
Contact singularities in nonstandard slow-fast dynamical systems

Ian Lizarraga, Robby Marangell, and Martin Wechselberger
School of Mathematics and Statistics, University of Sydney, Camperdown 2006, Australia

Abstract

We develop the contact singularity theory for singularly-perturbed (or ‘slow-fast’)
vector fields of the general form z′ = H(z, ε), z ∈ R

n and ε ≪ 1. Our main result
is the derivation of computable, coordinate-independent defining equations for contact
singularities under an assumption that the leading-order term of the vector field admits
a suitable factorization. This factorization can in turn be computed explicitly in a wide
variety of applications. We demonstrate these computable criteria by locating contact
folds and, for the first time, contact cusps in some nonstandard models of biochemical
oscillators.

1 Introduction

Classifying the loss of normal hyperbolicity of the critical manifold is a fundamental step in
the analysis of slow-fast dynamical systems. For systems in the so-called standard form1

x′ = εg(x, y, ε)

y′ = f(x, y, ε), (1)

the k-dimensional critical manifold lies inside the zero set of a smooth mapping f(x, y, 0) :
R

n → R
n−k. Loss of normal hyperbolicity occurs along points where the critical manifold

becomes tangent to the layer problem of (1), formally defined by the ε → 0 limit:

x′ = 0

y′ = f(x, y, 0). (2)

In the planar case x, y ∈ R, the solutions of the layer flow consist of trajectories lying within
vertical lines x = c (also known as fast fibers). In general, solutions of the layer flow lie in
hyperplanes orthogonal to the coordinate axes of the slow variable x ∈ R

k.

Of particular interest is the loss of normal hyperbolicity associated with a geometric ‘fold’
structure in phase space where the layer flow has a tangency with the critical manifold, which
allows switching between slow and fast motion as observed in, e.g., relaxation oscillations.
The defining equations for an isolated fold point F ∈ S in the planar, standard slow-fast
system (1) are well-known (see for eg. Sec. 8.1 in [19]):

f |F = 0 , Dyf |F = 0,

Dyyf |F 6= 0, Dxf |F 6= 0.

1Throughout the paper we use prime notation ′ = d/dt to denote derivates with respect to the (fast) time
variable t and the notation Dv to denote partial derivatives with respect to phase space variables v.
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The geometric content of the first three conditions (on the derivatives with respect to y)
is that the critical manifold of equilibria lying inside the zero set {f(x, y, 0) = 0} makes
parabolic contact with the vertical layer flow at F , whereas the role of the final transversal-
ity condition can be deduced from the classical singularity theory of the generic fold map
f(α, x) = α + x2 (see for eg. [20]): the slow variable x plays the role of the unfolding pa-
rameter.

Takens [36–38] began the classification of singularities of low codimension from the point of
view of constrained differential equations, corresponding to the ε = 0 limit of the equivalent
slow standard system

ẋ = g(x, y, ε)

εẏ = f(x, y, ε),
(3)

known as the reduced problem in the geometric singular perturbation theory (GSPT) litera-
ture. Here, the dot notation ˙ = d/dτ denotes the derivative with respect to the slow time
τ = εt. Since then, much work has been done to extend this local analysis for 0 < ε ≪ 1,
in the case where the slow variables x ∈ R

k play the role of unfolding parameters for folds
[4, 18, 34, 35, 40] and cusps [5, 15]. In a complementary direction, the theory of bifurcations
without parameters [21] has recently been developed to describe classical bifurcations in terms
of breakdown of normal hyperbolicity of manifolds of equilibria.

The purpose of this work is to provide a more general classification of loss of normal hyper-
bolicity of the critical manifold for the larger class

z′ = H(z, ε) (4)

of nonstandard multiple-timescale systems, by making use of a suitably general analogue of
the classical singularity theory. The system (4) defines a singular perturbation problem if
the set of equilibria of the corresponding layer problem

z′ = H(z, 0) (5)

contains a differentiable manifold S, which we refer to as the critical manifold of (4). The
relationship between Eqs. (1) and (4) is that coordinate transformations placing (4) in the
form (1) are defined only locally; in other words, there is in general no globally defined
coordinate splitting into ‘slow’ versus ‘fast’ directions. As in the standard case, solutions
of the layer problem determine the leading order fast motion relative to S; however, these
solutions are no longer ‘unidirectional’; i.e., they are no longer restricted to lie in hyperplanes
orthogonal to a set of distinguished ‘slow’ coordinate axes, but rather are allowed to bend
and curve throughout the phase space.

To illuminate the new complication, consider the following planar system:

(
x′

y′

)

=

(
x3 − 2x2 + xy − x− 2y + 2

y + x2 − 1

)

+ ε

(
G1(x, y, ε)
G2(x, y, ε)

)

(6)
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where G1, G2 are smooth functions in their arguments. System (6) is of the form (4) with
z = (x, y). The corresponding layer problem (5) can be factorised:

(
x′

y′

)

=

(
x3 − 2x2 + xy − x− 2y + 2

y + x2 − 1

)

(7)

=

(
(y + x2 − 1)(x− 2)

y + x2 − 1

)

=

(
x− 2
1

)

(y + x2 − 1) = N(x, y)f(x, y).

Important geometric content about the solutions of (7) is encoded in this factorisation. For
example, since N(x, y) is everywhere nonzero, the critical manifold can be read off from
f(x, y):

S = {(x, y) ∈ R
2 : f(x, y) = 0} = {(x, y) ∈ R

2 : y = 1− x2}. (8)

Away from S, we can formally rescale time by the scalar function f(x, y) in (7) to obtain a
desingularised layer problem:

(
x′

y′

)

= N(x, y) =

(
x− 2
1

)

. (9)

Remark 1. The supports of (7) and (9) are identical, but the solution curves of (9) are regular
owing to the removal of the singularity set {f = 0}. Away from this set, the trajectories of
the two systems are identical up to time rescalings and possible orientation reversals due to
sign changes of f .

At each point (x, y) ∈ S, the tangent space of a (regular) solution curve of (9) at (x, y) is
spanned by the nonzero vector N(x, y). The corresponding time-rescaled solutions of (7)
must therefore approach S tangent to N(x, y). In Fig. 1 we overlay the critical manifold
with solution curves of (9).

Remark 2. The fast fibers of (9) can be calculated explicitly here and are given by a family
of curves y = ln |x− 2|+ C (for x 6= 2) and x = 2.

The novelty is that the geometric ‘fold’ point of the critical manifold (8) at (0, 1) does not
correspond to a tangency of the critical manifold with the layer flow! In contrast to the
standard theory, there is no longer any correlation between geometric folds of the critical
manifold and tangencies with the layer flow.
On the other hand, there appears to be ‘fold-like’ behavior with S at two points. Evidently,
the layer solutions approach S in a tangent direction precisely when N lies in the kernel of
Df :

DfN |S = 0

2x(x− 2) + 1 = 0

⇒ x =
1

2
(2±

√
2).
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Figure 1: Critical manifold (dashed black curve) S = {(x, y) : y = 1 − x2} of system (6)
together with trajectories of the desingularised layer problem (9) (blue curves). Red line
segments denote portions of the tangent spaces of the desingularised layer trajectories at
basepoints along S. Tangencies of the layer solutions with the critical manifold are labeled
with black points.

The geometric constraint DfN |S = 0 immediately generalises one of the classical fold con-
ditions

Dyf(0, 0, 0) = 0

in (3). Indeed, note that N =

(
0
1

)

for planar systems in the standard form, and thus

DfN =
(
Dxf Dyf

)
(
0
1

)

= Dyf.

This computation suggests that the analogous second-order nondegeneracy criterion gener-
alizing

Dyyf(0, 0, 0) 6= 0

will likely involve second derivatives of f , measuring curvature of the critical manifold, as
well as derivatives of N , measuring the curvature of the fibers. These extra contributions
make higher-order degeneracies harder to identify.
The fold points identified in Fig. 1 are contact points of order one, for which defining equa-
tions and genericity conditions have recently been computed [41]. These results explicitly
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use the factorisation

z′ = N(z)f(z) (10)

of the layer problem. Such factorisations are natural in many applications, including chemical
reaction networks [32,33]. Motivated by these reaction network models, Goeke and Walcher
[9] have recently adapted algorithms from computational algebraic geometry to explicitly
construct such factorisations (locally) in the case of rational vector fields.

The present paper has two goals. The first is to develop the contact singularity theory for
slow-fast systems, giving a firm theoretical foundation for the computations in [41]. Mather
introduced the general notion of contact singularities between equidimensional manifolds in
[23], but here we adopt the extended development of Montaldi’s PhD thesis [24–26]. The
basic objects of study in Montaldi’s framework are contact maps between smooth manifolds
of not necessarily equal dimension. A key result of the present paper is the establishment
of a rigorous relationship between these computations and the singularity classes of the
contact map between the fast fibers and the slow manifold. In fact, for the case considered
in this paper where the fast fibers make contact with the critical manifold along a (one-
dimensional) curve, the singularity classes turn out to be the well-known Ac singularities
[12]. The nondegeneracy condition for the Ac singularity of the contact map is then identical
to the corresponding codimension-k folded singularity nondegeneracy condition, up to a
trivial projection along the center flow.

Remark 3. These are typically referred to as “Ak” singularities in the literature, but we use
the variable c to avoid confusion with the dimension k of the critical manifold.

The second goal is to extend the results for defining equations of the contact fold in [41]. In
the present paper we give coordinate-independent defining equations for slow unfoldings of
contact points of arbitrary order. We also identify contact cusps in two nonstandard models
of biochemical oscillators.

The present paper proceeds as follows: In Section 2, we give an account of multiple-timescale
systems having a nonstandard slow-fast splitting. In Section 3, we give a rigorous definition
of contact between a one-dimensional manifold and a k-dimensional manifold in Rn, where
1 ≤ k < n, culminating in a full description of both the singularity classes and computable
defining equations for contact folds and cusps. In Section 4, we locate contact folds and
cusps in several three-dimensional examples. We first test our results on standard slow-
fast systems, and then we consider two nonstandard models of biochemical oscillators with
negative feedback loops: a minimal three-component model, and a mitotic oscillator model.
In both cases, we demonstrate the existence of contact cusps previously not shown. We
conclude in Sec. 5.
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2 Multiple-timescale dynamical systems

2.1 The nonstandard formulation

We begin by giving an abbreviated treatment of nonstandard multiple-timescale dynamical
systems, following Fenichel’s seminal work on geometric singular perturbation theory [7], and
Wechselberger’s more recent treatment [41] which extends the framework to loss of normal
hyperbolicity. Consider the family of vector fields (4), formally expanded in ε:

z′ = h(z) + εG(z, ε). (11)

Definition 1. The family of vector fields (11) is called a singular perturbation problem if the
set of equilibria {z ∈ Rn : h(z) = 0} contains a k-dimensional differentiable manifold for
some 1 ≤ k < n.

Our first assumption restricts the geometry of this equilibrium set.

Assumption 1. The system (11) is a singular perturbation problem with a single subset
S ⊂ {z ∈ R

n : h(z) = 0} that forms a connected k-dimensional differentiable manifold,
called the critical manifold.

Definition 2. Given a singular perturbation problem (11), the corresponding singular limit
system

z′ = H(z, 0) = h(z) (12)

is called the layer problem of (11).

For convenience we distinguish two subsets in the spectrum of Dh.

Definition 3. The trivial eigenvalues of the layer problem at z ∈ S are the k zero eigenvalues
of Dh(z) corresponding to the dimension of the tangent space TzS. The remaining n − k
eigenvalues along S are called nontrivial.

Note that a nontrivial eigenvalue can be equal to zero.

Definition 4. The set Sn ⊂ S denotes the subset where all nontrivial eigenvalues of Dh
evaluated along Sn are nonzero.

Along the set Sn, we may construct a pointwise-defined splitting of the tangent bundle along
z ∈ Sn:

TzR
n = TzS ⊕Nz, (13)

where Nz is called the linear fast fiber at basepoint z ∈ Sn identified with the quotient space
TzR

n/TzS. We may define the tangent bundle of S via the construction

TS = ∪z∈Sn
TzS.

The corresponding bundle

N = ∪z∈Sn
Nz
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is called the (linear) fast fiber bundle.

Along Sn, we may define a projection operator

ΠS : TS ⊕N → TS.

Given a point z ∈ Sn, the map ΠS|z∈Sn
can be characterised geometrically as an oblique

projection onto TzS along parallel translates of the fast fiber Nz (see [22, 41]).

The layer flow near S defines a locally invariant fast foliation F of the layer problem in
a tubular neighborhood of S. The neighbourhood near a point of a k-dimensional critical
manifold can be characterised geometrically as being foliated by regular level sets of k smooth
functions (see [41] for details). In the case k = n− 1, the tubular neighbourhood is foliated
by the regular solution curves of a desingularised layer flow. We discuss this further in Sec.
3.2.
Next, we assume a factorization of h which captures the essential geometries of the slow and
fast structures near to the critical manifold:

Assumption 2. The function h(z) can be factorised as follows:

h(z) = N(z)f(z), (14)

where the ith column of the n× (n− k) matrix function N(z), Ni = (N1
i · · · Nn

i )
T consists

of smooth functions Nk
i : Rn → R. Assume that N(z) has full column rank n − k for each

z ∈ S, and furthermore that singularities of N(z)f(z) for z /∈ S are isolated, if they exist. We
furthermore assume that the critical manifold S is equal to the zero level set of a submersion
f : Rn → Rn−k:

S = f−1(0).

Remark 4. The question of existence and uniqueness of factorizations of the form (14) for
a singularly perturbed system of the general form (11) has only partial answers. Local
factorizations can be constructed explicitly in the case the h(z) is a rational vector field in
z [9]. This includes a large variety of applied problems– notably, many chemical reaction
networks can be modeled in this framework [32, 33]. In practice, these local factorizations
can often be shown a posteriori to hold over large open sets of the phase space.

The following two results immediately demonstrate the usefulness of this factorization:

Lemma 1. For z ∈ Sn, the column vectors of N(z) form a basis for the range of Dh(z) and
the transposes of the row vectors of Df(z) form a basis of the orthogonal complement of the
kernel of Dh(z) (i.e. a basis of the orthogonal complement of the tangent space TzS).

Lemma 2. The nontrivial eigenvalues of the layer problem of (11) along S are equal as a
set to the eigenvalues of DfN |S.

Proofs. See [22, 41].
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2.2 The contact set

We are concerned with studying the subset S − Sn, where the local tangent splittings (13)
break down due to the alignment of the fast fiber bundle with the critical manifold along a
one-dimensional subspace.

Definition 5. The contact set F ⊂ S − Sn is the set of points z0 ∈ S − Sn where exactly one
nontrivial real eigenvalue of Dh(z0) (see Def. 3) vanishes.

From Lemmas 1–2 we have the following characterization of the contact set:

F = {z ∈ S : rank(DfN) = n− k − 1}. (15)

Since DfN is a matrix of size (n− k)× (n− k), a necessary condition is

det(DfN)|S = 0. (16)

Assumption 3. The contact set F is nonempty.

Geometrically, F is the set of points where a one-dimensional subspace of the fast fiber
bundle locally aligns with the tangent space of S. In this setting it is straightforward to
deduce the direction of tangency.

Lemma 3. For z0 ∈ F , let r ∈ Rn−k be any nontrivial column of adj(Df(z0)N(z0)), the
adjugate of DfN at the contact point. Then the contact direction at z0 is N(z0)r.

Proof. See [41].

Remark 5. We may also construct local projections onto the contact direction by selecting
a nonzero row l of adj(DfN). Note that if rank(DfN) < n− k − 1, then adj(DfN) = 0, so
these results are not generalizable to the case of higher-dimensional tangencies of the fast
fibers with the critical manifold.

3 Contact between submanifolds of Rn

Our primary goal is to classify points in the contact set F according to their singularity type.
To do this, we must rigorously define a notion of contact between two submanifolds of Rn.
We follow the development of Izumiya et. al. [14].
We begin with the most elementary setting: contact between two smooth regular curves
α(t) and β(t) in R2 sharing a common point α(0) = β(0) = z0. One candidate definition of
contact order is as follows:

Definition 6. The curves α and β make contact of order c at z0 if

α(i)(0) = β(i)(0) for i = 0, · · · , c
α(c+1)(0) 6= β(c+1)(0).

We will instead use a slightly different, though equivalent, notion of contact for two curves in
the plane which turns out to be more natural for our setting. We are ultimately concerned
with contact between the fast fibers and the critical manifold of system (11), where the
critical manifold is defined as the level set of a submersion. This motivates the following
definition, where we assume that one of the curves lies inside the zero level set of a smooth
function.
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Definition 7. Let α, β : R → R
2 define two regular curves so that the image of β is equal to

the zero set of a smooth function F : R2 → R and α(0) = β(0). Note that (F ◦ α) : R → R.
We say that α and β have contact of order c at t = 0 if

(F ◦ α)(i)(0) = 0 for i = 0, · · · , c
(F ◦ α)(c+1)(0) 6= 0.

Example: contact of order one between curves.
Suppose α(t) and β(t) have contact of order 1, with F as in Def. 7. Then

F (α(0)) = 0

DF (α(0))α′(0) = 0

D2F (α′(0), α′(0)) +DF (α(0))α′′(0) 6= 0.

The first condition specifies that the contact point α(0) lies in the zero set of F (i.e. on the
curve β). The second condition specifies that the tangent vector α′(0) of α at the contact
point lies inside the tangent space of the curve β, given by ker DF , at the contact point.

To compare the third condition, first observe that β(t) lies inside the zero level set of F by
construction, and thus F (β(t)) = 0 over an interval of t. Differentiating both sides twice
and evaluating the result at t = 0, we obtain the identity

D2F (β ′(0), β ′(0)) = −DF (β(0))β ′′(0).

Using this identity, α(0) = β(0), and α′(0) = β ′(0) in the third condition, we have

DF (β(0))(α′′(0)− β ′′(0)) 6= 0,

and thus

α′′(0) 6= β ′′(0).

Similar computations can be used to demonstrate the equivalence of these two definitions of
contact at higher orders.

Our definition of contact is well-defined with respect to smooth reparametrizations of α(t)
and β(t). Less obvious technical issues that must be resolved are that (i) contact of a par-
ticular order should not depend on a particular choice of function F , and (ii) the notion of
contact is inherently local, so the domains of α and F should not matter outside of small
neighborhoods of the contact point z0.

Remark 6. These issues motivate the use of germs of smooth functions and jet spaces, which
are the natural objects that we will use to define contact in the general case. We give a
broad description of these terms, and relegate proper definitions to the Appendix (A). Fix
a basepoint z0 ∈ R

n. The germ of a function f at z0 is defined from the equivalence class
of all smooth functions g : Rn → Rm that are equal to f on a common neighborhood of
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z0. The collection of germs has the structure of a ring in the space of smooth functions.
We may define the k-jet space at z0, denoted Jk(n,m), by taking a quotient of this ring by
the ideal of all germs that vanish to order k. The k-jet space may be identified with the
set of polynomials of total degree less than or equal to k. The k-jet of a germ f , denoted
Jkf , is, roughly speaking, the element of Jk(n,m) that may be identified with the truncated
Taylor polynomial of order k under some suitable local coordinate transformation. The
natural advantage of using k-jets is that contact can be defined in a coordinate-independent
manner.

We now rigorously define contact between two submanifolds of Rn, following the treatment
of Montaldi [24–26] and the presentation of Izumiya et. al. [14]. The first step is to define
a suitable generalization of contact order.

Definition 8. Suppose (M1, N1) and (M2, N2) are two pairs of submanifolds of Rn with
dim(Mi) = m and dim(Ni) = d. We say that the contact of M1 and N1 at y1 is of the same
type as the contact of M2 and N2 at y2 if there is a germ of a diffeomorphism Φ : (Rn, y1) →
(Rn, y2) so that Φ(M1) = M2 and Φ(N1) = N2.

Our objective is to relate this ‘generalized contact order’ to a generalized version of the map
F ◦ α in Def. 7 in a suitable setting. We have

Definition 9. Suppose that a submanifold M ⊂ Rn is given locally as the image of some
immersion-germ g : (M,x) → (Rn, 0) and another submanifold N ⊂ Rn is given by the zero
set of some submersion-germ f : (Rn, 0) → (Rk, 0). The contact map of M and N near x is
the germ of the composite map f ◦ g near x.

This definition should be compared with Def. 7. The regular curve α defines an immersion
in small neighborhoods of the contact point.

Remark 7. For contact between a k-dimensional submanifoldM and a regular (1-dimensional)
curve α, Wechselberger uses a more general version of Def. 6 in [41]. It is much less straight-
forward to compute the contact order using that definition, especially for contact of order
larger than one. In the next section we will show how Def. 9 can be used to give a definition
of contact order which is easier to compute. The equivalence of these two definitions follows
from the characterization of the tangent space via equivalence classes of curves.

Remark 8. For submanifolds of equal dimension, analogous definitions of contact have been
used to study contact between locally defined center manifolds [39], between center manifolds
and center subspaces [27], and to define jet bundles [31].

We now present two important results.

Lemma 4. For any pair of submanifolds in Rn, the contact class of the contact map de-
pends only on the submanifold-germs themselves and not on the choice of submersion and
immersion germs (and therefore not on the contact map).

Proof. See [25] or Lemmas 4.1 and 4.2 in [14].

This lemma ensures that ‘the’ contact map-germ of two submanifolds is well-defined. The
contact class of a smooth germ is the equivalence class of all germs whose zero sets are
diffeomorphic (the complete definition is given in the appendix).
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Theorem 1. Suppose g1, g2 : M1,2 → R
n are immersion-germs and f1, f2 : Rn → R

k are
submersion-germs (with N1,2 = f−1

1,2 (0)). Then the pairs (M1, N1) and (M2, N2) have the
same contact type iff f1 ◦ g1 and f2 ◦ g2 lie in the same contact class.

Proof. See [25] or Theorem 4.1 in [14].

This result provides the required connection to classical singularity theory: the contact class
of a pair of submanifolds is completely determined by the singularities of the contact map
between them.

3.1 Ac contact singularities and their unfoldings

We are finally in a position to consider the main setting of this paper: the contact of a curve
α : R → Rn with a submanifold given by the zero set of a submersion f : Rn → Rn−k (with
1 ≤ k < n). The contact map is f ◦ α : R → R

n−k.

By Theorem 1, the contact type is well-defined by the contact class of f ◦α. We are interested
in stable maps with respect to the contact class, i.e equivalence classes of maps which have
versal unfoldings of finite codimension (see [14] Section 3.8 for complete definitions of stable
maps and versal unfoldings and Theorem 3.9 for the relationship between these two notions).
The maps h : R → Rd≥1 which are stable with respect to the contact class are the well-
understood and classified Ac singularities (see for eg. [12, 14]).

Definition 10. (See Sec. 11.1 of [12]) A critical point p of a smooth function f : Rn → R is
of type Ac if f is locally equivalent near p to xc+1

1 + x2
2 + · · ·+ x2

n.

Stable maps are finitely-determined [23], so each stable map is contact-equivalent (see Def.
17 in the Appendix) to the germ of a map h̃(t) = (tc+1, 0, · · · , 0) for some constant c. In this
way we readily obtain a suitable analogue of the Ac singularity classes for contact equivalence:

Definition 11. A smooth map h : R → Rn−k has an Ac singularity if it is contact-equivalent
to h̃(t) = (tc+1, 0, · · · , 0). The derivative conditions for an Ac singularity are

h(i)(0) = 0 for i = 0, · · · , c
h(c+1) 6= 0.

Definition 12. If h = f ◦ α is a contact map between a k-dimensional submanifold given
by the zero set of a submersion f : Rn → Rn−k and a curve α : R → Rn, we say that the
submanifold and the curve make contact of order c at z0 if h admits an Ac-singularity at z0.

We demonstrate the computability of Def. 12 with an example. Let α(t) : R → Rn be a
curve in Rn and let M be a k-dimensional submanifold in Rn given by the zero level set of
a submersion: M = f−1(0). Let α(0) = z0 ∈ M denote a contact point between α and M .
By Def. 12, α makes contact of order 2 with M at z0 if

(f ◦ α)(0) = 0

(f ◦ α)′(0) = 0

(f ◦ α)′′(0) = 0

(f ◦ α)′′′(0) 6= 0.
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These derivatives may be evaluated using repeated applications of the chain rule:

Df(z0)α
′(0) = 0

D2f(α′(0), α′(0)) +Dfα′′(0) = 0

D3f(α′(0), α′(0), α′(0)) + 3D2f(α′(0), α′′(0)) +Dfα′′′(0) 6= 0.

Note the geometric content of the first condition Df(z0)α
′(0) = 0: the tangent vector of α

lies precisely inside the tangent space of M at the contact point.

Remark 9. Multilinear maps. We remind the reader of the standard notation and evaluation
of multilinear maps L : Rn1 × · · · × Rnk → Rnd:

L(v1, · · · , vk)j =

nk∑

lk=1

· · ·
n1∑

l1=1

Ll1,··· ,lk,jv1,l1 · · · vk,lk for j = 1, · · · , nd.

For example,

(D2f(α′(0), α′(0)))i =

n∑

j,k=1

∂2fi
∂xj∂xk

α′
j(0)α

′
k(0) for i = 1, · · · , n− k.

3.2 Computing the contact order

At points in z0 ∈ F , the center manifold theorem provides local families of one-dimensional
center manifolds W c(z0) of the layer problem all tangent to the contact direction Nr at the
basepoint z0. We may thus define regular curves passing through z0 with nonzero speed.
Our goal is to evaluate the derivatives of a given curve segment α(t) at α(0) = z0, in terms
of derivatives of N and f .

The subcase dimS = n− 1.

The factorization h0(z) = N(z)f(z) consists of the term N(z) of size n × 1 and the scalar
function f(z). Let z0 ∈ F and let Bz0 denote an open ball centered at z0 such that N(z)
is nonzero for all z ∈ Bz0 and f(z) 6= 0 for all z ∈ Bz0 − S. For points z ∈ Bz0 − S, the
vector field is a nonzero multiple of the vector field N(z). Solutions of the desingularized
layer problem

z′ = N(z) (17)

defined in Bc consist of regular curves. In particular, each such curve crosses S with nonzero
speed. Away from S, the tangent vectors of the solution curves are aligned with the original
vector field h0 everywhere (possibly with a change in orientation).

In the codimension-1 case it is straightforward to compute high-order derivatives of solution
curves of (17). Let α(t) denote a solution curve of (17) with the property that α(0) = z0 ∈ S.
Then

12
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α′(0) = N(z0)

α′′(0) = DN(z0)N(z0)

α′′′(0) = D2N(z0)(N(z0), N(z0)) +DN(z0)DN(z0)N(z0),

etc. For example, if z0 ∈ F , then α′(0) = N(z0) 6= 0, whereas (f ◦α)′(0) = Df(z0)N(z0) = 0,
giving contact order of at least one—as expected.

The general case 1 ≤ dimS ≤ n− 1.

The technique of desingularising the layer problem does not generalise to the case dimS <
n − 1 since f is no longer a scalar function— the components fi(α(t)) grow and shrink
independently along a curve α(t) lying in the center manifold. We sidestep this technical
issue by first making a local coordinate transformation which straightens the fibers locally.

Lemma 5. In the following, we evaluate all quantities at z0 ∈ F . Recall that r is a right
nullvector of Df(z0)N(z0).The defining equations for contact of order-one between the fast
fiber bundle and the critical manifold are

DfNr = 0

D2f(Nr,Nr) +DfDN(Nr, r) 6= 0.

The defining equations for contact of order-two between the fast fiber bundle and the critical
manifold are

DfNr = 0

D2f(Nr,Nr) +DfDN(Nr, r) = 0

D3f(Nr,Nr,Nr) + 3D2f(Nr,DN(Nr, r))+

Df(D2N(Nr,Nr, r) +DN(DN(Nr, r), r)) 6= 0.

Generally, the defining equations for contact of order-c at a point z0 ∈ F are

∇j
Nrf |z0 = 0 for j = 0, · · · , c

∇c+1
Nr f |z0 6= 0,

where ∇Nr denotes the directional derivative in the direction Nr.

Proof. There exists a local coordinate transformation u = L(z) which places the system (11)
in standard form by straightening the fibers, with local coordinates (u, y) (see [7], [41] for
the full treatment, or [16] for the straightening step beginning with the system in standard
form). If we let x = M(u, y) denote the local inverse of L, we have

(
u′

y′

)

=

(
Ok,n−k

Ny(M(u, y), y)

)

f(M(u, y), y)

=

(
Ok,n−k

In−k,n−k

)

f̃(u, y).

13
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Here, u ∈ R
k is the local slow variable and y ∈ R

n−k is the local fast variable, so that z0
is placed at (u, y) = (0, 0). The direction of contact can be made explicit through another
change of variable

y = Nyrv +NyPw,

where P is an (n− k)× (n− k− 1) matrix chosen so that Col
(
r P

)
provides a basis of Rk.

Let l and Q satisfy the identity

(
l
Q

)
(
r P

)
= In−k,n−k.

Let r̃ = Nyr and P̃ = NyP . After these two coordinate transformations, we have





u′

v′

w′



 =





Ok,n−k

lf(M(u, r̃v + P̃w), r̃v + P̃w)

Qf(M(u, r̃v + P̃w), r̃v + P̃w)





=

(
Ok,n−k

In−k,n−k

)(
lf(M(u, r̃v + P̃w), r̃v + P̃w)

Qf(M(u, r̃v + P̃w), r̃v + P̃w)

)

=

(
Ok,n−k

In−k,n−k

)

f̃(u, v, w),

where by slight abuse of notation we use f̃ again to denote the second factor. We observe that
in particular the one-dimensional center manifold has been locally straightened, containing
the regular curve

α̃(t) =





Ok,1

1
On−k−1,1



 t.

The straightening transformations simultaneously deform the critical manifold locally, re-
flected in the transformation from f to f̃ . The key point is that this sequence of coordinate
transformations preserves the contact order (by Theorem 1).

It remains to compute the defining equations for the Ac singularity classes of the deformed
contact map f̃ ◦ α̃. Observe that

(f̃ ◦ α̃)(0) = 0

(f̃ ◦ α̃)(k)(0) = D(k)f̃(0)(α̃′(0), · · · , α̃′(0))

= Dv · · · v
︸ ︷︷ ︸
k times

f̃(0)

14
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since α̃(k)(0) = 0 for k ≥ 2, and the subscript in the last line denotes that the partial
derivative is taken k times with respect to the center variable v. We compute the first two
derivatives of the contact map. We have

Dvf̃(M(u, r̃v + P̃w), r̃v + P̃w) =

(
l
Q

)

DxfDyMr̃ +Dyf r̃

=

(
l
Q

)

(DxfNx(N
y)−1 +Dyf)r̃

=

(
l
Q

)

(DxfNx +DyfN
y)(Ny)−1Nyr

=

(
l
Q

)

DfNr.

Generally, for any differentiable function

ζ = ζ(M(u, r̃v + P̃w), r̃v + P̃w),

we have

Dvζ = DζNr.

This rule can be used to generate derivatives of arbitrary order. We have for instance the
second-order derivative

Dvvf̃(M(u, r̃v + P̃w), r̃v + P̃w) =

(
l
Q

)

(D2f(Nr,Nr) +DfDN(Nr, r)),

the third-order derivative

Dvvv f̃(M(u, r̃v + P̃w), r̃v + P̃w) =

(
l
Q

)

(D3f(Nr,Nr,Nr) + 3D2f(Nr,DN(Nr, r)) +

Df(D2N(Nr,Nr, r) +DN(DN(Nr, r), r))),

and so on. The matrix

(
l
Q

)

stores the dual basis, and therefore does not affect the corre-

sponding (non)zero conditions in the associated defining equations.

To prove the final statement of the lemma, recall the definition of the directional derivative:
for a test function ξ, we have

∇Nrξ = Dξ(Nr).

The proof follows by repeated applications of the chain rule. �

We emphasize that a straightening transformation is not required to check the conditions of
Lemma 5; it is only used as an ingredient in the proof. The straightening transformation

15
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in the lemma above has been used to compute an unfolding of contact points of order-one,
with the slow variables unfolding the contact point [41]. The promised identification of the
nondegeneracy condition for the Ac singularity of the contact map, and the corresponding
codimension-c folded singularity nondegeneracy condition, is now established, up to a trivial
projection along the center flow.

3.3 Slow unfoldings of contact singularities; contact folds

From the point of view of geometric singular perturbation theory, the dynamical relevance of
loss of normal hyperbolicity of the critical manifold is only manifested when the unfoldings
occur under local variation of the slow variables. For example, for the case of standard
slow-fast systems (1) satisfying the fold conditions (3) plus an additional ‘slow dynamics
transversality’ condition g(0, 0, 0) 6= 0, there exists [18] a smooth, local coordinate change
φ(x, y) = (ξ, η) in which (1) is given by

dξ

dt
= η + ξ2 +O(ξ2, ξη, η2, ε)

dη

dt
= ε(±1 +O(ξ, η, ε)).

Slow unfoldings of folded nodes admit scenarios where the slow flow may cross fold points
transversely. This is the basic ingredient in constructing persistent nontrivial connections
between attracting and repelling slow manifolds.

Remark 10. The analysis of normal forms of folded nodes has been extended to higher
dimensions. In the n = 3 case of two slow variables and one fast variable, a suitable time-
rescaling of the layer problem can be recast as a Riccati equation to leading order [35].
Remarkably, this observation holds for the k-slow m-fast case (with k ≥ 2 and m ≥ 1) as
well, allowing the theory developed in R3 to be extended to arbitrary dimensions [40].

We now consider computable criteria for such restricted unfoldings in the more general case
of contact singularities.

Definition 13. Assume (11) admits a contact point z0 ∈ F . We say that z0 is a contact fold
if it is a contact point of order one that admits a versal (codimension-one) unfolding under
local variation of the slow variables.

The question is how to write down coordinate-independent defining equations for contact
folds without having to compute explicit local coordinate changes everywhere along the
critical manifold. The first main result of our paper is proven by following a similar procedure
to that of Lemma 5: we apply a local coordinate transformation of (11) in which local slow
variables may be identified and extract a geometric condition from the transformed system.

Lemma 6. Defining equations for a contact fold at z0 ∈ F are:

(a) rank(Df(z0)) = n− k

(b) l(D2f(Nr,Nr) +DfDN(Nr, r))|z0 6= 0,
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where l, r are nonzero left and right nullvectors of Df(z0)N(z0).

Proof. The first local regularity condition is satisfied immediately when f is a submersion.
We follow the proof given in [41] to compute the defining equation. From the proof of Lemma
5 we recall the transformed vector field with locally straightened fibers





u′

v′

w′



 =





Ok,1

l̃

Q̃



 f̃(u, r̃v + P̃w)

=





Ok,1

l
Q



 f(M(u, r̃v + P̃w), r̃v + P̃w), (18)

where (u, v, w) ∈ Rk × R× Rn−k−1.

The Jacobian J̃ = Dh̃0 along S is given by

J̃ |S =





Ok,k Ok,1 Ok,n−k−1

lDxf(DxL)
−1 lDfNr lDfNP

QDxf(DxL)
−1 QDfNr QDfNP



 .

On F , the (2,2), (3,2), and (2, 3) (block) entries are further annihilated because l and r are
precisely the nullvectors of DfN on the set F of contact points of S:

J̃ |F =





Ok,k Ok,1 Ok,n−k−1

lDxf(DxL)
−1 O1,1 O1,n−k−1

QDxf(DxL)
−1

On−k−1,1 QDfNP



 .

Near F we expand the right-hand side of the (one-dimensional) v′ equation. We have

v′ = l̃f̃(u, r̃v + P̃w)

= lf(M(u, r̃v + P̃w), r̃v + P̃w)

= lDxf(DxL)
−1u+ l(D2f(Nr,Nr) +DfDN(Nr, r))v2 + · · · ,

where we ignore the remaining cross-terms of order two and the higher-order terms.

The coefficient of the vector-valued component u is lDxf(DxL)
−1 which is nontrivial since

rank Df(z0) = n − k. Thus lDxf(DxL)
−1u plays the role of an unfolding parameter, but

with the parameter axis lying along a nullvector of lDxf(DxL)
−1. �

3.4 Contact cusps

Definition 14. Assume (11) exhibits a contact point z0 ∈ F . We say that z0 is a contact cusp
if it is a contact point of order two that admits a versal (codimension-two) unfolding under
local variation of the slow variables.

17
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We recall the generic criteria for the unfolding of a cusp point [20]. Consider the smooth
vector field

ẋ = f(x, α1, α2), (19)

x, α1, α2 ∈ R, with an isolated equilibrium point at p = (x, α1, α2) = (0, 0, 0). Assume the
following:

• Dxf(p) = Dxx(p) = 0

• Nondegeneracy condition: Dxxxf(p) 6= 0

• Parameter transversality condition: det

(
Dα1f(p) Dα2f(p)
Dxα1f(p) Dxα2f(p)

)

6= 0.

Then we can find smooth invertible coordinate change in the extended phase space so that
the system (19) is transformed into

η̇ = β1 + β2η + η3 + O(η4).

These nondegeneracy and parameter transversality conditions can be expressed more com-
pactly by specifying instead that the map F : R3 → R3 defined by

F : (x, α1, α2) 7→ (f,Dxf,Dxxf)(x, α1, α2)

be regular at the cusp point.

Remark 11. In two-parameter families of n-dimensional flows ẋ = f(x, α1, α2) with x ∈ Rn,
the corresponding conditions for a cusp bifurcation are that Dxf has one simple zero eigen-
value and n− 1 eigenvalues with nonzero real part. Then there exist coordinate transforma-
tions locally placing the vector field in the normal form

u̇ = β1 + β2u± u3

ẏ = Ay,

where β1, β2 are parameters, (u, y) ∈ R × Rn−1 and A is an (n − 1) × (n − 1) hyperbolic
matrix [20].

We now state and prove the analogous result to Lemma 6 for contact cusps of nonstandard
slow-fast systems.

Lemma 7. The defining equation and genericity conditions for a contact cusp at z0 ∈ F
are:

(a) rank(Df(z0)) = n− k

(b) l(D2f(Nr,Nr) +DfDN(Nr, r))|z0 = 0

(c) l · (D3f(Nr,Nr,Nr) + 3D2f(DN(Nr, r), Nr)+
DfD2N(Nr,Nr, r) +DfDN(DN(Nr, r), r))|z0 6= 0

18
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(d) The 2× n matrix

C0(z0) =

(
lDf

l(D2f(Nr, I) +DfDN(r, I))

)∣
∣
∣
∣
z0

has full rank of 2.

Here, l and r denote nonzero left and right nullvectors of Df(z0)N(z0).

Remark 12. The multilinear maps in the final item of Lemma 7 are defined columnwise. For
example,

(D2f(Nr, I))j = D2f(Nr, ej) for j = 1, · · · , n,

where ej is the jth unit vector. The term DfDN(r, I) is also defined columnwise. The term
(D2f(Nr, I) +DfDN(r, I)) is therefore of size (n− k)× n.

Proof: The first local regularity condition is satisfied immediately when f is a submersion.
Taylor-expanding the right-hand side of the v′ equation (see Eq. (18)) near (u, v, w) =
(0, 0, 0), we have

(lf)(u, v, w) = (lf)(0, 0, 0) +D(lf)z +D2(lf)(z, z) + · · ·
= 0 +Du(lf)u+Dv(lf)v +Dw(lf)w + (Duv(lf)u+Dwv(lf)w)v +

1

2
Dvv(lf)v

2 +
1

6
Dvvv(lf)v

3 + · · · .

In our setting, we have Dv(lf) = 0 and Du(lf) 6= 0 on the set F . Using this expansion, we
can read off the defining equations for a cusp at a point z0 ∈ F :

(i) Dvv(lf)(z0) = 0.

(ii) Dvvv(lf)(z0) 6= 0.

(iii) The 2× k matrix

C(z) =

(
Du(lf)
Duv(lf)

)∣
∣
∣
∣
z

has full rank at the contact point: rank C(z0) = 2.

The third condition provides two unfolding directions lying along the critical manifold. Note
that we require k ≥ 2. For contact between the fast fiber bundle and the critical manifold
to be defined, we therefore require the system to be at least three-dimensional with a two-
dimensional critical manifold.

These three conditions should be compared to the standard defining equations of the stan-
dard generic cusp. In particular, the tangency direction v plays the role of the unfolding
variable x, and two linearly independent combinations of the remaining slow variables u1, u2
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play the role of the unfolding parameters α1, α2.

Evaluating the nondegeneracy condition.

Differentiate three times and use the chain rule:

lDvvv(f)|z0 = lDvv(DfNr)|z0
= lDv(D

2f(Nr,Nr) +DfDN(Nr, r))|z0
= l · (D3f(Nr,Nr,Nr) + 3D2f(DN(Nr, r), Nr) +

+Df(D2N(Nr,Nr, r) +DN(DN(Nr, r), r)))|z0.

Evaluating the transversality condition.

We have lDuf = lDxf(DxL)
−1 = lDf Î(DxL)

−1, where Î =

(
Ik,k

On−k,k

)

. Then

We have

rank(C(z0)) = rank

(
lDuf
lDuvf

)∣
∣
∣
∣
z0

= rank

(

lDf Î(DxL)
−1

lDu(DfNr)

)∣
∣
∣
∣
z0

= rank

(
lDf Î(DxL)

−1

l(D2f(Nr, Î(DxL)
−1) +DfDN(r, Î(DxL)

−1))

)∣
∣
∣
∣
z0

= rank

(
lDf

l(D2f(Nr, I) +DfDN(r, I))

)∣
∣
∣
∣
z0

= rank C0(z0),

where the penultimate line follows from right-factoring the n× k full-rank matrix Î(DxL)
−1

from both block rows of the original matrix. �

3.5 Slow unfoldings of contact points of arbitrary order

In this paper we focus on biochemical examples having contact folds and contact cusps, but
we can extend the arguments in the proof of Lemma 7 to derive defining equations for generic
unfoldings of contact singularities of arbitrary order.

Definition 15. Assume (11) exhibits a contact point z0 ∈ F of order c. The contact point
z0 is slow-generic if it admits a versal (codimension-c) unfolding under local variation of the
slow variables.

Lemma 8. The defining equations for a slow-generic contact singularity at z0 ∈ F of order
c are:

(a) rank(Df(z0)) = n− k
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(b)

l∇j
Nrf |z0 = 0 for j = 0, · · · , c

l∇c+1
Nr f |z0 6= 0,

(c) The c× n matrix

C0(z0) =






lD(∇0
Nrf)
...

lD(∇c−1
Nr f)






∣
∣
∣
∣
∣
∣
∣
z0

has rank equal to c.

Here, l and r denote nonzero left and right nullvectors of Df(z0)N(z0).

Proof: Part (a) follows immediately when f is a submersion. Part (b) follows from the
identical Taylor series expansion as that given in Lemma 7, where the derivative conditions
have been translated into directional derivatives using the final part of Lemma 5. Finally,
we compare the Taylor series to a versal unfolding

f(x, α1, · · · , αc) = xc+1 + α1x
c−1 + · · ·+ αc−1x+ αc

of the generic Ac singularity (see for eg. Part I Chapter 3 of [13]). The corresponding slow
unfolding parameters are chosen from linear combinations of the coefficients of the terms uvd

in the Taylor expansion (for 0 ≤ d ≤ c− 1). Therefore, we require that the c× k matrix

C(z) =







lDuf
...

lDuD v · · · v
︸ ︷︷ ︸

(c−1) times

f







∣
∣
∣
∣
∣
∣
∣
∣
z

have rank c at the contact point z0. Note that this implies that k ≥ c, i.e. we require at
least c slow variables for a generic slow unfolding of a contact singularity of order c. The
formula in part (c) follows by the identical right-factorisation argument used in Lemma 7.
�

4 Examples

We now use Lemmas 6 and 7 in a series of three-dimensional multiple-timescale systems
having a two-dimensional critical manifold, as described in the introduction.

4.1 Standard slow-fast systems.

4.1.1 The cusp normal form.

Consider the normal form of the singularly perturbed cusp in R3 in the standard case [5]:
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x′ = ε(1 +O(x, y, z, ε))

y′ = εO(x, y, z, ε)

z′ = (z3 + yz + x) +O(ε, xz, z4).

Here the slow variables are x, y and the fast variable is z. In terms of the Nf -splitting we
have the right-hand side of the layer problem given by

h = Nf =





0
0
1



 (x+ yz + z3).

We check the conditions for a contact cusp. We first check Lemma 7(b). Note that

DfN = y + 3z2.

The parabola F = {(x, y, z) : y+3z2 = 0}∩S on the cusp surface S = {(x, y, z) : x+yz+z3 =
0} consists of contact points of at least order one. In particular we have that l = r = 1 for
this problem and thus

l(D2f(Nr,Nr) +DfDN(Nr, r)) = NTD2fN +DfDNN

=
(
0 0 1

)





0 0 0
0 0 1
0 1 6z









0
0
1



+ 0

= 6z,

whence every point on F except the point z0 = (0, 0, 0) is a fold point.

The condition in Lemma 7(c) reduces to computing

lD3f(N,N,N) =

3∑

j,k,l=1

∂3f

∂zj∂zk∂zm
NjNkNm

= 6 6= 0.

Finally, we check the transversality condition Lemma 7(d). We have

C0(z0) =

(
Df

D2fN +DfDN

)∣
∣
∣
∣
z0

=

(
1 0 0
0 1 0

)

,
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as expected.

Defining equations for a contact cusp in standard slow-fast systems are given by a trivial
subcase of Lemma 7. Consider the layer problem





x′

y′

z′



 =





0
0
1



 g(x, y, z),

which is given in standard form. Then N(x, y, z) =
(
0 0 1

)T
. Then at a test point

p0 = (x0, y0, z0) the (non)degeneracy conditions from 7 (b) and (c) on the derivatives become

g = Dzg = Dzzg = 0

Dzzzg 6= 0,

whereas the test matrix for the transversality condition (Lemma 7(d)) is

C0(z0) =

(
Df

D2fN +DfDN

)

=

(
Dxg Dyg Dzg
Dxzg Dyzg Dzzg

)

=

(
Dxg Dyg 0
Dxzg Dyzg 0

)

,

giving the transversality condition

det

(
Dxg Dyg
Dxzg Dyzg

)

=

(
Dxg
Dyg

)

·
(

Dyzg
−Dxzg

)

6= 0.

This provides the full unfolding of the cusp under the independent variation of two slow
parameters.

Remark 13. These conditions should be compared to the defining equations in [5], and in
particular the transversality condition, which is a corrected version of the nondegeneracy
condition (A) in their paper. We note that the appropriate transversality condition is cor-
rectly identified later in equation (35) of [5], after a series of coordinate transformations. We
also refer the reader to a blow-up analysis of the cusp singularity for standard systems in
[15].

4.1.2 Versal slow unfoldings of Ac singularities in the standard form

Versal slow unfoldings of higher-order Ac singularities in the standard case can be charac-
terised explicitly by using classical formulas as shown in the proof of Lemma 8. Slow-fast
systems which can locally be placed in the standard form
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z′1
...
z′c
x′








=








0
...
0
1








(xc+1 + zcx
c−1 + · · ·+ z2x+ z1) + εG(z1, · · · , zc, x, ε)

will exhibit an Ac singularity of the critical manifold {(z1, · · · , zc−1, x) ∈ Rc : (xc+1+zcx
c−1+

· · ·+z2x+z1) = 0} with the fast fibers at the origin. Generally for fixed c, the corresponding
Ac singularity requires c slow variables for a slow unfolding.

4.2 Three-component negative feedback oscillator

A fundamental characteristic of biochemical oscillators is the presence of negative feedback
with time delay. Novak and Tyson considered several examples of biochemical networks,
including autonomous systems and delay differential equations. They argued that sufficienly
many intermediate steps can model the effect of a delay in a negative feedback loop, thus
generating sustained oscillations [30]. We consider the following minimal, autonomous three-
component model studied in [41]:





x′

y′

z′



 =





α1

(
1

1+z2
− x

)

α2x− 1
α3(y − z)



 y + ε





α1

(
1

1+z2
− x

)

α2x
α3(y − z)



 . (20)

The (dimensionless) parameters are α1, α3 > 0, α2 > 1, and ε ≪ 1. The system is in
nonstandard form (4). The layer problem of (20) is given by





x′

y′

z′



 =





α1

(
1

1+z2
− x

)

α2x− 1
α3(y − z)



 y. (21)

Here we have N(x, y, z) the vector function on the RHS and f(x, y, z) = y. The (regular
part of the) critical manifold is given by the plane

S = {y = 0}.

The nontrivial eigenvalue is given by the scalar function

DfN |S = α2x− 1.

The contact set is the curve

F = {(x, y, z) ∈ S : x = 1/α2}.
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The layer flow (21) also admits an isolated saddle-focus equilibrium point

q = (1/α2,
√
α2 − 1,

√
α2 − 1),

given by the zero set {N(x, y, z) = 0}. This point persists as an equilibrium point for the full
system (20) for small nonzero values of ε. The saddle-focus is responsible for the bending of
the fast fibers, generating a global return mechanism for the observed relaxation oscillations
(see Fig. 2). This periodic orbit can be decomposed into a slow segment near S which crosses
F , and a fast global reinjection arising from intersections between the two-dimensional un-
stable manifold of the saddle-focus and the fast fiber bundle near S. Further details on the
global dynamics are provided in [41]; for instance, the curve F divides S into an attracting
and a repelling branch, denoted Sa resp. Sr in Fig. 2.

Contact folds. Almost all points on F are fold points. We observe this by checking the
conditions in Lemma 6(a)-(b):

rank(Df)|F = n− k = 1

DfDNN |F = α1
α2 − (1 + z2)

1 + z2
.

(observe how simple the nondegeneracy condition becomes in the codimension-one case: we
have adj(DfN) = 1).
Thus, the parabolic coefficient is nontrivial everywhere on the contact set except where
z =

√
α2 − 1. We call this distinguished point

K = {(x, y, z) ∈ F : z =
√
α2 − 1} = {1/α2, 0,

√
α2 − 1}. (22)

At K, the conditions in Lemma 7(a)–(b) are satisfied.

Remark 14. We note the existence of an unphysical contact point K− of order at least two,
with the component z = −

√
α2 − 1.

Contact cusps. We verify that K is a contact cusp. We check Lemma 7(c) The iden-
tities D2f = 0 and D3f = 0 greatly simplify the calculations; we need only evaluate
DfD2N(N,N, 1) and DfDNDNN . The second derivative in the first term admits the fol-
lowing simple formula in the codimension-one case:

DfD2(N,N, 1) = Df








NTHN1N
NTHN2N

...
NTHNnN








,

where HNi denotes the Hessian of the scalar function Ni(z). This term evaluates to 0, which
can be read off from the fact that N2(z) is only linear, whereas Dxf and Dzf are both zero.
On the other hand, the last term is nontrivial:
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Figure 2: Sample trajectory (blue curve) of the three-component negative feedback os-
cillator (20) with initial condition (x, y, z) ≈ (0.5198, 1.0205, 1.0205) and parameter set
(ε, α1, α2, α3) = (0.0005, 0.2, 2, 0.2). An isolated contact point K (red point) of order 2
((22)) lies on the fold line (red dashed line). A saddle-focus equilibrium point (black point)
of (20) is also shown. (b) Local geometry of the fast fibers near the line of folds (note that
this figure is rotated to better show the curvature).
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DfDNDNN =
2α1α3(α2 − 1)

α2

.

As long as α2 > 1, K has contact-order of 2 (note that K exists for α2 ≥ 1).
We now check the remaining transversality condition, Lemma 7(d). As before, we write
down

C0(K) =

(
Df

D2fN +DfDN

)∣
∣
∣
∣
z0

.

at the contact point K, we have

Df =
(
0 1 0

)

DN =





α1 0 −2(α1/α2)
√
α2 − 1

α2 0 0
0 α3 −α3



 ,

so

C0(K) =

(
0 1 0
α2 0 0

)

,

which has the maximal rank of 2 for the parameter values we consider. The three-component
feedback oscillator therefore exhibits a contact cusp at the point K (see (22)).

4.3 Mitotic oscillator

We demonstrate the existence of a cusp in Goldbeter’s minimal model for the embryonic
cell cycle [10]. The original formulation contains terms of Michaelis-Menten type to study
the existence of sustained oscillations due to negative feedback loops. An analysis from the
GSPT point of view is provided in [17], where an isolated, strongly attracting limit cycle is
proven to exist for sufficiently small values of a singular perturbation parameter (see Fig.
3). Following their formulation, consider the system

dX

dt
=

(

M(1−X)(ε+X)− 7

10
X(ε+ 1−X)

)

Fε(M)

dM

dt
=

(
6C

1 + 2C
(1−M)(ε+M)− 3

2
M(ε+ 1−M)

)

Fε(X) (23)

dC

dt
=

1

4
(1−X − C)Fε(X,M),

where
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Fε(X,M) = Fε(X)Fε(M)

Fε(X) = (ε+ 1−X)(ε+X)

Fε(M) = (ε+ 1−M)(ε+M).

The layer problem is given by

dX

dt
=

(

M − 7

10

)

F0(X,M,C)

dM

dt
=

(
6C

1 + 2C
− 3

2

)

F0(X,M,C)

dC

dt
=

1

4
(1−X − C)F0(X,M,C),

for

F0(X,M,C) = XM(1 −X)(1−M).

The critical manifold S is given by regular two-dimensional subsets of the zero set {F0(X,M,C) =
0} = {X = 0} ∪ {X = 1} ∪ {M = 0} ∪ {M = 1}. The four faces intersect at four ‘corners,’
and blow-up is necessary to analyze the dynamics on those lines (see [17]).
The one-dimensional linear fast fibers are spanned by the vector

N(X,M,C) =





M − 7
10

6C
1+2C

− 3
2

1
4
(1−X − C)





at points (X,M,C) ∈ S. In the sequel we denote f = F0 so that we can read off the defining
equations classifying the singularities along the contact set.

Let us record the following derivatives:

Df =
(
M(1 −M)(1 − 2X) X(1−X)(1− 2M) 0

)

D2f =





2M(M − 1) (1− 2X)(1− 2M) 0
(1− 2X)(1− 2M) 2X(X − 1) 0

0 0 0





DN =





0 1 0
0 0 6

(2C+1)2

−1
4

0 −1
4





We now restrict ourselves to the plane S = {X = 0} (see Fig. 3). We have

DfN |S = M(1 −M)(M − 7/10).

The critical manifold S loses normal hyperbolicity along the lines M = 0, M = 7/10, and
M = 1, and S is attracting on the subset Sa = S ∩ {0 < M < 7/10} and repelling on the
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Figure 3: Sample trajectory (black curve) of the system (23) with initial condition
(X,M,C) = (0.5, 0.5, 0.5) and ε = 0.0021. The green plane X = 0 lies in the set of
equilibria of (23). An isolated contact point K (red point) of order 2 ((24)) lies on the fold
line F = {X = 0} ∩ {M = 7/10} (red dashed line). An isolated saddle-focus equilibrium of
(23) is also depicted (black point). (b) Local geometry of the fast fibers near the fold line.
Note that we extend the fast fibers into the unphysical regime X < 0.
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subset Sr = S∩{7/10 < M < 1}. We do not consider the degenerate lines where S intersects
the faces M = 0 and M = 1. We focus on the fold line F = S ∩ {M = 7/10}. Note that the
critical manifold remains locally two-dimensional along this line, but the matrix DfN drops
rank along F . The left- and right-nullvectors of DfN |F are l = r = 1 .

Contact folds. We test the nondegeneracy condition Lemma 6(b).

l(D2f(Nr,Nr) +DfDN(Nr, r)) = NTD2fN +DfDNN

= 0 +
63

200

2C − 1

2C + 1

along F . Thus, a line of fold points separates Sa from Sr, but there is a distinguished point

K = F ∩ {C = 1/2} = {(X,M,C) = (0, 7/10, 1/2)}, (24)

which has higher contact order. At K, the conditions Lemma 7(a)–(b) are satisfied.

Contact cusps. We test the nondegeneracy condition Lemma 7(c):

l · (D3f(Nr,Nr,Nr) + 3D2f(DN(Nr, r), Nr) +DfD2N(Nr,Nr, r) +DfDN(DN(Nr, r), r))

= D3f(N,N,N) + 3D2f(DNN,N) +DfD2N(N,N, 1) +DfDNDNN

= 0 + 0 + 0 +
63

1000

when evaluated at K.

We test the transversality condition Lemma 7(d):

C0(K) =

(
Df

NTD2f +DfDN

)∣
∣
∣
∣
K

.

At K we have

Df =
(
21/100 0 0

)

D2f =





−21/50 −2/5 0
−2/5 0 0
0 0 0





N =





0
0
1/8





DN =





0 1 0
0 0 3/2

−1/4 0 −1/4



 ,
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and so altogether we have

C0(K) =

(
21/100 0 0

0 21/100 0

)

.

The mitotic oscillator therefore exhibits a contact cusp at the point K (see (24)).

Remark 15. This analysis may repeated for the other three faces {X = 1}, {M = 0}, and
{M = 1}. There are three additional lines of contact order at least one:

LX=1 = {X = 1} ∩ {M = 7/10}
LM=0 = {M = 0} ∩ {C = 1/2}
LM=1 = {M = 1} ∩ {C = 1/2}.

Away from the corners where the faces intersect (i.e. for the ranges 0 < X < 1 and
0 < M < 1), the points on these lines are all contact folds except for the following three
contact cusps:

KX=1 = (1, 7/10, 1/2)

KM=0 = (1/2, 0, 1/2)

KM=1 = (1/2, 1, 1/2).

5 Concluding remarks

We have given a rigorous classification of the contact singularities of singularly perturbed
systems in the nonstandard form (4), and we provided computable coordinate-independent
criteria to identify slow-generic contact singularities of arbitary order (Lemmas 6 – 8). We
emphasize that the correct coordinate-free conditions for the corresponding slow unfoldings
are not immediately given by the usual defining equations from singularity theory: in the
classical context, the parameter directions are already assumed to have been located, whereas
the slow variables are generally not explicitly identified in the system (4).

Constructing a vector field factorisation (14) for systems in the general form (4) is a non-
trivial first step. We expect that the procedure of first applying constructive factorisation
algorithms [9] and then identifying and classifying the points in the contact set can be au-
tomated in a wide variety of applications. We also expect that the defining equations can
serve as test functions for continuation and bifurcation software like AUTO.

Finally, we point out that loss of normal hyperbolicity may occur by other means which are
dynamically relevant. The contact set (Def. 5) can be defined more generally to include
rank drops larger than one, corresponding to more degenerate contact scenarios between the
critical manifold and surfaces in the fast fiber bundle. Away from the contact set, there
may also be subsets of the critical manifold where complex-conjugate pairs of eigenvalues
lie on the imaginary axis, which is associated with the existence of delayed Hopf [1, 28, 29]
and singular Hopf bifurcations [2, 3]. This paper thus serves as a starting point for a more
complete theory of the loss of normal hyperbolicity for nonstandard slow-fast systems.

31



Contact singularities in slow-fast dynamical systems

References

[1] S.M. Baer, T. Erneux, and J. Rinzel, The Slow Passage Through a Hopf Bifurcation: Delay,

Memory Effects, and Resonance, SIAM. J. Appl. Math. 49(1989), pp. 55–71.

[2] S.M. Baer and T. Erneux, Singular Hopf bifurcation to relaxation oscillations I, SIAM J. Appl.
Math., 46 (1986), pp. 721–739.

[3] S.M. Baer andT. Erneux, Singular Hopf bifurcation to relaxation oscillations II, SIAM J. Appl.
Math., 52 (1992), pp. 1651–1664.

[4] E. Benoit, Systemes lentes-rapides en R3 et leurs canards, Asterisque,109-110(1983), pp.159–191.

[5] H.W. Broer, T.J. Kaper, and M. Krupa, Geometric desingularization of a cusp singularity in slow–

fast systems with applications to Zeeman’s examples , Journal of Dynamics and Differential Equations,
25(2013), pp. 925–958.

[6] F. Dumortier, R. Roussarie, and J. Sotomayor, Generic 3-parameter families of vector fields on

the plane, unfolding a singularity withnilpotent linear part. The cusp case of codimension 3, Ergod. Th.
& Dynam. Sys. 7(1987), pp. 375–413.

[7] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential
Equations, 31(1979), pp. 53–98.

[8] A. Goeke and S. Walcher, Quasi-Steady State: Searching for and Utilizing Small Parameters,
Springer Proceedings in Mathematics and Statistics, 35(2013), 153–178.

[9] A. Goeke and S. Walcher, A constructive approach to quasi-steady state reduction, J. Math. Chem.,
52(2014), pp. 2596-2626.

[10] A. Goldbeter, A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase,
Proc Natl Acad Sci, 88(20) (1991), pp. 9107–9111

[11] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag New
York (1973).

[12] V. I. Arnold, S. M. Gusein-Zade, and A.N. Varchenko, Singularities of Differentiable Maps
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A Appendix

We write down basic definitions for jet spaces and the contact group of diffeomorphisms (see
for eg. [11, 14] for a full treatment of the standard singularity theory).

Definition 16. The k-jet space Jk(n,m) of smooth germs f : Rn → R
m is defined by

Jk(n,m) = Mn · E(n,m)/M k+1
n · E(n,m),

where

E(n,m) = (En)
m

is the direct product of m copies of the set En of smooth germs from R
n to R,

Mn = En · {x1, · · · , xn}

is the unique maximal ideal of germs vanishing at the origin, and

M k
n = En · {xi1

1 , · · · , xin
n , i1 + · · ·+ in = k}

is the set of germs with vanishing partial derivatives of order less than or equal to k − 1 at
the origin.

Remark 16. The set Jk(n,m) may be identified with the set of polynomials of total degree
less than or equal to k.

The definition of contact classes used in the paper is due to Mather:

Definition 17. The contact group K is the set of germs of diffeomorphisms of (Rn×Rm, (0, 0))
which can be written in the form

H(x, y) = (h(x), H1(x, y)),

where h acts on the right (i.e. h · f = f ◦ h−1) and H1(x, 0) = 0 for x near 0. We say that f
is K -equivalent to g if g lies in the group orbit of f . We refer to this as the contact class of
f .

Remark 17. Suppose f, g ∈ Mn ·E(n,m) and k = (h,H) ∈ K . Then g = k · f if and only if

(x, g(x)) = H(h−1(x), f(h−1(x))).

Observe that H sends the graph of f to the graph of g near 0 (i.e. the zero sets of K -
equivalent germs are diffeomorphic).
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