. Each isolated crossing

(λ, s) = (0, s0) is a consequence of a pair of purely imaginary eigenvalues passing through the
origin as s increases. For clarity, in Fig. 4 we have plotted the imaginary eigenvalue curves
s2λ ∈ Spec(Ns) ∩ iR for the case when Ls− = Ls+ = −∂xx − 4s2 and ` = 12 (here λ ∈ C).

Example 4.12. Let L = −∂xx + V (x) with domain (2.5), and define L± = L − λ±, where
λ± ∈ Spec(L) are distinct eigenvalues with eigenfunctions u1 and v2, so that L+u1 = L−v2 =
0. Since L± is selfadjoint and λ+ 6= λ−, we have 〈u1, v2〉 = 0, and the conditions of case (2)
in Theorem 4.6 are satisfied. (Recall the notation of (3.19) when s0 = 1.)

The equations L+û2 = v2 and −L−v̂1 = u1 are solved by û2 = 1
λ−−λ+ v2 and v̂1 = 1

λ−−λ+u1,

and it follows that∫ `

0
û2 v2 dx =

1

λ− − λ+

∫ `

0
v2

2 dx and

∫ `

0
v̂1 u1dx =

1

λ− − λ+

∫ `

0
u2

1 dx
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Figure 5. (a) Real eigenvalue curves s2λ ∈ Spec(Ns) ∩ R where Ls
− = −∂xx − 4π2s2,

Ls
+ = −∂xx − 9π2s2 and ` = 1, and (b) a blow-up of the conjugate point (λ, s) = (0, 1).

are nonzero and have the same sign. According to (4.28) this means the curves s1,2(λ)
passing through (0, 1) will have opposite concavity. This is illustrated in Fig. 5, where we
have plotted the real eigenvalue curves for a domain of length ` = 1, choosing L = −∂xx,
λ+ = 9π2 and λ− = 4π2.

4.4. The Maslov index at the non-regular corner. We are now in a position to calculate
the corner term c appearing in Theorem 2.2 (and defined in Definition 3.14) using the tools
developed in Sections 4.2 and 4.3.

Since a non-regular crossing occurs at the initial point of Γ3, we cannot use (3.4) to compute
the Maslov index. We therefore take advantage of homotopy invariance, deforming the corner
of the Maslov box to a path that only has simple regular crossings.

The index can then be deduced from the local behaviour of the eigenvalue curves through
(0, 1) (see Theorems 2.9 and 4.6), which we quantify as follows. Given the curve s(λ) from

Theorem 2.9, there is an interval (0, λ̂) on which either s(λ) > 1 or s(λ) < 1, since the set
{λ : s(λ) = 1} is discrete; cf. Remark 3.15. Therefore, the quantity

s](0) := lim
λ→0+

sign
(
s(λ)− 1

)
∈ {±1} (4.52)

is well-defined. In the case that s = s(λ) is analytic, s](0) is the sign of the first nonzero
Taylor coefficient at λ = 0.

Remark 4.13. Recall from Theorem 2.9 that ṡ(0) = 0. Therefore, in the generic case where
s̈(0) 6= 0, we simply have

s](0) = sign s̈(0). (4.53)

That is, the VK-type integrals in Theorem 2.9 determine s](0) (and hence the index c)
provided the integrals are nonzero. However, it is important to note that the dichotomy
s](0) = ±1 holds even if s̈(0) = 0.

The same considerations apply to the curves s1,2(λ) from Theorem 4.6 (for which ṡ1,2(0) = 0),

so we define s]1,2(0) analogously, and emphasize that in the generic case s̈1,2(0) 6= 0 we have

s]1,2(0) = sign s̈1,2(0). (4.54)

With this notation in place, we are ready to calculate c.
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Theorem 4.14. The corner term c from Definition 3.14 is calculated as follows:

(1) Suppose dim ker(N) = 1, and let s = s(λ) be the eigenvalue curve through (0, 1).

(i) If 0 ∈ Spec(L+)\ Spec(L−) then

c =
1

2
(s](0)− 1).

That is, c = 0 if s](0) = +1 and c = −1 if s](0) = −1.

(ii) If 0 ∈ Spec(L−)\ Spec(L+) then

c =
1

2
(1− s](0)).

That is, c = 0 if s](0) = +1 and c = +1 if s](0) = −1.

(2) Suppose dim ker(N) = 2, with ker(L+) = Span{u1} and ker(L−) = Span{v2}. If
〈u1, v2〉 6= 0, then c = 0. If 〈u1, v2〉 = 0 and the condition (4.26) holds, we denote by
s1,2(λ) the eigenvalue curves passing through (0, 1), as in Theorem 4.6. Then

c =
1

2
(s]1(0)− s]2(0)). (4.55)

We remark that formula (4.55) is simply the sum of the formulas for c in cases (i) and (ii)
of the simple case, identifying s with s1 if 0 ∈ Spec(L+)\ Spec(L−) and s with s2 if 0 ∈
Spec(L−)\ Spec(L+). It is perhaps interesting to note that in (4.55) we have c ∈ {−1, 0, 1},
so that c can never be +2 or −2, despite it being the contribution to the Maslov index from
a two dimensional crossing in this case.

Proof. We use a homotopy argument, deforming the top left corner of the Maslov box as
shown in Fig. 6.

We first consider the case dim ker(N) = 1. If s](0) > 0 then the deformed path does not
intersect D, so we have c = 0. On the other hand, if s](0) < 0, there will be a crossing at
some point (λ∗, s∗) = (λ∗, s(λ∗)) with 0 < λ∗ � 1. This segment of the deformed path is
parameterized by increasing s, so the relevant crossing form is

ms∗(q) =
1

s∗

〈(
∂sBs∗ − 2s∗λ∗

)
us∗ , Sus∗

〉
, (4.56)

where q = Trs∗ us∗ . From Theorem 4.5 we obtain a continuous family of eigenfunctions with
us(λ) → u as λ→ 0, so we can use Lemma 3.9 to compute

lim
λ→0

1

s(λ)

〈(
∂sBs(λ) − 2s(λ)λ

)
us(λ), Sus(λ)

〉
=
〈
∂sB1u1, Su1

〉
= `

[
−
(
u′1(`)

)2
+
(
v′1(`)

)2]
.

By continuity this has the same sign as the crossing form (4.56) at (λ∗, s∗), so we conclude
that c = −1 if 0 ∈ Spec(L+) and c = 1 if 0 ∈ Spec(L−).

The argument for the case dim ker(N) = 2 is similar. Depending on the values of s]1(0) and

s]2(0), there will be zero, one or two crossings that contribute to the index c. These are
necessarily simple crossings, since s1(λ) 6= s2(λ) for λ 6= 0 (see Remark 4.10). Moreover, if

either s]1(0) or s]2(0) is positive, it does not contribute to the index.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Neighbourhood of the crossing (λ0, s0) = (0, 1) featuring the eigenvalue curves
(parabolas in blue) and the portion of the Maslov box passing through the corner (0, 1) (in
black) when (a) dim ker(N) = 1 and s](0) > 0, (b) dim ker(N) = 1 and s](0) < 0, and (c)

dim ker(N) = 2 and s]1(0)s]2(0) < 0. The path (dashed) to which we homotope the top left
corner of the Maslov box in (a), (b) and (c) is given in (d), (e) and (f) respectively.

Suppose s]1(0) < 0, so there is a crossing at some point (λ∗, s∗) = (λ∗, s1(λ∗)). As in the first
case, we need to compute the crossing form

ms∗(q) =
1

s∗

〈(
∂sBs∗ − 2s∗λ∗

)
us∗ , Sus∗

〉
.

We use Theorem 4.6 to get

lim
λ→0

1

s1(λ)

〈(
∂sBs1(λ) − 2s1(λ)λ

)
us1(λ), Sus1(λ)

〉
=
〈
∂sB1u

(1)
1 , Su

(1)
1

〉
= −`

(
∂xu

(1)
1 (`)

)2
< 0,

and hence conclude that the crossing form at (λ∗, s∗) is negative. Similarly, if s]2(0) < 0,
there is a crossing at some point (λ∗, s2(λ∗)) whose crossing form is positive, because

lim
λ→0

1

s2(λ)

〈(
∂sBs2(λ) − 2s2(λ)λ

)
us2(λ), Sus2(λ)

〉
=
〈
∂sB1u

(2)
1 , Su

(2)
1

〉
= `

(
∂xv

(2)
1 (`)

)2
> 0.

In summary, the curve s1 contributes 0 to c if s]1(0) > 0 and −1 if s]1(0) < 0, whereas s2

contributes 0 if s]2(0) > 0 and 1 if s]2(0) < 0. Adding these contributions completes the
proof. �

We conclude this section by relating the concavity of the eigenvalue curves to the second
order Maslov crossing form.

Proposition 4.15. Assume the first order crossing form mλ0 is identically zero at the cross-

ing (λ0, s0) = (0, 1). If the second order crossing form m
(2)
λ0

given in Lemma 3.16 is nonde-
generate, then

Mas(Λ(λ, 1),D;λ ∈ [0, ε]) = −n−(m
(2)
λ0

). (4.57)
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Proof. We will prove this statement in the cases relevant to the current paper, that is, when

dim ker(N) = 1, 2. Recall that nondegeneracy of m
(2)
λ0

implies that s̈(0) 6= 0 if dim ker(N) = 1

and s̈1,2(0) 6= 0 if dim ker(N) = 2. Therefore, (4.53) and (4.54) hold.

For the right hand side of (4.57), if dim ker(N) = 1, Theorem 2.9 shows that the sign of s̈(0)
determines the sign of the VK-type integrals in (2.14) and (2.15), and therefore the sign of

m
(2)
λ0

given in (3.38). In particular, we observe:

(i) If 0 ∈ Spec(L+)\Spec(L−) then n−(m
(2)
λ0

) =

{
0 s̈(0) > 0,

1 s̈(0) < 0.

(ii) If 0 ∈ Spec(L−)\Spec(L+) then n−(m
(2)
λ0

) =

{
1 s̈(0) > 0,

0 s̈(0) < 0.

If dim ker(N) = 2, consider the matrix M
(2)
λ0

of the second order form m
(2)
λ0

, which is given in

(3.39). Using (4.28), we see that:

(iii) If 0 ∈ Spec(L+) ∩ Spec(L−) then n−(m
(2)
λ0

) =


0 s̈1(0) > 0, s̈2(0) < 0,

1 s̈1(0)s̈2(0) > 0,

2 s̈1(0) < 0, s̈2(0) > 0.

For the left hand side of (4.57), let us define a := Mas(Λ(s, 0),D; s ∈ [1 − ε, 1]) and
b := Mas(Λ(λ, 1),D;λ ∈ [0, ε]), and notice from (3.35) that c = a + b. From the proof
of Lemma 3.22 we know that the crossing form at (0, 1) has n+(ms0) = dim ker(L−), so
Definition 3.1 gives a = dim ker(L−). Therefore

b = c− dim ker(L−). (4.58)

Using the values of c computed in in Theorem 4.14, we confirm that b = −n−(m
(2)
λ0

) in cases

(i), (ii) and (iii) described above, as claimed. �

5. Applications

In this section we give some applications of the theory of Sections 3 and 4. We begin with the
proof of Corollaries 2.7 and 2.8 and Theorem 2.11, which are consequences of Theorem 2.2
and Theorem 4.14. We then give formulas for the concavity of the NLS spectral curves, and
recover the classical VK criterion for a particular one-parameter family of stationary states.
Finally, we relate our results to the Krein index theory.

5.1. The Jones–Grillakis instability theorem. We first prove the compact interval ana-
logue of the Jones–Grillakis instability theorem, Corollary 2.7, and its consequence Corol-
lary 2.8.

Proof of Corollary 2.7. From Theorem 2.2 we have n+(N) ≥ 1 provided P − Q 6= c. The
result now follows from Theorem 4.14, which guarantees c ∈ {−1, 0} when 0 ∈ Spec(L+) \
Spec(L−), and c ∈ {0, 1} when 0 ∈ Spec(L−) \ Spec(L+). �

Proof of Corollary 2.8. We claim that Q = 0, P ≥ 1 and 0 ∈ Spec(L+) \ Spec(L−) under
the assumptions of the Corollary. Once this has been shown, the result follows immediately
from Corollary 2.7.
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Since φ is nonconstant and satisfies Neumann boundary conditions, we have 0 ∈ Spec(L+),
with eigenfunction φ′. Moreover, each stationary point of φ in the interior of its domain
corresponds to a conjugate point for L+: If φ′(x0) = 0 for some x0 ∈ (0, `), then 0 ∈ Spec(Ls0+ )
for s0 = x0/`, with eigenfunction φ(s0x). It then follows from Lemma 3.19 that P ≥ 1.

We next consider Ls− for s ∈ (0, 1]. Under Hypothesis 2.5, the general solution to the
differential equation Ls−w = 0 is

w(x) = c1φ(sx) + c2φ(sx)

∫ x

0

1

φ(st)2
dt, (5.1)

where the second fundamental solution was obtained via the method of reduction of order,
and is well defined since φ(x) 6= 0 for all x ∈ [0, `] implies 1/φ2 is integrable. It follows that

φ(sx)

∫ x

0

1

φ(st)2
dt ≥ 0 (5.2)

for all x ∈ [0, `], with equality when x = 0. Dirichlet boundary conditions on w then dictate
that c1 = c2 = 0, and we conclude that 0 /∈ Spec(Ls−) for all s ∈ (0, 1]. In particular,
0 /∈ Spec(L−), and Lemma 3.19 implies Q = 0. �

5.2. VK-type (in)stability criteria. For the proof Theorem 2.11 we will need two prelim-
inary results. The first of these mimics [Gri88, Corollary 1.1], and follows from the equivalent
selfadjoint formulation of the eigenvalue problem (3.44); see Lemma 3.21.

Lemma 5.1. If Q = 0 or P = 0 then Spec(Ns) ⊂ R ∪ iR for all s ∈ (0, 1].

Proof. Fix s ∈ (0, 1]. If Q = 0 then Ls− is nonnegative by Lemma 3.20. By Lemma 3.21 the

eigenvalue problem (3.44) is equivalent to (3.45). The operator
(
Ls−|Xc

)1/2
ΠLs+Π

(
Ls−|Xc

)1/2
acting in Xc is selfadjoint, and therefore s4λ2 ∈ R. Then s ∈ R implies λ ∈ R∪ iR. The case
P = 0 follows similarly. �

We next prove that the Maslov index is monotone in λ if either Q = 0 or P = 0.

Lemma 5.2. If Q = 0 then the crossing form mλ0 is strictly positive for any crossing with
λ0 > 0 and s0 = 1, while if P = 0 then mλ0 is strictly negative at all such crossings.
Consequently,

n+(N) =

{
Mas(Λ,D; Γε3) if Q = 0,

−Mas(Λ,D; Γε3) if P = 0.
(5.3)

(Recall that Mas(Λ,D; Γε3) = Mas(Λ(λ, 1),D;λ ∈ [ε, λ∞]).)

Proof. Assume λ0 > 0 with eigenfunction u1 = (u1, v1)>, so that (3.44) holds with λ = λ0

and s = 1. Note that both u1 and v1 are necessarily nontrivial due to the coupling of the
eigenvalue equations for λ 6= 0. If Q = 0, we apply 〈·, v1〉 to the first equation of (3.44) to
obtain

〈L−v1, v1〉 = −λ0〈u1, v1〉 =
λ0

2
mλ0(q), q = Tr u1, (5.4)

using formula (3.30). Now 0 6= u1 ∈ ran(L−) implies v1 has a component lying in ker(L−)⊥.
Since Q = 0, it follows that 〈L−v1, v1〉 > 0. Thus mλ0(q) > 0 at all crossings along Γε3 if
Q = 0. If P = 0, one applies 〈·, u1〉 to the second equation of (3.44) at (λ0, 1), and a similar

argument yields that 〈L+u1, u1〉 = −λ0
2 mλ0(q) > 0. Thus mλ0(q) < 0 at all crossings on Γε3

if P = 0. �
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Proof of Theorem 2.11. Consider the eigenvalue curve s = s(λ) through the point (λ, s) =
(0, 1), for which ṡ(0) = 0 as stated in Theorem 2.9.

We start with the case P = 1, Q = 0 and 0 ∈ Spec(L−)\ Spec(L+). If s̈(0) > 0, then by
Theorem 4.14 we have c = 0. Since Q = 0, by Lemma 5.2 and (3.56) we have n+(N) =
P − c = 1. On the other hand, if s̈(0) < 0, then by Theorem 4.14 we have c = 1, and by the
same argument n+(N) = P − c = 0. It then follows from Lemma 5.1 that Spec(N) ⊂ iR.

The case where Q = 1, P = 0 and 0 ∈ Spec(L+)\ Spec(L−) is similar. If s̈(0) > 0, then c = 0
by Theorem 4.14, and Lemma 5.2 and (3.56) imply n+(N) = Q + c = 1. If s̈(0) < 0, then
c = −1 by Theorem 4.14, hence n+(N) = 0. By Lemma 5.1 we deduce that Spec(N) ⊂
iR. �

5.3. Concavity computations for NLS. Working under Hypothesis 2.5, in this subsection
we compute the sign of s̈(0) via the VK-type integrals given in Theorem 2.9. In what follows,
s(λ) is the eigenvalue curve through (λ0, s0) = (0, 1).

5.3.1. The L+ integral. We first consider the case when L+ has a nontrivial kernel. The
following result allows us to compute s̈(0) when φ satisfies Neumann boundary conditions.

Proposition 5.3. Assume Hypothesis 2.5 and that 0 ∈ Spec(L+)\ Spec(L−) with eigen-
function φ′. If {p, q} is a fundamental set of solutions to the differential equation L−v = 0
initialised at the identity, then q(`) 6= 0 and

sign s̈(0) = sign

[(∫ `

0
p2dx

)
− p(`)

q(`)
`2
]
. (5.5)

Proof. First, note that ker(N) = Span{(φ′, 0)>}. Now by case (2) of Theorem 2.9 we have

sign s̈(0) = sign

∫ `

0
v̂ φ′ dx

where v̂ is the unique solution to the inhomogeneous boundary value problem

L−v̂ = φ′, v̂(0) = v̂(`) = 0. (5.6)

Let {p, q} be a fundamental set of solutions to the homogeneous equation L−v̂ = 0 such that(
p(0) q(0)
p′(0) q′(0)

)
=

(
1 0
0 1

)
. (5.7)

Since φ(0) 6= 0, the first solution is given by p(x) = φ(x)/φ(0). We have p′(`) = 0, p(`) 6= 0,
while q(`) 6= 0 since q(0) = 0 and 0 /∈ Spec(L−). By Abel’s identity,

p(x)q′(x)− q(x)p′(x) = 1 ∀ x ∈ [0, `]. (5.8)

The general solution to the differential equation L−v̂ = φ′ is thus

v̂(x) = Ap(x) +Bq(x)− xφ(x)

2
, (5.9)

where it is easily verified that −xφ(x)/2 is a particular solution. Imposing the boundary
conditions on v̂ to determine the constants A and B, we find that the unique solution to
(5.6) is

v̂(x) =
1

2

(
`φ(`)

q(`)
q(x)− xφ(x)

)
.
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It remains to compute sign
∫ `

0 v̂φ
′dx. Since φ(x) = p(x)φ(0), we have∫ `

0
v̂(x)φ′(x)dx =

∫ `

0

1

2

(
`φ(`)

q(`)
q(x)− xφ(x)

)
p′(x)φ(0) dx

=
φ(0)2`p(`)

2q(`)

∫ `

0
q(x)p′(x)dx− φ(0)2

2

∫ `

0
xp(x)p′(x)dx.

For the second integral we obtain∫ `

0
xp(x)p′(x)dx =

1

2

(
`p(`)2 −

∫ `

0
p(x)2dx

)
,

while for the first we integrate by parts and appeal to (5.8) to arrive at∫ `

0
q(x)p′(x)dx =

1

2
(q(`)p(`)− `) .

Therefore∫ `

0
v̂(x)φ′(x)dx =

φ(0)2`p(`)

4q(`)
(q(`)p(`)− `)− φ(0)2

4

(
`p(`)2 −

∫ `

0
p(x)2dx

)
=
φ(0)2

4

(∫ `

0
p(x)2dx− p(`)

q(`)
`2
)

and (5.5) follows. �

Remark 5.4. If φ is nonvanishing, the second solution q can be determined using reduction
of order; see (5.10) and also the proof of Corollary 2.8. When φ has zeros the second solution
is given by the Rofe–Beketov formula [Sch00, Lemma 2]; however, the resulting expression
is significantly more complicated and does not appear to be useful for our analysis.

The following result serves as an application of Proposition 5.3 in the case when the stationary
state is either strictly positive or strictly negative over its domain.

Corollary 5.5. Under the assumptions of Proposition 5.3, for nonconstant solutions to (2.9)
satisfying φ(x) 6= 0 for all x ∈ [0, `], we have s̈(0) > 0.

Proof. In the case when φ has no zeros on the interval [0, `], the method of reduction of order
allows us to write

q(x) = p(x)

∫ x

0

1

p(t)2
dt, (5.10)

where the nonvanishing of p ensures 1/p2 is integrable. This gives∫ `

0
p(x)2dx− p(`)

q(`)
`2 =

(∫ `
0

1
p2
dx
)(∫ `

0 p
2dx
)
− `2(∫ `

0
1
p2
dx
) ,

and so

sign s̈(0) = sign

[(∫ `

0

1

p2
dx

)(∫ `

0
p2dx

)
− `2

]
. (5.11)

By virtue of the Cauchy Schwarz inequality,

` =

∫ `

0
p(x)

1

p(x)
dx ≤

√∫ `

0
p2(x)dx

√∫ `

0

1

p(x)2
dx

where we have equality only when p and 1/p are linearly dependent, that is, when φ is
constant. Since we have assumed a nonconstant solution, the inequality is strict, and we
conclude that (5.11) is positive. �
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Remark 5.6. The statement of Corollary 5.5 may also be proven using Remark 2.10, since
L− > 0 for stationary states that are nonvanishing over [0, `] (as was shown in the proof of
Corollary 2.8). However, the proof given above is a nice illustration of Proposition 5.3, a
more general result that holds for any nonconstant φ.

5.3.2. The L− integral: Recovering classical VK. We now consider the case when L− has a
nontrivial kernel (spanned by φ). We show that the associated VK-type integral in equation
(2.14) of Theorem 2.9 recovers a compact interval analogue of the classical VK integral
expression

∂

∂β

∫ ∞
−∞

φ2 dx (5.12)

associated with a stationary state φ ∈ L2(R) solving (2.9) (see [Pel11, Theorem 4.4, p.215]).
The key observation is that ∂βφ(·;β) solves the differential equation L+û = φ associated
with case (1) of Theorem 2.9, and this naturally leads to the expressions (5.14) and (5.15),
which clearly resemble (5.12). This is not true for the equation L−v̂ = φ′ associated with
case (2) of Theorem 2.9, for which a recovery of a compact interval analogue of (5.12) is

thus not possible. In what follows, φ′(x;β) refers to dφ
dx (x;β), while the β derivative will be

denoted by ∂β.

Proposition 5.7. Assume Hypothesis 2.5 and let φ0 be a solution to (2.9) with parameter
β0 that satisfies φ0(0) = φ0(`) = 0. There exists a unique one-parameter family of solutions

β 7→ φ̂(·;β) to (2.9), defined in a neighbourhood of β0, such that

φ̂(0;β) = φ̂(`;β) = 0 (5.13)

for all β near β0 and φ̂(·;β0) = φ0. In terms of this family, the VK-type integral in (2.14) is∫ `

0
û v dx =

1

2

∂

∂β

∣∣∣∣
β=β0

∫ `

0
φ̂(x;β)2 dx. (5.14)

More generally, if β 7→ φ(·;β) is any C1 family of solutions to (2.9) satisfying φ(·;β0) = φ0,
then the integral in (2.14) can be written∫ `

0
û v dx =

1

2

∂

∂β

∣∣∣∣
β=β0

∫ `

0
φ(x;β)2 dx

+
(
(−1)Q∂βφ(0;β0) + ∂βφ(`;β0)

)(∂βφ(0;β0) + (−1)Q∂βφ(`;β0)

q(`)
+ ∂βφ

′(`;β0)

)
.

(5.15)

Furthermore, if P = 1, Q = 0 and (5.14) or (5.15) is positive (resp. negative), then the

standing wave ψ̂(x, t) = eiβ0tφ0(x) is spectrally unstable (resp. spectrally stable).

Proof. The existence of φ0 implies that the associated operators

L− = −∂xx − f(φ2
0)− β0,

L+ = −∂xx − 2f ′(φ2
0)φ2

0 − f(φ2
0)− β0

have φ0 ∈ ker(L−) and hence 0 ∈ Spec(L−)\ Spec(L+). Consider the function

F :
(
H2(0, `) ∩H1

0 (0, `)
)
× R −→ L2(0, `), F (φ, β) = φ′′ + f(φ2)φ+ βφ, (5.16)

in terms of which (2.9) and (5.13) become F (φ, β) = 0. It can be shown that F is continuously
Fréchet differentiable (see [Col12, §2.2]), with

DF (φ0, β0)(u, γ) = γφ0 − L+u. (5.17)

Since 0 /∈ Spec(L+), this impliesDF (φ0, β0)(·, 0) = −L+ is invertible, so the implicit function
theorem guarantees the existence of a C1 function

(β0 − ε, β0 + ε)→ H2(0, `) ∩H1
0 (0, `), β 7→ φ̂(·;β), (5.18)
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such that F (φ̂(·;β), β) = 0 for all |β − β0| < ε.

Turning to the integral in (2.14), where now v = φ0, we need to solve

L+û = φ0, û(0) = û(`) = 0. (5.19)

Using the family constructed above, which is C1 in β, we differentiate (2.9) with respect to
β and evaluate at β0 to obtain

L+∂βφ̂(x;β0) = φ0(x). (5.20)

Now differentiating (5.13) (which holds for all β near β0) with respect to β and evaluating
at β0 yields

∂βφ̂(0;β0) = ∂βφ̂(`;β0) = 0. (5.21)

Therefore, û(x) = ∂βφ̂(x;β0) is the unique solution to (5.19), and substituting this into the
VK-type integral in (2.14) with v = φ0 yields (5.14).

Now let β 7→ φ(·;β) be an arbitrary family of solutions to (2.9) (again for β close to β0) such
that φ(x;β0) = φ0(x). To solve (5.19), note that (5.20) still holds for the family φ(·;β0), and
thus the general solution to L+û = φ0 is

û(x) = Ap(x) +Bq(x) + ∂βφ(x;β0), (5.22)

where {p, q} is now a fundamental set of solutions to the homogeneous equation L+û = 0
satisfying (5.7). Since φ′(0;β0) 6= 0, we may set p(x) = φ′(x;β0)/φ′(0;β0). A brief look
at the Hamiltonian for (2.9) indicates that intersections of any fixed orbit with φ = 0 are
symmetric about φ′ = 0; from this, along with Sturm-Liouville theory applied to φ(·;β0) =
φ0 ∈ ker(L−), we deduce that we necessarily have φ′(`;β0) = (−1)Q+1φ′(0;β0), and therefore
that p(`) = (−1)Q+1. Evaluating (2.9) at x = ` we also find that φ′′(`;β0) = 0, hence
p′(`) = 0. Thus (

p(`) q(`)
p′(`) q′(`)

)
=

(
(−1)Q+1 ∗

0 (−1)Q+1

)
(5.23)

where q′(`) = (−1)Q+1 because (5.23) must have unit determinant by virtue of Abel’s identity
(see (5.8)). In addition, q(`) 6= 0 since 0 /∈ Spec(L+) and q(0) = 0.

Imposing the boundary conditions û(0) = û(`) = 0 and using (5.23) allows us to determine
the constants A and B. We find that the unique solution to (5.19) is

û(x) = −∂βφ(0;β0) p(x) +
(−1)Q+1∂βφ(0;β0)− ∂βφ(`;β0)

q(`)
q(x) + ∂βφ(x;β0). (5.24)

Multiplying (5.24) by φ0 and integrating the first two terms by parts yields (5.15). The
statement regarding spectral stability follows immediately from Theorem 2.11. �

Remark 5.8. The one-parameter family constructed abstractly in (5.18) via the implicit
function theorem leads to the simplest expression for the VK-type integral on a compact
interval. However, this is only useful in practice if one can determine this family explicitly,
which may not be possible. For this reason, we have included formula (5.15), which holds
for any one-parameter family of solutions to the standing wave equation that starts at φ0.

Remark 5.9. When the spatial domain is the entire real line, it is known that for power-law
nonlinearities of the form f(φ2) = φ2p, p > 0, strictly positive localised stationary states (for
which β < 0, P = 1 and Q = 0) are spectrally stable1 for p ≤ 2 and spectrally unstable
for p > 2 (see [Pel11, Corollary 4.3, p.216]). The result follows from a change in sign of the
VK integral (5.12) (see [Pel11, Theorem 4.4, p.215]). Moving to the compact interval, we

1The critical case p = 2 is spectrally stable but nonlinearly unstable due to algebraically growing solutions
of the linearised system; see [Pel11, Remark 4.3, p.217].
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investigated whether an analogous phenomenon holds for stationary states φ0 that likewise
satisfy β < 0, P = 1 and Q = 0. We found that our numerical experiments were in line with
the result on the real line when p = 1, 2, for which we found no spectrally unstable waves.
Interestingly, however, for p ∈ (2, p0), p0 ≈ 5, we observed the existence of a β-dependent
threshold value of the interval length ` = `∗ separating spectral stability (` < `∗) and spectral
instability (` > `∗). This agrees with the instability result on the real line (for these values
of p), in the sense that we recover it (numerically) upon taking ` → +∞. Theorem 2.11
indicates that this change in stability at ` = `∗ should be reflected in a change in concavity of
the eigenvalue curve passing through (λ, s) = (0, 1), and indeed we observe this numerically.
Figure 7 displays the real eigenvalue curves for three T -periodic stationary states φ0 satisfying
the Dirichlet boundary conditions φ0(0) = φ0(`) = 0, ` = T/2, for differing `. The sign of
s̈(0) at (λ, s) = (0, 1) switches from negative to positive as ` increases through ` = `∗. By
Theorem 2.11 the underlying standing wave becomes unstable, which is confirmed by the
emergence of a positive real eigenvalue in Fig. 7c.
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Figure 7. Eigenvalue curves s2λ ∈ Spec(Ns) ∩ R under Hypothesis 2.5(i) for T -periodic
stationary states φ0 satisfying φ0(0) = φ0(`) = 0, with nonlinearity f(φ2) = φ6, β = −2,
and domain length ` = T/2 indicated. These φ0 correspond to orbits located outside the
homoclinic orbit and in the right half plane of Fig. 1a. (Note the phase plane for (2.9) with
f(φ2) = φ6 is qualitatively similar to Fig. 1a.) Eigenvalues of N are given by intersections
with the dashed line at s = 1. At ` = `∗, we computed s̈(0) ≈ 0 to four decimal places.

Remark 5.10. In the previous example, note that at the critical value ` = `∗ we have
dim ker(N) = 1 and s̈(0) = 0. This corresponds to the non-generic case in Remark 4.13

where s](0) 6= sign s̈(0) and the second order crossing form m
(2)
λ0

in Lemma 3.16 is degenerate.
A brief calculation using the Fredholm Alternative indicates that the algebraic multiplicity
of λ = 0 ∈ Spec(N) is at least four.

5.4. Connections with existing eigenvalue counts. We now give a comparison of our
lower bound (2.7) with the one given in [KKS04, Eq.(3.9)] (see (5.33) below); see also [KP13,
Theorem 7.1.16]. We will show that the contribution to the Maslov index from the non-
regular crossing (see Definition 3.14) is equal to the difference in negative indices of matrices
arising in constrained eigenvalue counts for L±. We refer the reader to [CM19] for an
alternate approach to the constrained eigenvalue problem using the Maslov index. Through-
out this section, {u1, . . .un} is a basis for ker(N) with n ≤ 2. We assume the crossing
(λ0, s0) = (0, 1) is non-regular in the λ direction, with first order crossing form mλ0 in (3.30)

that is identically zero. We further assume that the second-order crossing form m
(2)
λ0

in (3.36)

is nondegenerate. The notation n−(A) refers to the number of negative eigenvalues of the
selfadjoint operator or symmetric matrix A. Recall then that P = n−(L+) and Q = n−(L−).
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Define the diagonal, selfadjoint operator

L :=

(
L+ 0
0 L−

)
, dom(L) := dom(N), (5.25)

so that N = JL. The eigenvalue problem (2.1) may then be written as

JLu = λu, u(0) = u(`) = 0. (5.26)

We denote the generalised eigenvectors of N = JL by v̂i, i.e.

JLv̂i = ui, JLui = 0, i = 1, . . . , n. (5.27)

As in Remark 3.17, the Fredholm Alternative and the fact that mλ0 = 0 guarantee the
existence of solutions to the first n equations in (5.27), so the algebraic multiplicity of λ = 0

is at least 2n. Nondegeneracy of M
(2)
λ0

then implies the algebraic multiplicity is exactly 2n.

The matrix D in [KKS04, eq.(3.1)] is the n× n matrix with entries

Dij = 〈v̂i, Lv̂j〉 = −〈v̂i, Juj〉, (5.28)

where the second equality follows since JLv̂i = ui implies Lv̂i = J−1ui = −Jui. It is used

to determine the number of negative eigenvalues of L restricted to ranJL = [ker(JL)∗]⊥

(see [KKS04, Theorem 3.1]). Denoting dim kerL± = z± ∈ {0, 1} so that z+ + z− = n,
notice that the off-diagonal structure of JL implies that its eigenvectors and generalised
eigenvectors may be written as

ui =

{
(ui, 0)>,

(0, vi)
>,

v̂i =

{
(0, v̂i)

>, i = 1, . . . , z+,

(ûi, 0)>, i = z+ + 1, . . . , n,
(5.29)

where, by (5.27), the functions ui, vi, ûi, v̂i satisfy

−L−v̂i = ui, L+ui = 0, i = 1, . . . , z+,

L+ûi = vi, L−vi = 0, i = z+ + 1, . . . , n.

The matrix D thus has the block form (as in [KKS04, §3.3])

D =

(
D− 0
0 D+

)
,

where

[D−]ij = 〈v̂i, L−v̂j〉 = −〈v̂i, uj〉, i, j = 1, . . . , z+,

[D+]ij = 〈ûz++i, L+ûz++j〉 = 〈ûz++i, vz++j〉, i, j = 1, . . . , z−.
(5.30)

The matrices D+ and D− are themselves used in constrained eigenvalue counts. Namely, if
D+ and D− are nondegenerate, then

n−(ΠL+Π) = P − n−(D+), n−(ΠL−Π) = Q− n−(D−), (5.31)

where Π is the orthogonal projection onto [ker(L−)⊕ ker(L+)]⊥ (see [KKS04, Lemma 3.1]).

Now noticing that the entries of M
(2)
λ0

are given by

[
M

(2)
λ0

]
ij

= −2〈v̂i, Suj〉 =


−2〈v̂i, uj〉, i, j = 1, . . . , z+

−2〈ûi, vj〉, i, j = z+ + 1, . . . , n,

0 elsewhere,

on account of (3.37) and (5.29), we are lead to the observation that

M
(2)
λ0

= 2

(
D− 0
0 −D+

)
. (5.32)
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Clearly M
(2)
λ0

is nonsingular if and only if D+ and D− are nonsingular. Under this condition,

in the notation of the current paper equation (3.9) from [KKS04] reads

n+(N) ≥ |n−(ΠL+Π)− n−(ΠL−Π)| = |P −Q− n−(D+) + n−(D−)|. (5.33)

Comparing (5.33) with (2.7), we might näıvely expect that c = n−(D+) − n−(D−). We
confirm this in the following proposition.

Proposition 5.11. If n ≤ 2 and M
(2)
λ0

is nondegenerate, then

c = n−(D+)− n−(D−). (5.34)

That is, the contribution to the Maslov index from the crossing (λ, s) = (0, 1) is precisely the
difference of the “correction factors” counting the mismatch in negative dimensions between
L± and their constrained counterparts (see (5.31)).

Proof. Recall the definition of b given in the proof of Proposition 4.15. By the same Propo-
sition, if n ≤ 2 we have

b = −n−(M
(2)
λ0

) = −
(
n−(D−) + n−(−D+)

)
, (5.35)

where the last equality follows from (5.32). Notice that D+ is a z− × z− matrix. Since D+

is nondegenerate, it follows that

n−(−D+) = z− − n−(D+). (5.36)

Thus, by (5.35),
b = −n−(D−)− (dim kerL− − n−(D+)), (5.37)

and using (4.58) and rearranging gives (5.34). �

A direct relationship between the matrices D± and the concavities of the eigenvalue curves
follows from Theorem 2.9, Lemma 3.16, Theorem 4.6 and equation (5.32). In particular, it
is straightforward to show that:

(i) If 0 ∈ Spec(L−)\ Spec(L+) then z+ = 0 and

signm
(2)
λ0

(q) = − signD+ = − sign s̈(0). (5.38a)

(ii) If 0 ∈ Spec(L+)\ Spec(L−) then z− = 0 and

signm
(2)
λ0

(q) = signD− = sign s̈(0). (5.38b)

(iii) If 0 ∈ Spec(L−) ∩ Spec(L+) then z− = z+ = 1 and

sign s̈1(0) = signD−, sign s̈2(0) = signD+ (5.38c)

(provided (4.26) holds so that sign s̈1(0) = − sign〈v̂1, u1〉 and sign s̈2(0) = sign〈û2, v2〉).

We finish the present work with an application of our results to a formula relating the
number of eigenvalues of JL that are either unstable or susceptible to instability-inducing
bifurcations, to the negative index of the constrained operator L|Xc , Xc := ran(JL), known
as the Hamiltonian–Krein index theorem (see [KP13, Theorem 7.1.5] or [LZ22, Theorem
2.3]). For the eigenvalue problem (2.1) – (2.3), because L is diagonal and the symplectic
matrix J is invertible, this formula reduces to that in [KKS04, Theorem 3.3], which in the
notation of the current paper reads

kr + 2kc + 2k−i = P +Q− n−(D−)− n−(D+). (5.39)

Here, kr := n+(N), kc is the number eigenvalues lying in the open first quadrant, and k−i
is the number of eigenvalues on the positive imaginary axis with negative Krein signature
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(see [KKS04]). Note that (5.39) holds provided D+ and D− are nonsingular (and since P,Q
and n are finite, where dim ker(JL) = 1

2 dim gker(JL) = n; see [KP13, §7.1.3] or [KKS04]
for details). In light of our earlier results, this leads to the following.

Proposition 5.12. Equation (5.39) may be written in one of the following equivalent forms:

kr + 2kc + 2k−i = −Mas(Λ,D; Γε3) + 2P − 2n−(D+), (5.40)

= Mas(Λ,D; Γε3) + 2Q− 2n−(D−). (5.41)

Proof. Using Proposition 5.11 and Lemma 3.22 we can rearrange (5.39) to read

kr + 2kc + 2k−i = Mas(Λ,D; Γε2) + c + 2P − 2n−(D+). (5.42)

Then (5.40) follows from (5.42) using (3.55). A similar manipulation yields

kr + 2kc + 2k−i = −Mas(Λ,D; Γε2)− c + 2Q− 2n−(D−), (5.43)

in which case (5.41) follows from (5.43) via (3.55). �

Corollary 5.13. If P = 0 or Q = 0, then kc = k−i = 0.

Proof. If P = 0, then by Lemma 5.2, we have kr = n+(N) = −Mas(Λ,D; Γε3). Furthermore,
if P = 0 then L+ is a nonnegative operator in L2(0, `), and in particular n−(D+) = 0.
Cancelling terms on both sides of (5.40), we get

2kc + 2k−i = 0, (5.44)

as required. Note we could have argued that kc = 0 using Lemma 5.1. The case Q = 0 is
similar: kr = n+(N) = Mas(Λ,D; Γε3) by Lemma 5.2, and we have L− ≥ 0 in L2(0, `). Thus
n−(D−) = 0, and (5.41) yields the result. �

In the case that L± are invertible, the previous result agrees with that given in [HK08,
Corollary 2.26], where the dimension of intersecting cones is zero because P = 0 or Q = 0.
The result for Q = 0 is a special case of the formula in [KKS04, Remark 3.1, Eq.(3.10)].

Corollary 5.14. If either kr = 0 or the Maslov index of the path λ → Λ(λ, 1), λ ∈
[ε, λ∞], 0 < ε� 1 is monotone in λ, then kc + k−i = Q− n−(D−) = P − n−(D+).

Proof. If kr = 0, the statement follows from (5.40) and (5.41) upon noticing that kr =
n+(N) = 0 implies Mas(Λ,D; Γε3) = 0 by (3.57).

Monotonicity of the Lagrangian path stated means that the crossing form (3.30) has the
same sign at all crossings along Γ3. In this case, kr = n+(N) = ±Mas(Λ,D; Γε3) and the
statement follows from (5.40) or (5.41). �

Remark 5.15. Monotonicity in λ is guaranteed if P = 0 or Q = 0. However, the Maslov
index is in general not monotone when P,Q ≥ 1, and attempts to compute the terms kc and
k−i in these cases using the formulas above have so far been limited.

We finish with a numerical example to illustrate the scenario in Corollary 5.14. In Fig. 8 we
have plotted the complex eigenvalue curves for s ∈ (0, 1] under Hypothesis 2.5(i), associated
with a Jacobi cnoidal function φ0 (see Fig. 1a) satisfying φ′0(0) = φ′0(`) = 0. Precisely,
the blue curves represent real eigenvalues, the red curves represent imaginary eigenvalues,
and the purple curves represent eigenvalues lying off the real and imaginary axes. It was
computed that the minimum point of each blue connected component (for which λ = 0)
corresponds to a point of nontrivial kernel for Ls+, while the maximum point of each such
component corresponds to a point of nontrivial kernel for Ls−. Note that by a simple rescaling
we can apply the formulas of the current section to the rescaled operators Ns, L

s
± for any
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s ∈ (0, 1]. Consider then a horizontal plane at s = s∗ ≈ 0.85 in Fig. 8, which coincides
with the maximum point of the top blue connected component. By the above considerations
and Lemma 3.19 applied to the interval (0, s∗) instead of (0, 1), we have P = n−(Ls∗+ ) = 3

and Q = n−(Ls∗− ) = 2. Since 0 ∈ Spec(Ls
∗
− )\ Spec(Ls

∗
+ ), D− is null (see (5.30)) and hence

n−(D−) = 0. Figure 8 clearly shows kr = 0 for s = s∗, and by Corollary 5.14 we deduce
that n−(D+) = 1 and kc + k−i = 2. (It was confirmed numerically that kc = 2.) A similar
analysis can be done for any of the minima or maxima of the blue connected components in
Fig. 8, or indeed for any horizontal plane which does not intersect the blue curves (for which
kr = 0).

(a) (b)

Figure 8. Real (blue), imaginary (red) and complex (purple) eigenvalue curves s2λ ∈
Spec(Ns) ∩ C, λ ∈ [−3, 3] × [−3i, 3i] ⊂ C, s ∈ (0, 1], under Hypothesis 2.5(i) for a T -
periodic stationary state φ0 with f(φ2) = φ2 satisfying φ′0(0) = φ′0(`) = 0, where ` = 2T =
13.3854. Here, φ0 is a Jacobi cnoidal function corresponding to an orbit located outside the
homoclinic orbit in Fig. 1a. Figures (a) and (b) give two different viewpoints of the same
curves. The eigenvalues were computed using Mathematica’s NDEigenvalues command.
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i Priložen., 1:1–14, 1967. 3, 10

[Arn85] V. I. Arnol’d. Sturm theorems and symplectic geometry. Funktsional. Anal. i Prilozhen., 19(4):1–
10, 95, 1985. 3



48 G. COX, M. CURRAN, Y. LATUSHKIN, R. MARANGELL

[BCC+22] T. Baird, P. Cornwell, G. Cox, C. K. R. T. Jones, and R. Marangell. Generalized Maslov indices
for non-Hamiltonian systems. SIAM J. Math. Anal., 54(2):1623–1668, 2022. 4

[BCJ+18] M. Beck, G. Cox, C. Jones, Y. Latushkin, K. McQuighan, and A. Sukhtayev. Instability of
pulses in gradient reaction-diffusion systems: a symplectic approach. Philos. Trans. Roy. Soc.
A, 376(2117):20170187, 20, 2018. 3

[BDN11] N. Bottman, B. Deconinck, and M. Nivala. Elliptic solutions of the defocusing NLS equation are
stable. J. Phys. A, 44(28):285201, 24, 2011. 4

[BJ95] A. Bose and C. K. R. T. Jones. Stability of the in-phase travelling wave solution in a pair of
coupled nerve fibers. Indiana Univ. Math. J., 44(1):189–220, 1995. 4

[Bot56] R. Bott. On the iteration of closed geodesics and the Sturm intersection theory. Comm. Pure Appl.
Math., 9(2):171–206, 1956. 3

[CDB09a] F. Chardard, F. Dias, and T. J. Bridges. Computing the Maslov index of solitary waves. I. Hamil-
tonian systems on a four-dimensional phase space. Phys. D, 238(18):1841–1867, 2009. 4

[CDB09b] F. Chardard, F. Dias, and T .J. Bridges. On the Maslov index of multi-pulse homoclinic orbits.
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465(2109):2897–2910, 2009. 4

[CDB11] F. Chardard, F. Dias, and T .J. Bridges. Computing the Maslov index of solitary waves, Part 2:
Phase space with dimension greater than four. Phys. D, 240(17):1334–1344, 2011. 4

[CH07] C.-N. Chen and X. Hu. Maslov index for homoclinic orbits of Hamiltonian systems. Ann. Inst. H.
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