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Abstract We use a geometric approach to prove the existence of smooth travelling wave solutions
of a nonlinear diffusion-reaction equation with logistic kinetics and a convex nonlinear diffusivity
function which changes sign twice in our domain of interest. We determine the minimum wave
speed, c∗, and investigate its relation to the spectral stability of the travelling wave solutions.

1 Introduction

Invasion processes have been studied with mathematical models, especially partial differential
equations (PDEs), for many years; see, for example, [32] and references therein. These models
describe, for instance, how cells are transported to new areas in which they persist, proliferate, and
spread [28]. To incorporate information about individual-level behaviours in invasion processes,
lattice-based discrete models are widely used [10, 20, 19, 43]. In these discrete models, individual
agents are permitted to move, proliferate and die on a lattice, and the average density of agents is
related to PDE descriptions obtained using truncated Taylor series in the continuum limit [2, 6].
The macroscopic behaviour described by the PDEs in terms of expected agent density reflects
the individual microscopic behaviour. Travelling wave solutions are of particular interest among
the macroscopic behaviours arising from these continuum models, as they reflect various modes
of microscopic invasive behaviours. One famous model exhibiting travelling wave solutions is the
Fisher-KPP equation (KPP refers to Kolmogorov, Petrovsky, Piskunov) proposed in 1937 to study
population dynamics with linear diffusion and logistic growth [15, 25]. The existence and stability
of travelling wave solutions of the Fisher-KPP equation has been widely studied, see, for instance,
[4, 15, 18, 25, 27, 32].

The Fisher-KPP equation can be derived as a continuum limit of a discrete model under the
assumption that the population of cells can be treated as a uniform population without any differ-
ences in subpopulations [5]. However, differences between individual and collective behaviour have
been observed in cell biology and ecology in practice. For instance, in cell biology, isolated cells
called leader cells are more motile than the grouped cells, called follower cells [34]. Also, contact
interactions lead to different motility rates between isolated cells and grouped cells in the migration
of breast cancer cells [43, 44], glioma cells [24], would healing processes [23] and the development
of the enteric nervous system [12]. In ecology, the population growth rate of some species decreases
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as their populations reach small sizes or low densities [7]. This phenomenon is usually referred to
as the Allee effect [1].

To describe the invasion process and reflect the difference between collective and individual be-
haviour, Johnston and coworkers introduced a discrete model considering birth, death and move-
ment events of agents that are isolated or grouped on a simple one-dimensional lattice [20]. A
discrete conservation statement describing δUj , which is the change of the occupancy of a lattice
site j during a time step τ , gives

δUj =
P im
2

[Uj−1(1− Uj)(1− Uj−2) + Uj+1(1− Uj)(1− Uj+2)

− 2Uj(1− Uj−1)(1− Uj+1)]

+
P gm
2

[Uj−1(1− Uj) + Uj+1(1− Uj)− Uj(1− Uj−1)− Uj(1− Uj+1)]

− P gm
2

[Uj−1(1− Uj)(1− Uj−2) + Uj+1(1− Uj)(1− Uj+2)

− 2Uj(1− Uj−1)(1− Uj+1)]

+
P ip
2

[Uj−1(1− Uj)(1− Uj−2) + Uj+1(1− Uj)(1− Uj+2)]

+
P gp
2

[Uj−1(1− Uj) + Uj+1(1− Uj)]

−
P gp
2

[Uj−1(1− Uj)(1− Uj−2) + Uj+1(1− Uj)(1− Uj+2)]

− P id[Uj(1− Uj−1)(1− Uj+1)]− P gdUj + P gd [Uj(1− Uj−1)(1− Uj+1)].

(1)

Here, Uj represents the probability that an agent occupies lattice j, thus, 1 − Uj represents the
probability that lattice j is vacant [41]. P im and P gm represents the probability per time step that
isolated or grouped agent, respectively, attempts to step to a nearest neighbour lattice site; P ip
and P gp represents the probability per time step that an isolated or grouped agent, respectively,
attempts to undergo a proliferation event and deposit a daughter agent at a nearest neighbour
lattice site; P id and P gd represents the probability per time step that an isolated or grouped agent,
respectively, dies, and is removed from the lattice. See Figure 1a for a schematic of the lattice-based
discrete model.

To obtain a continuous description, Johnston and coworkers treated Uj as a continuous function,
U(x, t), and divide (1) by the time step τ . Next, they expanded all terms in (1) in a Taylor series
around x = j∆, where ∆ is the lattice spacing, and neglect terms of O(∆3) [41]. As ∆ → 0 and
τ → 0 with the restriction that the ratio ∆2/τ held constant [6, 41], they obtained a nonlinear
diffusion-reaction equation

∂U

∂t
=

∂

∂x

(
D(U)

∂U

∂x

)
+R (U) , (2)

where
D (U) = Di

(
1− 4U + 3U2

)
+Dg

(
4U − 3U2

)
, (3)

is the nonlinear diffusivity function, and

R (U) = λgU (1− U) + (λi − λg −Ki +Kg)U (1− U)2 −KgU, (4)

is the kinetic term. Furthermore, the parameters are given by

Dg = lim
∆,τ→0

P gm∆
2

2τ
, Di = lim

∆,τ→0

P im∆
2

2τ
, λg = lim

τ→0

P gp
τ
,

λi = lim
τ→0

P ip
τ
, Kg = lim

τ→0

P gd
τ
, Ki = lim

τ→0

P id
τ
,



Travelling wave solutions in a negative nonlinear diffusion-reaction model 3

1 2 3 4 5 6 7 8

A B C D

P im
2

P im
2

P gm

2

P gm

2

P ip

2

P ip

2

P gp

2

P gp

2

P id P gd P gd P gd
t+ τ

1 2 3 4 5 6 7 8

A B C D E

(a)

U
βα

2
3

R(U)

D(U)

1
0

(b)

Fig. 1 (a) describes one possible time step of the lattice-based discrete model of [20]: a new grouped agent
(agent E) is born and the grouped agent B moves from lattice site 5 to lattice site 4 to become an isolated agent.
Pink circles represent isolated agents with birth rate P ip, death rate P id and motility rate related to P im; cyan

circles represent grouped agents with birth rate P gp , death rate P gd and motility rate P gm. (b) presents a diffusivity
function D(U), given by (3) (cyan curve) satisfying Di > 4Dg which makes D(U) change sign twice on (0, 1), and
the kinetic term R(U), given by (5) (orange curve) which is positive on (0, 1) and zero at end points U = 0 and
U = 1.

where we require that P ip, P
g
p , P

i
d, P

g
d are O(τ) [41]. Here, U(x, t) denotes the total density of the

agents at position x ∈ R and time t ∈ R+; Di ≥ 0 and Dg ≥ 0 are diffusivities of the isolated and
grouped agents, respectively; λi ≥ 0 and λg ≥ 0 are the birth rates of isolated and grouped agents,
respectively; Ki ≥ 0 and Kg ≥ 0 are the death rates of isolated and grouped agents, respectively
[20].

In this manuscript, we study the effect that aggregation, which is modelled with a nonlinear
diffusivity function that goes negative [42], has on the dynamics of the model. Therefore, we assume
that Di > 4Dg such that D(U) given by (3) is convex and changes sign twice in our domain of
interest (however, see Section 4.2 for a short discussion related to the other case). For simplicity,
we furthermore assume equal proliferation rates, λ = λi = λg, and no agent death, Ki = Kg = 0.
This way, the kinetic term simplifies to a logistic term

R (U) = λU (1− U) , (5)

and D (U) has a sign condition:

D (U) > 0 for U ∈ [0, α) ∪ (β, 1] , D (U) < 0 for U ∈ (α, β) , (6)

where the interval where D(U) < 0 is centred around U = 2/3, and α, β are given by

α =
2

3
−
√
D2
i + 4D2

g − 5DiDg

3 (Di −Dg)
, β =

2

3
+

√
D2
i + 4D2

g − 5DiDg

3 (Di −Dg)
, (7)

with 1/3 < α < 2/3 and 2/3 < β < 1, see Figure 1b. That is, we have negative diffusion for
U ∈ (α, β). The relation that Di is larger than Dg indicates that isolated agents are more active
than grouped agents, which agrees with the experimental observation that leader cells are more
motile than follower cells [34, 44].

[13] showed the existence of travelling wave solutions for a range of positive wave speeds for
(2) with general convex D(U) that changes sign twice on (0, 1) and R(U) given by (5) based on
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Fig. 2 (a) shows the evolution of a Heaviside initial condition to a smooth travelling wave solution obtained by
simulating (2) with (3) and (5) with parameters Di = 0.25, Dg = 0.05 and λ = 0.75. We use a finite difference
method with space step δx = 0.1, time step δt = 0.01 and no-flux boundary conditions. Notice that D(U) = 0 at
α = 0.5 and β ≈ 0.83. (b) measures the position of the wave L(t) by looking for the left-most leading edge point
where U is smaller than 10−5, indicating that the solution is travelling at a constant speed c = 0.864. (c) gives
the wave speed as a function of the initial condition U(x, 0) = 1/2 + tanh (−η(x− 40)) /2. Notice that as η grows
to infinity this initial condition limits to the Heaviside initial condition used for the simulation in (a), and the
wave speed converges to c ≈ 0.864. The minimum wave speed c∗ = 2

√
λDi ≈ 0.866 (9).

the comparison method introduced by [4]. Related studies proved the existence of travelling wave
solutions for a similar range of speeds for nonlinear diffusion-reaction equations with different D(U)
and different R(U): [31] studied (2) with a logistic kinetic term and a nonlinear diffusivity function
satisfying

D(0) = 0 and D(0) > 0 for all U ∈ (0, 1].

[29] studied (2) with a logistic kinetic term and a nonlinear diffusivity function satisfying

D(U) > 0 in (0, θ) and D(U) < 0 in U ∈ (θ, 1), (8)

for some given θ ∈ (0, 1) and with D(0) = D(θ) = D(1) = 0. In addition, [30] studied (2) with (8)
and a bistable kinetic term satisfying

R(0) = R(φ) = R(1) = 0, R(U) < 0 in U ∈ (0, φ) and R(U) > 0 in U ∈ (φ, 1).

In this manuscript, we show the following result:

Theorem 1 Model (2) with (3) and (5) and Di > 4Dg supports smooth monotone nonnegative
travelling wave solutions for

c ≥ 2
√
λDi =: c∗. (9)

This theorem agrees with the result of [13], and because of the specific nonlinear diffusivity function,
we can further extend their results. Moreover, instead of the comparison method used by [13],
we use a geometric approach to prove the existence of travelling wave solutions. This geometric
approach has the advantage that it can also be used to study shock-fronted travelling wave solutions
[16, 17, 46]. While shock-fronted travelling wave solutions are not the focus in this manuscript,
we show in the final section that they do exist for (5) with different D(U), see Figure 10a in
Section 4.3. The lower bound c∗ in Theorem 1 is often called the minimum wave speed as it
represents the monotone nonnegative travelling wave solutions with the lowest wave speed [32].
Numerical simulations show that (2) with (3) and (5) indeed support smooth travelling wave
solutions even though the nonlinear diffusivity function goes negative. Moreover, the speed relates
to the initial condition, and the wave speed converges to the minimum wave speed c∗ as the initial
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condition limits to the Heaviside initial condition, see Figure 2. We will also show the connection
between the existence of smooth monotone nonnegative travelling wave solutions, the spectrum of
the travelling wave solutions, and the minimum wave speed c∗.

This manucript is organised as follows. We prove Theorem 1 in Section 2 by using desingularisa-
tion techniques [3] and detailed phase plane analysis which have not been applied to (2) before. In
Section 3, we determine the spectral properties of the travelling wave solutions and show how the
minimum wave speed c∗ is related to absolute instabilities [22, 37, 40]. Some interesting results for
different nonlinear diffusivity functions with the same kinetic term (5) are discussed in Section 4.
Here, we also discuss the implications of the analytical results for the discrete model.

2 Existence of travelling wave solutions

2.1 Transformation and Desingularisation

A travelling wave solution of (2) is a solution of the form u(x− ct, t) that travels with constant
speed c and constant wave shape, and that asymptotes to 1 as x → −∞ and to 0 as x → ∞. We
only consider positive wave speeds since (2) with (3) and (5) is monostable with a Fisher-KPP
imprint, that is, U ≡ 1 is a PDE stable solution of (2), while U ≡ 0 is a PDE unstable solution.
We introduce the travelling wave coordinate z = x− ct, where z ∈ R, and write (2) in its travelling
wave coordinate

∂U

∂t
=

∂

∂z

(
D(U)

∂U

∂z

)
+ c

∂U

∂z
+R(U). (10)

A travelling wave solution to (2) is now a stationary solution to (10), that is, ∂U/∂t = 0, and (10)
simplifies to a second-order ordinary differential equation (ODE)

d

dz

(
D(u)

du

dz

)
+ c

du

dz
+R(u) = 0, (11)

with asymptotic boundary conditions limz→−∞ u = 1 and limz→∞ u = 0. We use a dynamical
systems approach to analyse (11). Upon introducing p := D(u)du/dz, it can be written as a system
of first-order ODEs 

D(u)
du

dz
= p,

D(u)
dp

dz
= −cp−D(u)R(u).

(12)

Note that p > 0 if du/dz < 0 and D(u) < 0. Thus, while we expect that the derivative of a travelling
wave solution is always negatvie, p is not necessarily always negative. Travelling wave solutions of
(2) now correspond to heteroclinic orbits of (12) connecting (1, 0) to (0, 0). However, (12) is singular
as D(u) is zero for u = α and u = β, see (7). That is, we have two walls of singularities u = α
and u = β [16, 33, 46]. On these walls of singularities the right hand sides of (2) also dissappear if
p = 0. That is, each wall of singularities has one (potential) hole in the wall [16, 33, 46]. In system
(12), the holes are at (α, 0) and (β, 0). To remove the singularities, we desingularise system (12)
by introducing a stretched variable ξ satisfying D(u)dξ = dz [3, 32, 36]. Subsequently, system (12)
becomes 

du

dξ
= p,

dp

dξ
= −cp−D(u)R(u).

(13)

When D(u) > 0, dξ/dz > 0 and therefore trajectories on the phase planes of (12) and (13) have the
same moving directions. In contrast, when D(u) < 0, dξ/dz < 0 and trajectories on the two phase
planes are in the opposite direction, see Figure 3. Therefore, heteroclinic orbits of (12) connecting
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Fig. 3 (a) is the phase plane of system (12) with parameters Di = 0.25, Dg = 0.05, λ = 0.75 and c = 0.866. The
vertical dashed lines are the walls of singularities u = α and u = β and the solid blue lines are nullclines. Red
arrows show the moving direction of trajectories. (b) is the phase plane of system (13) for the same parameter
values and red lines are nullclines. For u in between α and β, the moving direction of the trajectories is opposite
compared to (a), while the moving direction is the same for u < α and u > β.

(1, 0) to (0, 0) crossing the holes in the walls (α, 0) and (β, 0), if they exist, are transformed and
separated to heteroclinic orbits connecting (1, 0) to (β, 0), (α, 0) to (β, 0) and (α, 0) to (0, 0) of (13)
and vice versa. Next, we will prove the existence of these heteroclinic orbits in system (13) for a
range of wave speeds c.

2.2 Phase plane analysis of the desingularised system

We first study the desingularised system (13). It has nullclines p = 0 and

p = −D(u)R(u)

c
. (14)

The intersections of the two nullclines give four equilibrium points: (0, 0), (1, 0), (α, 0), (β, 0).

Lemma 1 The equilibrium points (1, 0) and (α, 0) are saddles. The equilibrium point (0, 0) is a
stable node if

c ≥ 2
√
D(0)R′(0) = 2

√
λDi = c∗, (15)

and a stable spiral otherwise. The equilibrium point (β, 0) is a stable node if

c ≥ 2
√
D′(β)R(β), (16)

and a stable spiral otherwise.

Proof The Jacobian of system (13) is

J(u, p) =

(
0 1

−F (u) −c

)
, where F (u) := (D(u)R(u))′ . (17)
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The Jacobian has eigenvalues and eigenvectors

λ± =
−c±

√
c2 − 4F (u)

2
, E± = (1, λ±).

For the equilibrium point (1, 0) this reduces to

λ1± =
−c±

√
c2 − 4D(1)R′(1)

2
, E1± = (1, λ1±). (18)

The eigenvalues λ1± are real and negative since D(1) = Dg > 0 and R′(1) = −λ < 0. Thus (1, 0)
is a saddle.

Similarly, the Jacobian of the equilibrium point (α, 0) has eigenvalues and eigenvectors

λα± =
−c±

√
c2 − 4D′(α)R(α)

2
, Eα± = (1, λα±). (19)

Knowing that D′(α) < 0 and R(α) > 0, λα+ is real and positive and λα− is real and negative.
Thus (α, 0) is a saddle.

The Jacobian of the equilibrium point (0, 0) has eigenvalues and eigenvectors

λ0± =
−c±

√
c2 − 4D(0)R′(0)

2
, E0± = (1, λ0±). (20)

The eigenvalues λ0± are real and negative if (15) holds since D(0) = Di > 0 and R′(0) = λ > 0.
Thus equilibrium point (0, 0) is a stable node if (15) holds. Otherwise, λ0± are complex-valued
with negative real parts and (1, 0) is a stable spiral.

Similarly, the Jacobian of equilibrium point (β, 0) has eigenvalues and eigenvectors

λβ± =
−c±

√
c2 − 4D′(β)R(β)

2
, Eβ± = (1, λβ±). (21)

The eigenvalues λβ± are real and negative if (16) holds since D′(β) > 0 and R(β) > 0. Thus the
equilibrium point (β, 0) is a stable node if (16) holds. Otherwise, λβ± are complex-valued with
negative real parts and (β, 0) is a stable spiral. �

Lemma 2 For Di > 4Dg, the thresholds of conditions (15) and (16) give

c∗ > 2
√
D′(β)R(β). (22)

Proof The right hand side of (22) is given by

2
√
D′(β)R(β) = 2

√
3λ(Di −Dg)β(1− β)(β − α).

Since c∗ = 2
√
λDi, proving relation (22) is equivalent to proving

Di > 3(Di −Dg)β(1− β)(β − α),

which is equivalent to proving

Di
Di −Dg

> 3β(1− β)(β − α). (23)

Knowing that 2/3 < β < 1 and 0 < β − α < 2/3 gives 3β(1 − β)(β − α) < 2/3. Since Di > 4Dg,
we have that Di/(Di −Dg) > 1 since Di > Di −Dg. Hence, (23) holds and thus (22) holds. �
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For c < c∗, (0, 0) becomes a spiral node and hence we expect trajectories approaching (0, 0)
to become negative which in the end would lead to travelling wave solutions become negative.
Therefore, we now assume that c ≥ c∗. To prove the existence of heteroclinic orbits between
the equilibrium points, we construct invariant regions in the phase plane from which trajectories
cannot leave, so that the Poincaré-Bendixson theorem can be applied [21], see Figure 4. The slope
of nullcline (14) is χ(u) = −1/ (cF (u)), where F (u) is given by (17), while the slope of the unstable
eigenvector of (1, 0) is λ1+, see (18). We thus have

λ1+ − χ(1) =
−c+

√
c2 − 4D(1)R′(1)

2
+

1

c
D(1)R′(1)

=
c
√
c2 − 4D(1)R′(1)−

(
c2 − 2D(1)R′(1)

)
2c

=

√
c4 − 4c2D(1)R′(1)−

√
c4 − 4c2D(1)R′(1) + 4 (D(1)R′(1))2

2
< 0.

(24)

That is, the unstable eigenvector of (1, 0) has a smaller slope than nullcline (14) at (1, 0). In other
words, the trajectory leaving (1, 0) with decreasing u initially lies above the nullcline (14).

Similarly, the slope of the unstable eigenvector of (α, 0) is λα+, see (19). We have, after similar
computation as (24), λα+ − χ(α) < 0. Thus, the unstable eigenvector of (α, 0) has a smaller slope
than nullcline (14) at (α, 0). Therefore, the trajectory leaving (α, 0) with decreasing u initially lies
above the nullcline (14), while the trajectory leaving (α, 0) with increasing u initially lies below the
nullcline (14).

Under condition (15), the least negative slope of the stable eigenvectors of equilibrium point
(0, 0) is λ0+, see (20). This gives, after a similar computation as (24), λ0+ − χ(0) < 0. Thus, both
eigenvectors of (0, 0) have slopes that are more negative than nullcline (14) at (0, 0). In other words,
the eigenvectors of (0, 0) initially lie under the nullcline (14) for u > 0.

Similarly, under condition (16), the least negative slope of the stable eigenvectors of (β, 0) is
λβ+, see (21). This gives λβ+ − χ(β) < 0. Thus, both eigenvectors have slopes that are more
negative than nullcline (14) at (β, 0). Therefore, the trajectory moving in (β, 0) with decreasing u
initially lies under the nullcline (14) for u > β, while they lie above the nullcline (14) for u < β,
see also Figure 4.

Next, we consider the region R1 bounded by p = 0, u = α and a straight line l1 through (0, 0)
with a negative slope µ1. We aim to prove that for c ≥ c∗, there always exists a slope µ1 so that
no trajectories in region R1 can cross through its boundaries. Trajectories starting on p = 0 have
negative vertical directions since du/dξ = p = 0 and dp/dξ = −D(u)R(u) < 0 for u ∈ (0, α). Thus,
trajectories in R1 cannot cross through p = 0. Trajectories starting on u = α with negative p values
point into region R1 since du/dξ = p < 0 and dp/dξ = −cp > 0. Trajectories starting on l1 satisfy
p = µ1u, and they point into R1 only if

dp

du

∣∣∣
p=µ1u

= −c− D(u)R(u)

µ1u
≤ µ1, for u ∈ (0, α).

After rearranging and recalling that µ1 < 0, we obtain

µ1(µ1 + c) ≤ −D(u)R(u)

u
= −λD(u)(1− u), for u ∈ (0, α). (25)

Lemma 3 For c ≥ c∗, there exists a µ1 such that inequality (25) is valid for any u ∈ (0, α).

Proof Proving inequality (25) is equivalent to proving

µ1(µ1 + c) ≤ −λ sup
u∈(0,α)

D(u)(1− u). (26)
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Fig. 4 A qualitative phase plane of system (13). The three dashed lines are u = α, u = β and u = 1. The blue
lines are the nullclines p = 0 and p = −D(u)R(u)/c. Region R1 is bounded by p = 0, u = α and a straight line
l1 with negative slope passing through (0, 0). Region R2 is bounded by p = 0, u = α and a straight line l2 with
negative slope passing through (β, 0). Region R3 is bounded by p = 0, u = 1 and l2.

The left hand side of inequality (26) is minimal when µ1 = −c/2. Setting µ1 = −c/2 and substi-
tuting into inequality (26) gives a lower bound for the speed

c1 = 2
√
λ sup
u∈(0,α]

√
D(u)(1− u), (27)

such that (26) holds for c ≥ c1. The right hand side of (27) gives

2
√
λ sup
u∈(0,α)

√
D(u)(1− u) = 2

√
λD(0) = 2

√
λDi,

since D(u) and (1−u) are both decreasing functions on u ∈ (0, α). Thus, c1 = c∗. Hence, for c ≥ c∗,
inequality (26) is valid for µ1 = −c/2. �

Knowing that for c ≥ c∗ inequality (25) is valid, trajectories on l1 with µ1 = −c/2 point into
region R1. Thus, based on the Poincaré-Bendixson theorem [21], the trajectory leaving from the
equilibrium point (α, 0) with decreasing u and decreasing p must connect with the equilibrium
point (0, 0) without going negative in u.
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Similarly, we consider the region R2 bounded by p = 0, u = α and a straight line l2 through
(β, 0) with a negative slope µ2, and the region R3 bounded by p = 0, u = 1 and l2. Trajectories
starting on p = 0 have positive vertical directions for u ∈ (α, β) since du/dξ = p = 0 and dp/dξ =
−D(u)R(u) > 0 and they have negative vertical directions since for u ∈ (β, 1), du/dξ = 0 and
dp/dξ = −D(u)R(u) < 0. Trajectories starting on u = α with positive p point into region R2 since
du/dξ = p > 0 and dp/dξ = −cp < 0. Similarly, trajectories starting on u = 1 with negative p point
into region R3. In addition, requiring the existence of a slope µ2 such that trajectories starting on
l2 point into regions R2 and R3 leads to the condition

µ2(µ2 + c) ≤ −D(u)R(u)

u− β = −3(Di −Dg)(u− α)R(u), for u ∈ (α, 1). (28)

Lemma 4 For c ≥ c∗, there exists a µ2 such that inequality (25) is valid for any u ∈ (α, 1).

Proof The proof of Lemma 4 is analogous to the proof of Lemma 3 and we will omit some of the
details. Again, there exist a lower bound c2

c2 = 2
√

3(Di −Dg) sup
u∈(α,1)

√
(u− α)R(u),

such that (28) holds for c ≥ c2. Next, we show that c2 < c∗. That is, we show that

2
√
λDi > 2

√
3(Di −Dg) sup

u∈(α,1)

√
(u− α)R(u).

This is equivalent to proving Di/(Di − Dg) > 3u(1 − u)(u − α) for u ∈ (α, 1). Noticing that
u− α < 2/3, and u(1− u) ≤ 1/4, we obtain 3u(1− u)(u− α) < 1/2. Subsequently, we have

Di
Di −Dg

> 1 >
1

2
> 3u(1− u)(u− α),

since Di > 4Dg by assumption. Thus, c2 < c∗. �

Knowing that for c ≥ c∗ the inequality (28) is valid, trajectories on l2 in between α and β point
into region R2. Thus, based on the Poincaré-Bendixson theorem [21], the trajectory leaving from
the equilibrium point (α, 0) with increasing u and increasing p must connect with the equilibrium
point (β, 0). Analogously, the trajectory leaving from the equilibrium point (1, 0) with decreasing
u and decreasing p must connect with the equilibrium point (β, 0).

In summary, for c ≥ c∗ there exist heteroclinic orbits connecting (1, 0) to (β, 0), (α, 0) to (β, 0)
and (α, 0) to (0, 0) in system (13). Since trajectories in u ∈ (0, α) ∪ (β, 0) in system (12) have the
same moving direction as in system (13), there exist trajectories connecting (1, 0) to the hole in
the wall (β, 0) and trajectories connecting the hole in the wall (α, 0) to (0, 0) in system (12). For
u ∈ (α, β), trajectories of system (12) have the opposite moving direction compared to (12). The
trajectory leaving from (α, 0) with increasing u, positive p and connecting to (β, 0) in system (13)
becomes a trajectory leaving from (β, 0) with decreasing u, positive p and connecting to (α, 0) in
system (12). Thus, there exists an orbit connecting (β, 0) to (α, 0) in system (12). Combining the
above, we get that for c ≥ c∗, there exists a heteroclinic orbit with u ≥ 0 connecting (1, 0) to
(0, 0) passing through holes in the walls (α, 0) and (β, 0) in system (12). Hence, there exist smooth
monotone travelling wave solutions of (2) with positive speed c ≥ c∗. This completes the proof of
Theorem 1.

For 2
√
D′(β)R(β) < c < c∗ the equilibrium point (β, 0) is still a stable node, while (0, 0) is

a stable spiral, see Lemma 1. We can use similar techniques as above to show that system (13)
still possesses heteroclinic orbits connecting (1, 0) to (β, 0), (α, 0) to (β, 0) and (α, 0) to (0, 0), see
also Figure 5. However, this latter heteroclinic orbit now spirals into (0, 0). Consequently, also for
2
√
D′(β)R(β) < c < c∗ there exists a heteroclinic orbit connecting (1, 0) to (0, 0) passing through
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p

u
10 α β

Fig. 5 Phase plane of system (13) with parameters Di = 0.25, Dg = 0.05, λ = 0.75 and c = 0.4. The latter

is smaller than c∗ ≈ 0.866 but larger than 2
√
D′(β)R(β) ≈ 0.289. The blue lines are the nullclines p = 0 and

p = −D(u)R(u)/c. The red lines are the heteroclinic orbits connecting (0, 0), (α, 0), (β, 0), and (1, 0).

holes in the walls (α, 0) and (β, 0) in system (12). However, these correspond to smooth travelling
wave solutions of (2) with (3) and (5) that are not monotone and instead oscillate around 0. These
solutions are not feasible as U represents the population density in the discrete model and thus
cannot be negative.

3 Stability analysis

We showed that, similar to the Fisher-KPP equation [18, e.g.], (2) with (3) and (5) supports
smooth travelling wave solutions for c > 2

√
D′(β)R(β), but that only the travelling wave solutions

with c ≥ c∗ (9) are feasible. The minimal wave speed for the Fisher-KPP equation is closely
related to the onset of absolute instabilities. Roughly speaking, absolute instabilities imply that
perturbations to a travelling wave solution will grow for all time and at every point in space [40].
These instabilities are related to the absolute spectrum of the travelling wave solution and are fully
determined by the asymptotic behaviour (z → ±∞) of the travelling wave solution [22, 37]. The
travelling wave solutions of (2) with (3) and (5) as constructed in Section 2 asymptote to 0 and
1 and the nonlinear diffusivity function D(U) is positive near U = 0 and U = 1, see (6). That
is, near these points (2) with (3) and (5) has a Fisher-KPP imprint and we therefore expect that
the minimal wave speed c∗ of (2) is also closely related to the onset of absolute instabilities. In
other words, we expect that the travelling wave solutions of (2) with (3) and (5) are absolutely
unstable for 2

√
D′(β)R(β) < c < c∗. Therefore, we expect perturbations to these travelling wave

solutions to always grow and we will never observe them in, for instance, numerical simulations.
Consequently, while (2) with (3) and (5) support these unfeasible travelling wave solutions that go
negative, they will never be observed and thus do not effect the feasibility of the model.

Below, we briefly describe how to determine the absolute spectrum of a travelling wave solution,
for a more detailed and complete mathematical description, we refer to [8, 22, 37]. To determine
the absolute spectrum of a travelling wave solution û(z), we add a small perturbation q(z, t) to the
travelling wave solution and determine how this perturbation evolves under the PDE in its moving
frame. That is, we substitute u(z, t) = û(z) + q(z, t) into (10) and, upon ignoring higher-order
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perturbative terms O(q2), we get

∂q

∂t
= Lq , L := D(û)

∂2

∂z2
+

(
2D′(û)

dû

dz
+ c

)
∂

∂z
+

(
D′(û)

d2û

dz2
+D′′(û)

(
dû

dz

)2

+R′(û)

)
.

The associated eigenvalue problem, which is obtained by setting q(z, t) = eΛtq(z), is given by

Lq = Λq. (29)

The spectral stability of the travelling wave solution û is now determined by the spectrum of the
linear operator L, that is, the Λ ∈ C for which L−Λ is not invertible. In particular, if the spectrum
is in the open left half plane, or the origin, then we call the travelling wave solution û spectrally
stable and unstable otherwise. This spectrum naturally breaks up into two sets, the point spectrum
and the essential spectrum [22, 37]. Roughly speaking, the essential spectrum of the travelling wave
solution deals with instabilities at infinity and it is related to the spectrum of the background linear
operator L as z → ±∞, while the point spectrum deals with the stability of the actual wave front.

Obviously, the spectral properties of L depend on the space we allow the perturbations q to
be taken from. A natural choice is the space of square integrable functions whose first (weak)
derivative (in z) is also square integrable, that is, the Sobolev space H1(R). Another choice is the
related weighted space H1

ν(R) defined as q ∈ H1
ν(R) if and only if eνzq ∈ H1(R) [22, 38]. For positive

ν the weight forces q to decay at a rate faster than e−νz as z → ∞, while it is allowed to grow
exponentially, but at a rate less than e−νz, as z → −∞. That is, the weight provides information
whether the travelling wave solution is more sensitive to perturbations at plus or minus infinity
[8]. The weighting of H1(R) does not influence the point spectrum of L, however, it does shift
the essential spectrum [22]. That is, a travelling wave solution can be unstable with respect to
perturbations in H1(R), while it is stable with respect to perturbations in an appropriately weighted
space H1

ν(R). This is, for instance, the case for the Fisher-KPP equation and a particular Keller-
Segel model [8, 9]. The absolute spectrum of a travelling wave solution, which is strictly speaking
not always part of the spectrum, is not affected by the weighting of the space and gives an indication
on how far the essential spectrum can be weighted (as the absolute spectrum is always to the left of
the rightmost boundary of the essential spectrum [8]). In other words, if the absolute spectrum of
a travelling wave solution contains part of the right half plane then the essential spectrum cannot
be weighted into the open left half plane and the travelling wave solution is said to be absolutely
unstable.

The eigenvalue problem (29) can be written as a system of first order ODEs

T (Λ)

(
q

s

)
:=

(
d

dz
−A(z;Λ)

)(
q

s

)
= 0 , where A(z;Λ) :=

(
0 1
B C

)
,

with

B = − 1

D(û)

(
D′(û)

d2û

dz2
+D′′(û)

(
dû

dz

)2

+R′(û)− Λ

)
, C = − 1

D(û)

(
2D′(û)

dû

dz
+ c

)
.

The unweighted essential spectrum and the absolute spectrum of the operator L are determined
by the asymptotic behaviour of the operator T (Λ) since the operator is a relatively compact per-
turbation of the operator when you plug in z = ±∞ [22]. Therefore, we define the asymptotic
matrices

A+(Λ) := lim
z→+∞

A(z, Λ) =

 0 1
−R′(0) + Λ

D(0)
− c

D(0)

 ,
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=(Λ)

R(Λ)
σ−abs σ+

abs

λ−λK+K−

Fig. 6 The unweighted essential spectrum and the absolute spectrum of the linear operator L for c > c∗. The
boundary of the unweighted essential spectrum is determined by the dispersion relations of A+ (dashed blue
curve) and A− (solid blue curve) and the green region is the interior of the unweighted essential spectrum. The

solid red line is the absolute spectrum σ−abs (33), while the dashed red line is the absolute spectrum σ+
abs (32).

and

A−(Λ) := lim
z→−∞

A(z, Λ) =

 0 1
−R′(1) + Λ

D(1)
− c

D(1)

 .

More specifically, for the problem at hand the boundary of the unweighted essential spectrum of L
is determined by those Λ for which A±(Λ) has a purely imaginary eigenvalue.

In contrast, the absolute spectrum at ±∞ is determined by those Λ for which the eigenvalues
of A±(Λ) have the same real part [37]. The eigenvalues of A+ are

µ±+ =
−c±

√
c2 − 4D(0)R′(0) + 4D(0)Λ

2D(0)
, (30)

and those of A− are

µ±− =
−c±

√
c2 − 4D(1)R′(1) + 4D(1)Λ

2D(1)
. (31)

Hence, the boundary of the unweighted essential spectrum is given by the so-called dispersion
relations

Λ+ = −D(0)k2 + ick +R′(0), and Λ− = −D(1)k2 + ick +R′(1),

where k ∈ R and where µ+
± = ik are the purely imaginary spatial eigenvalue of A±. These dispersion

relations form two parabolas, opening leftward and intersecting the real axis at R′(0) = λ > 0 and
R′(1) = −λ < 0, see Figure 6. That is, all travelling wave solutions of (2) with (3) and (5) have
unweighted essential spectrum in the right half plane.

From (30) we get that the absolute spectrum at +∞ is given by

σ+
abs =

{
Λ ∈ R

∣∣∣∣ Λ < − c2

4D(0)
+R′(0) = − c2

4Di
+ λ =: K+

}
. (32)

Similarly, from (31) we get that the absolute spectrum at −∞ is given by

σ−abs =

{
λ ∈ R

∣∣∣∣ Λ < − c2

4D(1)
+R′(1) = − c2

4Dg
− λ =: K−

}
. (33)

That is, σ−abs is always fully contained in the open left half plane including the origin, while σ+
abs is

only fully contained in the open left half plane including the origin for c ≥ c∗ = 2
√
λDi, see Figure

6.
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In conclusion, a travelling wave solution with speed 2
√
D′(β)R(β) < c < c∗ is absolutely

unstable and no weights exist to shift its unweighted essential spectrum into the open left half
plane. In contrast, the absolute spectrum of a travelling wave solution with speed c ≥ c∗ is fully
contained in the open left half plane including the origin and weights can be found that shift the
unweighted essential spectrum into this region.

Remark 1 To fully establish spectral stability of the operator L, we also need to determine the
point spectrum of L and show that it is contained in the open left half plane including the origin
when c ≥ c∗ provided our perturbations stay in an appropriately chosen Hilbert space X . With
this in mind, we define

w(z) := D(û)q(z)e
∫
c/(2D(û(t)))dt. (34)

Then if Lq = Λq (29) we have that w will solve

Mw(z) := D(û)wzz +

(
R′(û)−

c
(
c+ 2D′(û)ûz

)
4D(û)

)
w(z) = Λw(z).

We have thus reduced the problem to showing thatM is negative semi-definite on some appropri-
ately chosen Hilbert space X . Unfortunately, the natural choice for such a Hilbert space in these
problems is the one with“inner product”

(u, v) :=

∫
uv

D(û)
dz,

but the sign change in D(û) means that this is actually no longer an inner product (it is strictly
negative for a localised pulse near where D(û) is negative for instance).

However, if we instead work with the desingularised system (13), then for a perturbation q̃
about û, linearising gives the eigenvalue problem for the linearised desingularised system

q̃ξξ + cq̃ξ + F (û)q̃ = Λq̃ , (35)

where F (u) is defined in (17). The standard Liouville transformation w̃(ξ) := q̃(ξ)ecξ/2 now does
lead to a self adjoint eigenvalue problem in terms of w̃(ξ)

w̃ξξ +

(
F (û)− c2

4

)
w̃(ξ) = Λw̃(ξ) .

Here, one can show explicitly that the operator

M̃ :=
d2

dξ2
+

(
F (û)− c2

4

)
is negative semi-definite precisely when c ≥ c∗. Indeed, as we are assuming that Di > 4Dg, the
potential term in M̃ satisfies(

F (û)− c2

4

)
<

1

4

(
−c2 + λDi(4− 32û+ 63û2 − 36û3)

)
and the polynomial term 4 − 32û + 63û2 − 36û3 has a maximum value of 4 when û ∈ [0, 1] (at
û = 0). So, we have that F (û) − c2/4 ≤ 0 when c ≥ c∗ = 2

√
λDi. Thus, M̃ is a negative

semidefinite operator in the space of perturbations which decay faster than ecξ, that is, H1
c . This

is usually referred to as a transient instability in the stability literature [37, 40].
Lastly, we remark that given what was just shown, the only remaining step in the proof of

stability of these travelling wave solutions for c ≥ c∗ is how to relate the eigenvalue problem of the
desingularised system (35) to the spectrum of the operator L. Due to the singular nature of the
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operator, it is unclear how to even define the ‘natural’ Hilbert spaces which should act as domains
for the original linearised problem. Further, the weighting given in (34) involves a nonlinear, singular
exponential weight, and to the best of our knowledge there is no such work which describes the
dynamic effects of stability or instability in these cases. So, we cannot even say whether we would
have only a transient instability even if we could show that the ‘natural’ operator was negative
definite on an appropriate domain.

4 Summary and future work

4.1 Summary of results

We started this manuscript with a lattice-based discrete model reflecting the differences in
individual and collective cell behaviour introduced in [20]. Based on [20], the discrete model has
the continuous description (2) obtained by using truncated Taylor series in the continuum limit. Our
analysis focused on the case where Di > 4Dg so that we can obtain a convex nonlinear diffusivity
function D(U), given by (3) which changes sign twice in our domain of interest. Furthermore, the
assumption of equal proliferation rates and zero death rates leads to a logistic kinetic term R(U),
given by (5). The associated numerical simulations of (2) with (3) and (5), see Figure 2, provided
evidence of the existence of smooth monotone travelling wave solutions. To study these travelling
wave solutions of (2), we used a travelling wave coordinate z = x − ct and looked for stationary
solutions in the moving frame. Consequently, (2) was transformed into the singular second-order
ODE (11) which we transformed into a singular system of first-order ODEs (12). To remove the
singularities, we used the stretched variable D(u)dξ = dz and transformed (12) into system (13).
Next, we analysed the phase plane of the desingularised system (13) and proved the existence of
heteroclinic orbits connecting the equilibrium points (0, 0), (α, 0), (β, 0) and (1, 0) for wave speeds
c ≥ c∗, given by (9). Subsequently, based on the relation between the phase planes of (12) and
(13), we proved the existence of a heteroclinic orbit in (12) connecting the equilibrium points (1, 0)
and (0, 0) passing through (α, 0) and (β, 0), that are special points on the phase plane called a hole
in the wall of singularities. That is, we proved the existence of smooth monotone travelling wave
solutions of (2) for c ≥ c∗. In the end, we showed that the travelling wave solutions of (2) with
wave speeds c < c∗ are absolutely unstable, which in turn explained that the numerical simulations
only provided travelling wave solutions with wave speeds c ≥ c∗.

Based on our analysis, one-dimensional agent density profiles will eventually spread with a
speed c ≥ c∗ if the two types of agents have equal proliferation rates, zero death rates and different
diffusivities satisfying Di > 4Dg. Notice that c∗ = 2

√
λDi, hence, the lowest speed for the travelling

wave only relates to the diffusivity of individuals and is independent of the diffusivity of the gouped
agents. That is, the diffusivity of grouped agents which is smaller than that of isolated agents
(Di > 4Dg) does not give restrictions for the lowest speed of the moving front. Consequently, we
infer that the speed of invasion processes for organisms, for instance, cells, is mainly determined
by the behaviour of individuals. Furthermore, the Fisher-KPP equation also has a minimum wave
speed for the existence of smooth monotone travelling wave solutions [14, 25]. Hence, a discrete
mechanism of invasion processes considering the differences in individual and collective behaviours
can lead to the similar macroscopic behaviour as the discrete mechanism with no differences in
isolated and grouped agents.

4.2 Smooth travelling wave solutions for positive D(U)

If Di < 4Dg, then the nonlinear diffusivity function D(U) is positive for U ∈ [0, 1], see Figure
7a. Thus the corresponding system of first-order ODEs (12) is not singular, and the nullcline
p = −D(u)R(u)/c does not cross u-axis, see Figure 7b. In other words, (0, 0) and (1, 0) are the
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Fig. 7 (a) shows D(U) with Di = 0.25 and two different Dg . (b) gives the corresponding phase planes of system
(12) for λ = 0.75, c = 1, Di = 0.25, Dg = 0.2 and Dg = 0.6, respectively. The two solid curves are the nullclines
p = −D(u)R(u)/c with Dg = 0.2 (blue curve) and Dg = 0.6 (orange curve), respectively. The red dashed lines
are the corresponding heteroclinic orbits representing travelling wave solutions in (2).

only equilibrium points. Following the same method as applied in Section 2.2, we obtain the lower
bound

S1 = sup
u∈(0,1)

2

√
D(u)R(u)

u
= sup
u∈(0,1)

2
√
λ(1− u)D(u),

such that there exist smooth monotone travelling wave solutions of (2) for c ≥ S1. The origin is
still a stable node for c ≥ 2

√
λDi := S2 and S1 ≥ S2. So, if S1 6= S2, c ≥ S1 is only a sufficient

condition because there may exist smooth monotone travelling wave solutions of (2) for wave speeds
S2 ≤ c < S1. Thus, we can only conclude that the minimum wave speed is in the range

S2 ≤ ĉ ≤ S1, (36)

such that there exist smooth monotone nonnegative travelling wave solutions of (2) for c ≥ ĉ. Note
that the minimum wave speed ĉ can be different from the minimum wave speed c∗ in Theorem 1,
and Lemma 2 does not necessarily hold.

This estimate is consistent with the result in [31] obtained based on the comparison method
introduced by [4]. The corresponding numerical simulations also give the expected results, see
Figure 8. [47] obtained an asymptotic travelling wave solution for a PDE motivated by polymer
diffusion with a positive nonlinear diffusivity function and logistic kinetics for wave speeds greater
than a minimum wave speed which is greater than S2. This is consistent with the estimate of the
minimum wave speed in (36). For solutions with an asymptotic wave speed equal to S2, the front
of the travelling wave is called a pulled front ; for solutions with asymptotic speeds greater than
S2, the front of the travelling wave is called a pushed front [35]. Unravelling the differences in wave
speed selection remains to be explored.

4.3 Shock-fronted travelling waves

In Section 2, we mainly considered the equilibrium point (0, 0) as a stable node in the phase
plane of system (13). With (0, 0) a stable node, (β, 0) is also a stable node based on (22). However,
(22) does not hold for any convex D(U) which changes sign twice. For instance, for

D̂(U) = (U − 0.1)(U − 0.3), (37)

condition (15) and condition (16) become

c ≥ 2

√
D̂(0)R′(0) = 0.3, c ≥ 2

√
D̂′(0.3)R(0.3) ≈ 0.355.
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Fig. 8 (a) gives the wave speed as a function of the initial condition U(x, 0) = 1/2+tanh (−η(x− 40)) /2. Notice
that as η grows to infinity this initial condition limits to the Heaviside initial condition. Parameters are λ = 0.75,
Di = 0.25 and Dg = 0.6. The wave speed reaches its minimum which is between S1 and S2 and then converges
to a bigger value which is still between S1 and S2. In (b), Dg = 0.2 while the other parameters are the same. In
this case, the wave speed converges to S2.
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u
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Fig. 9 (a) is the phase plane of the desingularised system (13) with D̂(u), c = 0.3 and λ = 0.75. The vertical
dashed lines are the wall of singularities at u = 0.1 and u = 0.3. The blue lines are the nullclines p = 0 and
p = −D(u)R(u)/c. The red line is the heteroclinic orbit connecting (1, 0) to (0.3, 0). (b) is the phase plane of

system (12) with D̂(u), c = 0.3 and λ = 0.75. The vertical dashed lines are the walls of singularities u = 0.1 and
u = 0.3. The blue lines are the nullclines p = 0 and p = −D(u)R(u)/c. The red line shows the opposite moving
directions of the same trajectory in (a) on different sides of the wall of singularities u = 0.3.

With the nonlinear diffusivity function D̂(U), the equilibrium point (0, 0) is a stable node and the
equilibrium point (β, 0) is a stable spiral for speeds 0.3 < c < 0.355... in (13). In this case, only
shock-fronted travelling wave solutions of (2) can exist since (13) no longer possesses heteroclinic
orbits connecting to (β, 0) that do not cross the walls of singularities, see Figure 9. The correspond-
ing numerical simulation of (2) indeed gives a shock-fronted travelling wave solution with a speed
c = 0.3, see Figure 10.

It is not a surprise to see shock-fronted travelling wave solutions in negative nonlinear diffu-
sion equations. Shocks in negative nonlinear diffusion equations with no kinetic terms have been
studied in the context of many physical phenomena, such as the movement of moisture in partially
saturated porous media [11]; the motion of nanofluids [26] and these kinds of PDEs also arise
in the study of Cahn-Hilliard models [48]. Numerical simulations of (2) with nonlinear diffusivity
function (3) and Allee kinetics (4) also lead to shock-fronted solutions, see [20]. In addition, Allee
kinetics support shock-fronted travelling wave solutions for reaction-diffusion-advection equations
with small diffusion coefficients [39, 45]. The analysis of shock-fronted travelling wave solutions in
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Fig. 10 (a) shows the evolution of a Heaviside initial condition to a smooth travelling wave solution obtained by
simulating (2) with (37) and (5) with λ = 0.75 at t = 0, t = 25 and t = 50. Notice that D(U) = 0 at α = 0.1 and
β = 0.3. The travelling wave solution eventually has a constant positive speed, c = 0.3. (b) amplifies the region
around the shock. Blue dots represent the numerical simulations of the corresponding travelling wave solutions
which indicate the existence of a shock.

nonlinear diffusion-reaction equations with generic diffusivity functions and logistic kinetics is left
for future work.
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