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Abstract

Reaction-nonlinear diffusion (RND) partial differential equations are a fruitful playground
to model the formation of sharp travelling fronts, a fundamental pattern in nature. In this
work, we demonstrate the utility and scope of regularisation as a technique to investigate shock-
fronted solutions of RND PDEs, using geometric singular perturbation theory (GSPT) as the
mathematical framework. In particular, we show that composite regularisations can be used
to construct families of monotone shock-fronted travelling waves sweeping out distinct gener-
alised area rules, which interpolate between the equal area and extremal area (i.e. algebraic
decay) rules that are well-known in the shockwave literature. We further demonstrate that our
RND PDE supports other kinds of shock-fronted solutions, namely, nonmonotone shockwaves
as well as shockwaves containing slow tails in the aggregation (negative diffusion) regime. Our
analysis blends Melnikov methods—in both smooth and piecewise-smooth settings—with GSPT
techniques applied to the PDE over distinct spatiotemporal scales.

We also consider the spectral stability of these new interpolated shockwaves. Using tech-
niques from geometric spectral stability theory, we determine that our RND PDE admits spec-
trally stable shock-fronted travelling waves. The multiple-scale nature of the regularised RND
PDE continues to play an important role in the analysis of the spatial eigenvalue problem.

1 Introduction

Continuum transport models of coupled systems of cell populations have for the most part used
standard linear diffusion to model population spread [23, 36].
Reaction-diffusion equations, such as the extensively studied Fisher equation [10], are used to model
population growth dynamics combined with a simple linear Fickian diffusion process, and are typ-
ically capable of exhibiting travelling wave solutions.

In cell migration, advection (or transport) is another source of pattern formation. It may repre-
sent, e.g., tactically-driven movement, where cells migrate in a directed manner in response to a
concentration gradient [24, 36]. Such a concentration gradient develops, for example, in a soluble
fluid (chemotaxis) or as a gradient of cellular adhesion sites or of substrate-bound chemoattrac-
tants (haptotaxis). Well-studied examples of individual cells exhibiting directed motion in response
to a chemical gradient include bacteria chemotactically migrating towards a food source. Wound
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healing, angiogenesis or malignant tumor invasion are just a few examples of chemotactic and/or
haptotactic cell movement where the migrating cells form part of a dense population of cells as
may be found in tissues. Such migrating cell populations not only form travelling waves but may
also develop sharp interfaces in the wave form [14, 15, 17, 26, 27, 35, 48].

Another important experimental observation is that motility varies with population density [4,
8, 41]. Such density-dependent nonlinear diffusion processes are also implicated in the formation
of sharp interfaces. In the context of population dynamics, living cells make informed decisions
through, e.g., sensing the local cell density, and they perform a ‘biased walk.’ This could lead to,
e.g., the tendency to cluster or aggregate with other nearby cells–think of flocking or swarming.
Such aggregation mechanisms can be achieved through, e.g., density dependent negative (or back-
ward) diffusion, and such nonlinear diffusion models with subdomains of backward diffusion are
known to admit shock-type solutions [19]. Our goal in this paper is to consider the emergence of
shock-fronted travelling waves in reaction-nonlinear diffusion (RND) models that arise as continuum
limits of discrete motile processes made by aggregations of cells or other biological agents [4, 20, 40].

In general, shocks are problematic because as the wave front steepens (and a shock forms) the
solution becomes multivalued and physically nonsensical. The model breaks down and it becomes
impossible to compute the temporal evolution of the solution [33, 34]. To deal with such ill-posed
problems, shock solutions of PDEs are mathematically formalised as weak solutions in the appro-
priate function space, and it is generally understood that such solutions are nonunique—this is
related to the issue of where exactly the shock discontinuity develops in the domain. Nonunique
families of weak solutions are known to arise in models of nonlinear diffusion processes. In physical
and chemical problems, shock selection is typically enforced by physical constraints, such as conser-
vation laws, entropy and energy conditions, just to name a few. For example, in advection-reaction
models they may represent hyperbolic balance laws, i.e., hyperbolic conservation laws with source
terms, where the formation of shock fronts is well-known. These shock selection rules are usually
referred to as admissibility criteria. We refer the reader to [42, 49] for a comprehensive development
of shock structure theory from this point-of-view.

Our approach to deal with ill-posed problems and shock formation in this paper is to employ
regularisation: we add small perturbative higher order terms to these models to give rise to well-
posed problems and, hence, introduce smoothing effects. In the context of hyperbolic conserva-
tion/balance laws, these are usually small viscous (diffusive) regularisations, e.g., the well-known
viscous Burgers equation. Due to dissipative mechanisms, these physical shocks are observed as
narrow transition regions with steep gradients of field variables. Mathematically, questions of ex-
istence and uniqueness of such viscous shock profiles are fundamental.1

Regularisation techniques have been employed in physical and chemical problems having nonlinear
diffusion processes. These regularised models are usually referred to as phase separation problems
[9]. The Cahn-Hilliard equation modelling nucleation in a binary alloy is probably the most famous
of these phase separation problems [5, 18, 39], while Sobolev regularisation of phase separation mod-

1Another option is dispersive regularisation, e.g., the Korteweg-de Vries (KdV) equation. Note that both regu-
larisations (viscous and dispersive) deal with the same problem (inviscid Burgers equation) but create very different
outcomes.
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els is another technique [37]. These regularisation techniques are not so well-known [6, 8, 38, 40]
within the population dynamics modelling community.

Possible shock formation in such regularised RND models is the main focus of this article, and we
will use tools from geometric singular perturbation theory and dynamical systems theory to tackle
this problem. Again, questions of existence and uniqueness of such regularised shock profiles are
fundamental. In particular, we focus on the shock selection criteria based on different composite
regularisations. It is worth noting that Witelski considered shock formation in regularised advec-
tive nonlinear diffusion models in [50, 51] by means of singular perturbation theory, i.e., he also
included advection or transport phenomena in his study. We, on the other hand, focus on nonlin-
ear diffusion as the sole shock formation mechanism. Furthermore, we also consider the spectral
stability of these regularised shock waves, and we even construct new kinds of regularised waves,
including nonmonotone shockwaves as well as shockwaves containing slow passage through regions
of negative diffusion—all of which extends Witelski’s approach significantly.

The manuscript is structured as follows: in section 2 we introduce our RND model and its composite
regularisations. In sections 3 and 4 we show the existence of travelling and standing waves in such
models using GSPT machinery. In section 5 we then show spectral stability results for monotone
regularised shock waves, and we conclude in section 6. We summarise the Melnikov theory we
use—in particular, a new piecewise-smooth adaptation of the Melnikov integral—in the Appendix.

2 The setup for RND Models

We start by considering a dimensionless reaction–nonlinear diffusion model of the form

ut = (D(u)ux)x + f(u) = Φ(u)xx + f(u) (1)

where x ∈ R denotes the spatial domain, t ∈ R+ denotes the time domain, u(x, t) ∈ R+ denotes a
(population/agent) density, D(u) models a (population/agent) density dependent diffusivity. Φ(u)
is an anti-derivative of D(u), i.e. Φ′(u) = D(u), referred to as the potential.
The (dimensionless) population/agent density u is scaled such that u ∈ [0, 1] forms the domain
of interest where u = 1 is the carrying capacity of the population/agent density. This domain of
interest is also reflected in the reaction term f(u) which is often modelled either as logistic growth
or as bistable growth. We consider the latter in this paper:

f(u) = κu(u− α)(1− u) , κ > 0, 0 < α < 1. (2)

We focus on RND models where not only diffusion is present but also aggregation (or backward
diffusion) [5, 8, 18, 36, 38].
By imposing different motility rates for agents that are isolated compared to other agents, one
obtains density dependent nonlinear diffusion [20]. Aggregation will manifest itself in these models
in sign changes of the density dependent diffusion coefficient D(u). The simplest density-dependent
nonlinear diffusion coefficient model that we consider is of the polynomial form

D(u) = β(u− γ1)(u− γ2) (3)
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Figure 1: The graph of the potential Φ and the admissible jump zone (shaded) that allows for
possible shock connections. We denote the graph (u,Φ(u)) by S = Sl

s ∪ Fl ∪ Sm ∪ Fr ∪ Sr
s which

is referred to as a critical manifold; see Sec. 3.1 for details. Possible shocks are confined to a fixed
potential value Φ(u) = const, i.e. jumps must occur over the middle branch of the potential, Sm,
connecting the outer two branches of the potential, Sr

s and Sl
s (shaded region).

with 0 < γ1 < γ2 < 1, i.e., we model diffusion-aggregation-diffusion (DAD) in the domain of
interest.
For sparse population density diffusive behaviour is assumed, while for intermediate population
density aggregation will happen. For larger population densities (close to the carrying capacity),
diffusive behaviour occurs again.
This DAD model assumption leads to a non-monotone cubic potential Φ(u) as sketched in Figure 1.
It is this non-monotonicity of the potential Φ which creates a bistability zone of diffusive states
which can lead to phase-separation, i.e., shock formation.

2.1 RND dynamics and shock formation in travelling wave coordinates

Let us look for one of the simplest possible coherent structures in such RND models (1), travelling
waves with wave speed c ∈ R that connect the asymptotic end states u− = 1 → u+ = 0 or
vice versa, i.e., population/agents invade or evade the unoccupied domain with constant speed. A
travelling wave analysis introduces a co-moving frame z = x−ct in (1), c ∈ R. Stationary solutions,
i.e., ut = 0, in this co-moving frame include travelling waves/fronts, and they are found as special
(heteroclinic) solutions of the corresponding ODE problem

−cuz − (D(u)uz)z = f(u) . (4)

Define the variable v := −cu−D(u)uz to obtain the corresponding 2D dynamical system

D(u)uz = −(v + cu)

vz = f(u) .
(5)

Note that this dynamical system is singular whereD(u) = 0, i.e., wherever the diffusion-aggregation
transition happens. To be able to study this problem (5) on the whole domain of interest including
these transition zones near D(u) = 0, we make an auxiliary state-dependent transformation dz =
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D(u)dζ which gives the so-called desingularised problem

uζ = −(v + cu)

vζ = D(u)f(u) .
(6)

This problem is topologically equivalent to (5) in the diffusion regime D(u) > 0
while one has to reverse the orientation in the aggregation regime D(u) < 0
to obtain the equivalent flow.

Remark 2.1. We emphasize that the auxiliary system is only a proxy system to study the problem
near D(u) = 0. To completely understand the original flow near D(u) = 0, one has to use additional
techniques such as the blow-up method; see, e.g., [44].

Remark 2.2. The desingularised system (6) is Hamiltonian when c = 0, with generating function

H̃(u, v) = −v
2

2
−
∫
D(u)f(u) du. (7)

In this case, local segments of the (un)stable manifolds of the saddle points at u = 0 and u = 1 lie
inside contours of H̃(u, v).

The asymptotic end states of the travelling waves form equilibrium states of the desingularised (and
the original) problem defined by f(u±) = 0, and v± = −cu±. Our focus is on these asymptotic end
states given by the equilibria

p− := (u−, v−) = (1,−c) , p+ := (u+, v+) = (0, 0) (8)

Remark 2.3. In the case of a bistable reaction term (2), there exists an additional equilibrium
in the domain of interest defined by f(ub = α) = 0 which gives (ub, vb) = (α,−cα). Its impor-
tance/relevance will be discussed later on.

In our setup of the RND model, travelling wave solutions connecting u− and u+ (if they exist)
allow for nonsmooth solutions, because the zeroes of the diffusion coefficient D(u) in the relevant
domain of interest u ∈ [0, 1] define singularities in this problem. Discontinuous jumps (shocks)
can occur anywhere within the admissible jump zone; see Figure 1. In the absence of an obvious
integral conservation law, our approach is to define geometric criteria for shock selection.

One strategy is to formally select a shock height from the admissible jump zone in Figure 1, i.e. we
specify the endpoints of the shock u = ul and u = ur such that Φ(ul) = Φ(ur). For system (6), let
us denote byW u(p−, c) the unstable manifold of p− and byW s(p+, c) the stable manifold of p+. Let
v−(c) denote the v-coordinate of the first intersection ofW u(p−, c) with the section {(u, v) : u = ur},
and similarly denote by v+(c) the v-coordinate of the first intersection ofW s(p+, c) with the section
{(u, v) : u = ul}. We can then attempt to locate a wavespeed c = c∗ such that

v+(c∗) = v−(c∗). (9)

If such a wavespeed exists, then we are able to construct a formal (nonsmooth) shock connecting
u− and u+ according to a given shock selection rule.
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Figure 2: A pair of symmetric standing waves (solid curve segments connected by dashed lines rep-
resenting shock discontinuities of the solutions, red and blue online) of the desingularised travelling
wave equations (6), subject to the equal area shock selection rule. Vertical dashed lines (gray online)
denote shock selection values u = ul/r. Corresponding contour H̃(u, v) = H̃(0, 0) = H̃(1, 0) = 0 un-
derlaid (gray solid curve). (b) Corresponding shock selection with ul ≈ 0.06699 and ur ≈ 0.93301.
Parameter set: γ1 = 1/4, γ2 = 1− γ1 = 3/4, α = 1/2, c = 0, κ = 5, β = 6.

Shock selection can also be enforced from other geometric conditions. Let us consider a symmetric
setup with γ2 = 1− γ1 and α = 1/2, i.e., the roots of the diffusion D(u) are placed symmetrically
about the midpoint u = 1/2 in the interval u ∈ (0, 1) and the middle root of the reaction term f(u)
is placed exactly in the middle. In view of Remark 2.2 and the symmetry, the (un)stable manifolds
of the saddle points at u± = 0, 1 happen to lie on the same contour of H̃(1, 0) = H̃(0, 0) = 0 when
c = 0, i.e.,

H̃(1, 0) =

∫ 1

0
D(u)f(u) = 0 . (10)

We find that there is exactly one pair of u-values ul/r at which the (un)stable manifolds of the
saddle points in the region D(u) > 0 can be formally connected by a shock, such that the potential
Φ(u) remains constant; see Figure 2. In other words, the correct admissible standing shock has
been decided by the symmetry.

Remark 2.4. As a consequence of the symmetry, the shock selection values u = ul/r in this case
are given by the well-known equal-area rule; see Figure 2(b) and the corresponding formula (32).

Under continuous variation of the shock selection height and the other model parameters, we expect
an entire continuum of such shock connections to persist near to this family of symmetric standing
shocks, with continuously varying wavespeeds.2 Each member of this continuum will constitute a
formal shock solution connecting the states ul and ur in the desingularised system (6).

2.2 Regularisations of RND models

Following the geometric approach in the previous section, our goal is to describe conditions under
which particular shock criteria are uniquely selected from within the admissible jump zone. The
related issues of nonuniqueness and lack of smoothness suggest that we should consider a ‘nearby’

2We revisit this assertion in more detail in Sec. 4.2.
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system in which locally unique, smoothed shock-fronted solutions are available. Our approach is
to add small perturbative high-order regularisation terms.

Regularisation of RND models is typically considered in one of two ways [38, 39]. The first method
of regularisation accounts for viscous relaxation by adding a small temporal change in the diffusivity:

ut = (Φ(u) + εut)xx + f(u), 0 ≤ ε≪ 1. (11)

This is usually referred to as a Sobolev regularisation. The second of these involves adding a small
change in the potential to account for interfacial effects, leading to:

ut = (Φ(u)− ε2uxx)xx + f(u), 0 ≤ ε≪ 1. (12)

Both regularisation techniques can be viewed as higher order viscous regularisations. They have
been widely employed in models of chemical phase-separation, though they have gone relatively
unnoticed in biological models until very recently.

Here, we study the possible effects of both regularisations in a single RND model, i.e.,

ut = (Φ(u) + εaut − ε2uxx)xx + f(u), 0 ≤ ε≪ 1, a ≥ 0. (13)

Since we only consider small perturbative regularisations 0 < ε ≪ 1, these models are so-called
singularly perturbed systems and, as a consequence, the powerful machinery of geometric singular
perturbation theory (GSPT) is applicable [7, 21, 48], as we shall explain.

Remark 2.5. Continuum macroscale models can also be derived from lattice-based microscale mod-
els; see [20] for leading order RND models and [2] for (more complicated) regularised RND models.

3 The GSPT setup for the regularised RND model (13)

We derive conditions based on the specific functions D(u) and f(u) that lead to travelling waves
with sharp interfaces (shocks) in one spatial dimension. We introduce a travelling wave coordinate
z = x − ct for waves with speed c ∈ R and ask for stationary states of the PDE in the co-moving
frame. This transforms the regularised RND model (13) into a fourth order ordinary differential
equation

−cuz = Φ(u)zz − εacuzzz − ε2uzzzz + f(u) , (14)

which we can recast as a singularly perturbed dynamical system in standard form

εuz = û

εûz = w +Φ(u)− δû

vz = f(u)

wz = v + cu .

(15)

where (u, û) ∈ R2 are ‘fast’ variables, (v, w) ∈ R2 are ‘slow’ variables, ε≪ 1 is the singular pertur-
bation parameter, and δ := ac is an additional lumped system parameter incorporating the wave
speed c and the relative contribution of the viscous relaxation a.

7



Rescaling the ‘slow’ independent travelling wave variable dz = εdy in (15) gives the equivalent fast
system

uy = û

ûy = w +Φ(u)− δû

vy = εf(u)

wy = ε(v + cu) ,

(16)

with the ‘fast’ independent travelling wave variable y.
These equivalent dynamical systems (15) respectively (16) have a symmetry

(û, v, c, y) ↔ (−û,−v,−c,−y), respectively (û, v, c, z) ↔ (−û,−v,−c,−z) . (17)

We will focus on heteroclinic connections made between the two equilibria

p− := (u−, û−, v−, w−) = (1, 0,−c,−Φ(1)) , p+ := (u+, û+, v+, w+) = (0, 0, 0,−Φ(0)) (18)

corresponding to steady-states of the density variable u at u = 1 and u = 0; note the slight abuse in
notation in using p± to refer to the corresponding equilibria of both the 2D desingularised problem
(6) and the (regularised) 4D system (16). An eigenvalue calculation using the linearisation of (16)
determines that both equilibria are (hyperbolic) saddle points having two-dimensional stable and
unstable manifolds for each ε > 0.

The aim is to use methods from GSPT to analyse the travelling wave problem in its ‘slow’ respec-
tively ‘fast’ singular limit system, i.e., ε → 0 in (15) respectively (16), and to infer results on the
existence (and stability) of shock-fronted travelling waves in the full regularised RND problem for
ε ̸= 0.

3.1 The limit on the fast scale - the layer problem

We begin with the ‘fast’ system (16). Here the limit ε→ 0 gives the layer problem

uy = û

ûy = w +Φ(u)− δû

vy = wy = 0 ,

(19)

i.e., (v, w) are considered parameters. Hence, the flow is along two-dimensional fast fibers L :=
{(u, û, v, w) ∈ R4 : (v, w) = const}. The set of equilibria of the layer problem,

S := {(u, û, v, w) ∈ R4 : û = û(u, v) = 0, w = w(u, v) = −Φ(u)} , (20)

forms the two-dimensional critical manifold of the problem which is a graph over (u, v)-space. In the
assumed diffusion-aggregation-diffusion (DAD) setup (3), we have a sign change in the diffusivity
along the set

F := {(u, û, v, w) ∈ S : D(u) = 0} , (21)

where F = Fl ∪ Fr = {(u, û, v, w) ∈ S : u = γ1} ∪ {(u, û, v, w) ∈ S : u = γ2} consists of two disjoint
one-dimensional lines. Thus we have a splitting of the critical manifold S = Sl

s ∪Fl ∪ Sm ∪Fr ∪ Sr
s

8



Figure 3: sketch of the two-dimensional critical manifold S projected onto (u, v, w)-space.

where

Sl
s :={(u, û, v, w) ∈ R4 : û = û(u, v) = 0, w = w(u, v) = −Φ(u), u < γ1}

Sr
s :={(u, û, v, w) ∈ R4 : û = û(u, v) = 0, w = w(u, v) = −Φ(u), u > γ2}

Sm :={(u, û, v, w) ∈ R4 : û = û(u, v) = 0, w = w(u, v) = −Φ(u), γ1 < u < γ2} ,
(22)

see Figure 3. The stability property of this set of equilibria S is determined by the two non-trivial
eigenvalues of the layer problem, i.e., the eigenvalues of the Jacobian evaluated along S,

J =

(
0 1

D(u) −δ

)
. (23)

This matrix has tr J = −δ and det J = −D(u). Hence, for D(u) > 0 the outer branches S
l/r
s

are normally-hyperbolic and of saddle-type (S-type). For δ ̸= 0 and D(u) < 0 the middle-branch
Sm is also normally-hyperbolic, focus/node-type (FN-type), while for δ = 0 and D(u) < 0 the
middle-branch Sm loses normal-hyperbolicity and is of centre-type (C-type).
Loss of normal hyperbolicity happens also along the set F = Fl ∪ Fr where det J = 0 independent
of δ.

3.2 The limit on the slow scale - the reduced problem

For the slow system (15), the limit ε→ 0 gives the reduced problem

0 = û

0 = w +Φ(u)− δû

vz = f(u)

wz = v + cu .

(24)

It describes the ‘evolution’ of the slow variables (v, w) constrained to the 2D critical manifold S (20)
which is given as a graph over the (u, v)-coordinate chart. We denote the corresponding embedding
ψ : R2 → R4, i.e., S = ψ(u, v). Therefore, we aim to study the corresponding reduced flow on
S in this (u, v)-coordinate chart. By definition, the main requirement on the reduced vector field
R(u, v) ∈ TR2 is that, when mapped onto the tangent bundle TS via the linear transformation Dψ

9



it has to correspond to the (leading order) slow component of the full four-dimensional vector field
constraint to TS, i.e.,

Dψ(u, v)R(u, v) = ΠSG(ψ(u, v)) =

(
v + cu

−D(u)
, 0, f(u), v + cu

)⊤
(25)

where ΠSG(ψ(u, v)) is the projection3 of the vector field G = (0, 0, f(u), v+ cu)⊤ onto the tangent
bundle TS of the critical manifold S along fast fibres L spanned by {(1, 0, 0, 0)⊤, (0, 1, 0, 0)⊤}.
Thus the reduced vector field R(u, v) in the (u, v)-coordinate chart is given by the right-hand side
of (5).

Remark 3.1. The reduced problem is independent of the two choices of regularisation as expected,
since it represents the TWP of the original RND model. With the geometric approach, we have the
extra information that this reduced flow is constrained to the critical manifold S embedded in the
full four-dimensional phase-space.

We classify all singularities of (5) by analysing the auxiliary system, i.e., the desingularised problem
(6). The equilibria of the reduced problem (5) respectively desingularised problem (6) and their
stability properties are summarised in Table 1. Additionally we know that the two asymptotic end-

states (u±, v±) are located on opposite outer branches S
l/r
s of the critical manifold while the location

of the additional equilibrium state (ub, vb) varies under the variation of the system parameters.
The Jacobian evaluated at any of these equilibria (u±,b, v±,b) is given by

J =

(
−c −1

D(u±,b)f
′(u±,b) 0

)
(26)

which has trJ = −c and det J = D(u±,b)f
′(u±,b). The types of equilibria are summarised in

Table 1. The distinction between Node and Focus (NF) depends on the sign of the discriminant
D := c2 − 4D(u±,b)f

′(u±,b), D > 0 (Node) or D < 0 (Focus). The distinction between stable c > 0
and unstable c < 0 depends on the sign of the wave speed.4

D(u) f(u) (u−, v−) (u+, v+) (ub, vb), (ub, vb), (ub, vb),
α < γ1 γ1 < α < γ2 γ2 < α

DAD bistable Saddle Saddle (un)stable NF Saddle (un)stable NF

Table 1: Type of equilibria on critical manifold S.

3.3 Folded singularities

The desingularised system (6) defines another type of singularity for the reduced problem through
D(u) = 0 which exists on the fold lines Fl/r and are known as folded singularities. In our problem,
these folded singularities are given by vfl/r = −cufl/r where ufl/r = γ1/2 , i.e.,

(ufl/r , ufl/r) = (γ1/2,−c γ1/2) . (27)

3In general, such a projection operator ΠS is oblique; see, e.g., [47]. Here it is orthogonal due to the standard
form of system (15).

4In case of a standing wave c = 0, any NF becomes a Centre.
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The Jacobian of the desingularised problem evaluated at such a folded singularity is given by

J =

(
−c −1

D′(ufl/r)f(ufl/r) 0

)
(28)

which has tr J = −c, det J = D′(ufl/r)f(ufl/r) and D = c2 − 4D′(ufl/r)f(ufl/r). Hence we have
for det J < 0 a folded saddle (FS), and for detJ > 0 a folded node (FN) or a folded focus (FF)
depending on the discriminant D being positive or negative.

ϕ(u) f(u) folded singularity α < γ1 γ1 < α < γ2 γ2 < α

DAD bistable (ufl , vfl) FS ‘stable’ FN/FF ‘stable’ FN/FF
DAD bistable (ufr , vfr) ‘stable’ FN/FF ‘stable’ FN/FF FS

Table 2: Type of folded singularities on fold lines Fl ∪ Fr = F .

Remark 3.2. The change in type of a folded singularity (FS/FN/FF) under parameter variation
coincides with the crossing of the additional equilibrium (ub, vb) through the corresponding folded
singularity (see Table 1). This codimension-one phenomenon is known in the GSPT literature as
a folded saddle-node type II (FSN II); see. e.g., [44].
The term ‘stability’ indicates only stability properties for the auxiliary system, i.e., the desingu-
larised problem (6). Folded singularities have no associated stability property since corresponding
special solutions known as canards pass through them in finite time, i.e., these canards represent
transient phenomena.

3.4 Singular heteroclinic orbits

The shock-fronted travelling waves that we seek are found as heteroclinic orbits of the four-
dimensional dynamical system (15) connecting the saddle equilibrium end states (u±, 0, v±, w±) →
(u∓, 0, v∓, w∓), i.e., we are seeking evasion fronts u− = 0 → u+ = 1 or invasion fronts u− = 1 →
u+ = 0 of the original travelling front problem. From the point-of-view of GSPT, a key observa-
tion is that solutions of the (fast) layer problem (19) and the (slow) reduced problem (5) can be
concatenated to form singular heteroclinic orbits,

Γ±
het = Γl/r ∪ Γ± ∪ Γr/l (29)

where Γ+
het denotes a singular heteroclinic evasion front connecting u− = 0 → u+ = 1, i.e., Γl is a

slow segment of the unstable manifold of the saddle equilibrium at u− = 0 connecting to ul, Γ+

is a fast jump connecting ul → ur, and Γr is a slow segment of the stable manifold of the saddle
equilibrium at u+ = 1 connecting to ur, while Γ−

het denotes a singular heteroclinic invasion front
connecting u− = 1 → u+ = 0, i.e., Γr is a slow segment of the unstable manifold of the saddle
equilibrium at u− = 1 connecting to ur, Γ− is a fast jump connecting ur → ul, and Γl, is a segment
of the stable manifold of the saddle equilibrium at u+ = 0 connecting to ul.

In Section 4 we will construct such singular heteroclinic orbits, and then describe how heteroclinic
orbits of the regularised system (15) arise as a codimension-one family of perturbations of these
singular connections for 0 < ε ≪ 1. See [29] for details of this construction in the setting of both
‘pure’ viscous relaxation and ‘pure’ Cahn-Hilliard-type regularisation (11), respectively (12). Our
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objective is to synthesize and greatly extend this previous GSPT analysis to the more general PDE
model with composite regularisation (13). Another new feature of this extension is a description
of how the family of monotone waves terminates via global singular bifurcations.

4 Shock selection rules

The asymptotic end states (u±, 0, v±, w±) of the 4D composite regularised RND problem (15) are
located on saddle branches of the critical manifold (2D layer problem) and the equilibria are also
saddles for the 2D reduced problem. This hyperbolic structure persists for the full 4D model, i.e.,
the fixed asymptotic end-states are saddles with 2 stable and 2 unstable directions.

We extend formally the regularised RND problem (15) by the dummy wavespeed equation cy = 0
and seek 1D intersections of the corresponding 3D centre-stable and the 3D centre-unstable manifold
of the two asymptotic end states (u±, 0, v±, w±, c) in 5D phase space, which is generic. In particular,
we identify how the composite regularisation parameter a picks a unique shock location and wave
speed c.

4.1 Singular fast fronts Γ± and generalised shock selection rules

Recall that we introduced the lumped system parameter δ = ac in the layer problem (19) which
takes the composite regularisation parameter a and the wave speed c into account.

4.1.1 The δ = 0 case

In this case, the layer problem (19),
uy = û

ûy = w +Φ(u)
(30)

is Hamiltonian with

H(u, û) =
û2

2
−
∫
(w +Φ(u))du . (31)

Trajectories of this layer problem are confined to level sets of the Hamiltonian (31), i.e., H(u, û) = k.
Possible trajectories that are able to connect equilibrium points on different branches of the critical

manifold S are confined to the saddle branches S
l/r
s including the boundaries Fl/r.

The corresponding equilibrium points pl/r = (ul/r, 0, vl/r,−Φ(ul/r)) ∈ S
l/r
s ∪Fl/r of such connections

must fulfill vl = vr and Φ(ul) = Φ(ur) since v and w are constant.

Remark 4.1. This creates a bound on possible w-values, w ∈ [−Φ(uf−),−Φ(uf+)] where D(uf∓) =
0, i.e., confined to the region between the local extrema of Φ; see Figure 1.

Without loss of generality, set H(ul, û = 0) = 0, i.e., H(u, û) = û2

2 −
∫ u
ul
(w + Φ(u))du. Then

H(ur, û = 0) must be equal zero as well for the existence of a layer connection between these two
points. This constraint leads to the well-known ‘equal area rule’ (see, e.g. [39]),∫ ur

ul

(wh +Φ(u))du = 0 . (32)

12



Figure 4: two heteroclinics Γ+ : pl → pr and Γ− : pr → pl for δ = 0 and w = wh ≈ −0.5648 in
(u, û)-space; other parameter values: β = 6, γ1 = 7/12, γ2 = 3/4 .

This rule allows for S
l/r
s to S

r/l
s connections, but not to the boundaries Fl/r or the centre-type middle

branch Sm. Due to the symmetry (û, y) ↔ (−û,−y) in (30), there exists automatically a pair of
such heteroclinic connections for fixed w = wh, i.e., Γ+(wh, 0) : pl → pr and Γ−(wh, 0) : pr → pl;
see Figure 4.

Remark 4.2. The equal area rule (32) determines the value w = wh for which this integral vanishes.
Since δ = ac = 0 there are two possible cases: for a = 0, it is independent of the possible wave
speed c ∈ R. On the other hand, for c = 0 it is independent of the viscous relaxation regularisation
contribution a ∈ R. Hence, the only shock-fronted standing waves that our regularised model can
produce are those satisfying the equal area rule.

4.1.2 The small |δ| case

Here we apply Melnikov theory (see, e.g., [45, 46]) to establish heteroclinic connections in the layer
problem (19) for sufficiently small |δ| > 0.
Define x = (u, û)⊤ and h(x;w, δ) = (û, w + Φ(u) − δû)⊤ such that the layer problem is given in
vector form by

x′ = h(x;w, δ) , x ∈ R2 . (33)

As shown in section 4.1.1, this system possesses heteroclinic orbits Γ±(y) for w = wh and δ = 0,
i.e., Γ′

± = h(Γ±;wh, 0). Let x = Γ± + X, X ∈ R2 which transforms the layer problem to the
non-autonomous problem

X ′ = A(y)X + g(X, y;w, δ) (34)

with the non-autonomous matrixA(y) := Dxh(Γ±;wh, 0) and the nonlinear remainder g(X, y;w, δ) =
h(Γ± +X;w, δ)− h(Γ±;wh, 0)−A(y)X.
Without loss of generality, we define the splitting of the vector space at y = 0 by

R2 = span {h(Γ±(0);wh, 0)} ⊕W (35)

whereW is spanned by a solution of the adjoint equation ψ′+A⊤(y)ψ = 0 that decays exponentially
for y → ±∞; here, this space is one-dimensional and we denote the corresponding solution by
ψ(y) = (ψ1(y), ψ2(y))

⊤.
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We measure the distance ∆ ∈ R between the one-dimensional stable and unstable manifolds em-
anating from the saddle-equilibria pl/r in a suitable cross section Σ = W . This distance function
∆ = ∆(w, δ) depends on the system parameters, and we have ∆(wh, 0) = 0. Melnikov theory
establishes the following distance function formula (see Appendix A.1)

∆(w, δ) =

∫ 0

−∞
(ψ(s)⊤g(X−(w, δ)(y), y;w, δ))ds−

∫ 0

∞
(ψ(s)⊤g(X+(w, δ)(y), y;w, δ))ds

=

∫ ∞

−∞
(ψ(s)⊤g(X(w, δ)(y), y;w, δ))ds

(36)

where X±(w, δ)(y) denotes the corresponding (un)stable manifold segments of the saddle equilibria
pl/r from the corresponding saddle equilibrium to the cross section Σ, and X is the representative
of these sets in the relevant domain.
If, e.g., Dw∆(wh, 0) ̸= 0 then w = wh(δ) = wh+bδ+O(δ2) solves ∆(wh(δ), δ) = 0 for δ ∈ (−δ0,+δ0),
δ0 > 0. The leading order expansion parameter b is then given by

b = −Dδ∆(wh, 0)

Dw∆(wh, 0)
, (37)

and these first-order expansion terms of the distance function ∆ are known as first-order Melnikov
integrals.

Proposition 4.1. The first order Melnikov integrals Dw∆(wh, 0) and Dδ∆(wh, 0) are nonzero.

Proof. The first order Melnikov integrals can be calculated as follows:

Dw∆(wh, 0) =

∫ ∞

−∞
(ψ(s)⊤Dwh(Γ±(s);wh, 0))ds ,

Dδ∆(wh, 0) =

∫ ∞

−∞
(ψ(s)⊤Dδh(Γ±(s);wh, 0))ds .

(38)

We have Dwh(Γ±(0);wh, 0) = (0, 1)⊤ and, hence,

Dw∆(wh, 0) =

∫ ∞

−∞
(ψ(s)⊤Dwh(Γ±(s);wh, 0))ds =

∫ ∞

−∞
ψ2(s)ds ̸= 0, (39)

based on the observation that the ψ2-component does not change sign along Γ±, i.e., it is a monotone
function along Γ±. Furthermore, the integral is well-defined since ψ2(y) is decaying exponentially
for y → ±∞. Hence by the implicit function theorem, w = wh(δ) = wh + bδ + O(δ2) solves
∆(w(δ), δ) = 0 for δ ∈ (−δ0,+δ0).
We also have Dδh(Γ±(0);wh, 0) = (0,−û(y))⊤ and, hence,

Dδ∆(wh, 0) =

∫ ∞

−∞
(ψ(s)⊤Dδh(Γ±(s);wh, 0))ds = −

∫ ∞

−∞
û(s)ψ2(s)ds ̸= 0 , (40)

based on a similar observation as above, i.e., both terms do not change sign under the variation
along Γ±. Hence,

b =
Dδ∆(wh, 0)

Dw∆(wh, 0)
= −

∫∞
−∞ û(s)ψ2(s)ds∫∞

−∞ ψ2(s)ds
̸= 0 , (41)

and we have a leading order affine solution w(δ) to ∆(w, δ) = 0 near (wh, 0).

This result confirms the transverse crossing of the heteroclinic branches near (0, wh) as shown in
Figure 6.
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4.1.3 The general δ ̸= 0 case

Heteroclinic orbits Γ± of the 2D layer problem (19) connecting S
l/r
s to S

r/l
s are confined to the upper

(Γ+) or lower (Γ−) half-plane in (u, û)-space. In these half-planes, the u-dynamics is monotone.
Hence, all heteroclinics Γ± are graphs over the u-coordinate chart in (u, û)-space, i.e., Γ± : û(u) :
u ∈ (ul, ur). We consider Γ+ here (the same works for Γ−). Such a heteroclinic orbit û(u) must
fulfill

dû

du
=
w +Φ(u)− δû

û
, ∀u ∈ (ul, ur)

=⇒ d

du
(
û2

2
) =

d

du

∫
(w +Φ(u)− δû)du , ∀u ∈ (ul, ur)

=⇒ û2

2
=

∫ u

ul

(w +Φ(u)− δû)du , ∀u ∈ (ul, ur) .

(42)

For u → ul, the last line is fulfilled since û(ul) = 0. For u → ur, where û(ur) = 0, we obtain a
condition for the existence of a heteroclinic orbit,∫ ur

ul

(w +Φ(u))du = δ

∫ ur

ul

û(u) du , (43)

which, for δ = 0, gives the equal area rule as established previously. For δ ̸= 0 this formula pro-
vides a generalised ‘equal area rule’, i.e., the left hand side must move away from its ‘equal area’
position given for w = wh(0) to counteract the right hand side contribution. This gives w = wh(δ)
for heteroclinic connections defined by the generalised equal-area rule (43). Figure 5 (a) shows an
example of a heteroclinic orbit for δ ̸= 0.

For sufficiently large |δ| ≥ δm, w will necessarily reach its limit wsn where one of the saddle equilibria
pl/r goes through a saddle-node bifurcation. Until then, the heteroclinic connection is along the
hyperbolic direction, but afterwards it will be along the centre direction which is non-unique and,
hence, replaces the codimension-one role of the w-variation. Thus, for fixed w = wsn and for
sufficiently large |δ| > δm, there always exists a heteroclinic orbit located at the boundary of the
admissible jump zone. Figure 5 (b) shows an example of a heteroclinic orbit for δ ≈ δm connecting
Sr
s to Fl.

Remark 4.3. For w = wsn, the left-hand side of the generalised equal-area rule (43) is fixed. One
concludes that for sufficiently large |δ| > δm, there exists a û(u) that fulfills the generalised equal
are rule, i.e., û(u) fixes the right hand side δ

∫
û du to the correct/desired value.

Figure 6 summarizes our results on the existence of shocks in the regularised RND model, i.e., the
solution branches of ∆(w, δ) = 0.
Under δ-variation, the shock connection varies continuously in the ‘jump zone’ between the height
specified by w = wh(0) = −Φ(uinfl), where uinfl denotes the inflection point of the cubic (corre-
sponding to the equal area rule), and a height specified by w = wsn = −Φ(Fl,r), where Fl,r denote
the u-values of the fold points of the critical manifold. One important insight here is that viscous
relaxation is the dominant regularising effect for |δ| > |δm| for shock location selection (in the layer
problem).

15



(a) (b)

Figure 5: (a) heteroclinic Γ− for δ = 0.1 and w = wh(δ) ≈ −0.5661, (b) border case heteroclinic Γ−
for δ = δm ≈ 0.248 and w = wsn ≈ −0.5671; other parameter values: β = 6, γ1 = 7/12, γ2 = 3/4 .

4.2 Concatenating singular heteroclinic orbits Γ±
het

According to our analysis in the layer problem, we find a curve w = wh(δ) in (δ, w) space for which
there exists singular fast jumps Γ± connecting the outer two branches of the critical manifold; see
Figure 6. In the following we aim to concatenate these fast jump segments Γ± with slow segments
Γl/r of the reduced problem that connect to the given end states u± and, thus, obtain singular

heteroclinic orbits Γ±
het (29) representing singular shock fronted travelling (or standing) waves of

our composite regularised RND problem (13).

We will start with the construction of singular heteroclinic connections in the ‘Cahn-Hilliard’-type
regularisation limit a = 0. Then, we will vary a to produce new families of shock-fronted travelling
waves under composite regularisation a ̸= 0. The system parameters β, κ > 0 are always regarded
as fixed for simplicity.

4.2.1 Singular standing and slowly-moving shocks: the a = 0 case

As discussed in Section 2.1, the locus of fully symmetric standing waves is specified in (γ1, γ2, α, c)-
parameter space by the line segment

L = {(γ1, 1− γ1, 1/2, 0) : γ1 ∈ (0, 1/2)}. (44)

We apply a piecewise-smooth variant of the Melnikov method (see Appendix A.2) to show rigorously
that L locally separates (singular) invasion and evasion fronts. We consider a parameter variation
in (α, c)-space, where we remind the reader that α determines the location of the middle root of
the reaction term f(u) given by (2). We now prove the following.

Proposition 4.2. For each γ1 ∈ (0, 1/2), there exists h > 0 so that a one-parameter family of
singular heteroclinic orbits is given locally by a path (γ1, γ2, α, c) = (γ1, 1−γ1, α, c(α)) in parameter
space, where α ∈ (1/2− h, 1/2 + h), c(1/2) = 0, and c′(1/2) < 0.
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Figure 6: Sketch of complete bifurcation diagram for heteroclinic connections Γ± in (δ, w)-space
centered at (wh(0), 0).

To set up the piecewise-smooth Melnikov calculation, we first write down the piecewise-defined
planar system of the form (73), whose trajectories are topologically conjugate to those of (6)
subject to the equal area rule shock condition. Denoting x = (u, v) and µ = (µ1, µ2) = (α, c), we
have

ẋ =

{
h−(x;α, c) := g(x;µ) if u < ul

h+(x;α, c) := g(x+ (ur − ul, 0)
T ;µ) if u > ul.

(45)

We define Σ as a suitable compact segment of {u = uL} intersecting the piecewise-smooth hetero-
clinic orbit γ(t), which is constructed by shifting the right portion of the singular heteroclinic orbit
in Figure 2 to the left by (ur −ul) and then selecting the phase so that γ(0) ∈ Σ; see Figure 7. De-
fine a function ∆(µ) measuring the distance between the (un)stable manifolds of the corresponding
saddle points on Σ. Letting µ0 = (α0, c0) := (1/2, 0), we have ∆(µ0) = 0. We seek to apply the
implicit function theorem to obtain a local path

c = c(α) = b(α− 1/2) +O((α− 1/2)2) (46)

so that there exists h > 0 so that ∆(α, c(α)) = 0 for α ∈ (1/2− h, 1/2 + h), i.e., it suffices to show
that Dc∆(µ0) ̸= 0. The corresponding leading-order coefficient is then given by

b = −DαG(µ0)

DcG(µ0)
, (47)

where G(µ) denotes the component of Σ(µ) ∈ R2 evaluated in the +x2 direction. Our goal is now
to evaluate the partial derivative terms on the right-hand side of (47), which we accomplish by
using the following lemma.

Lemma 4.1. The leading-order terms DµiG(µ0) in (47) are computed according to (79), i.e. we
have the corresponding formulas for the (leading-order) Melnikov integrals:

DµiG(µ0) =
1

v−1

∫ 0

−∞
ψ−(s)

⊤∂h−
∂µi

(γ−(s), s;µ0) ds+
1

v+1

∫ ∞

0
ψ+(s)

⊤∂h+
∂µi

(γ+(s), s;µ0) ds, (48)
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Figure 7: Piecewise-smooth heteroclinic connection obtained by shifting the segment of the corre-
sponding singular heteroclinic orbit (see Figure 2) on Sr

s to the left by ur − ul.

where ψ±(s) denote a pair of adjoint solutions defined for t ≤ 0 resp. t ≥ 0 on the corresponding
segment of the piecewise-smooth heteroclinic orbit γ0(t) with normalised initial conditions ψ±(0),
and v1,± denote the x1 components of the normalised vector fields (v1,±, v2,±) evaluated at the
intersection point x = x∗ ∈ Σ of the piecewise-smooth heteroclinic orbit γ0 at t = 0, i.e.

(v1,−, v2,−) = h−(x∗, µ0)/||h−(x∗, µ0)|| and
(v1,+, v2,+) = h+(x∗, µ0)/||h+(x∗, µ0)||.

(49)

Proof of Lemma 4.1. See Appendix A.2.

Proof of Prop. 4.2. The Melnikov integrals in (48) involve the partial derivatives Dαg(u, v) and
Dcg(u, v). For u < uL, we have

Dαg(u, v) = (0, κu(u− 1)D(u))

Dcg(u, v) = (−u, 0),
(50)

and similar expressions can be derived for u > ul using the piecewise-smooth problem (45). For
(α, c) = (1/2, 0), we define a pair of exponentially decaying solutions to the relevant adjoint problem
ψ± on either segment {u < uL} and {u > ul}, with the orientation at t = 0 chosen so that the first
components satisfy

ψ−,1(s) > 0 for s < 0 and

ψ+,1(s) < 0 for s ≥ 0,

i.e., the adjoint solution points to the right on Sr
s and to the left on Sl

s. We highlight that

ψ−,1(s) = −ψ+,1(−s)

for each s < 0; this property is inherited from the vertical reflection symmetry

h−,2(u, v; 1/2, 0) = −h+,2(2ul − u, v; 1/2, 0)
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satisfied by the vector fields for u < ul.

We now compute the Melnikov integrals defined by (48). Observe that v−1 = v+1 at the intersection
point γ(0), and hence it suffices to compute the ‘classical’ Melnikov integrals to obtain the leading-
order coefficient (47) since the common prefactor (1/v±1 ) cancels upon evaluating the ratio.

Let us denote by ũ = u + (ur − ul) the value of u shifted by the shock segment. Dropping the
common prefactor, the corresponding Melnikov integral for Dα∆(µ0) is∫ 0

−∞
ψ−(s)

⊤Dαh−(γ−(s); 1/2, 0) ds+

∫ ∞

0
ψ+(s)

⊤Dαh+(γ+(s); 1/2, 0) ds

=

∫ 0

−∞
ψ−,2(s)κu(s)(u(s)− 1)D(u(s)) ds+

∫ ∞

0
ψ+,2(s)κũ(s)(ũ(s)− 1)D(ũ(s)) ds < 0

since ψ±,2(s) > 0, κu(s)(u(s) − 1)D(u(s)) < 0, and κũ(s)(ũ(s) − 1)D(ũ(s)) < 0 along the hetero-
clinic connection.

The remaining Melnikov integral for Dc∆(µ0) is∫ 0

−∞
ψ−(s)

⊤Dch−(γ−(s); 1/2, 0) ds+

∫ ∞

0
ψ+(s)

⊤Dch+(γ+(s); 1/2, 0) ds

=−
(∫ 0

−∞
ψ−,1(s)u(s) ds+

∫ ∞

0
ψ+,1(s)ũ(s) ds

)
.

In this case, observe that the sign of ψ±,1(s) does change across the shock, so we must inspect
the integrands more closely. Using the fact that the horizontal components ψ±,1 have a reflection
antisymmetry, while the corresponding measure ũ(s) ds is unevenly weighted toward the heteroclinic
segment on u > uL, we conclude that Dc∆(µ0) < 0 as well. Hence, from (47) we have that b < 0.
The proof is completed by noting that c′(1/2) = b.

This result implies that invasion fronts (with c > 0) emerge along a locally affine branch as α is
varied below α = 1/2, resp. evasion fronts (c < 0) for α > 1/2. By symmetry, a reflected connection
from u = u− to u = u+ coexists for c = 0. An analogous Melnikov calculation gives a distinct
local branch of bifurcations connecting u = u+ to u = u−. The bifurcation structure is therefore
locally similar to the branch crossing for the fast shock fronts depicted in Figure 6. The invasion
portion of one of these locally affine branches (i.e. α < 1/2, c > 0) is depicted in Figure 8(a) for
an example parameter set.

4.2.2 Continuation of singular heteroclinic orbits

This local patch of singular heteroclinic connections serves as a natural starting point for global
continuation. For instance, we can demonstrate that the singular heteroclinic connection previously
identified in the ‘Cahn-Hilliard’-type regularisation setting [29, 31], corresponding to the parameter
set

γ1 = 7/12, γ2 = 3/4, α = 1/5, a = 0, c∗ ≈ 0.19686, κ = 5, β = 6,
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Figure 8: One-parameter continuations of a singular heteroclinic orbit joining the saddle points at
u = 0 and u = 1 for the desingularised slow flow (6), subject to shock selection given by the equal
area rule. Initial parameter set: γ1 = 1/4, γ2 = 1− γ1 = 3/4, α = 1/2, a = 0, c = 0, κ = 5, β = 6.
(a) The continuation parameter α is varied from α = 0.5 to α = 0.2 with c as the free parameter.
(b) The continuation parameter γ1 is then varied from γ1 = 1/4 to γ1 = 7/12 = 0.583̄, with c as
the free parameter. Note that c(7/12) = c∗ ≈ 0.19686.

is ‘accessible’ from L via numerical continuation, i.e., they lie on the same path-connected com-
ponent of the submanifold of heteroclinic connections. Concretely, we begin with the parameter
set

γ1 = 1/4, γ2 = 1− γ1 = 3/4, α = 1/2, a = 0, c = 0, κ = 5, β = 6

on L, giving rise to a symmetric standing wave (depicted in Figure 2). We then perform a sequence
of one-parameter continuations: first we vary α from α = 1/2 to α = 1/5 (Figure 8(a)), and then
we vary γ1 from γ1 = 1/4 to γ1 = 7/12 (Figure 8(b)), both times leaving c free. As expected, the
wavespeed c = c∗ found after these continuations agrees with the value computed in [29, 31], and
the corresponding singular connections are identical.

Remark 4.4. We can also fix c = 0 and choose some other free parameter (e.g., we can trace
families of asymmetric standing waves). Note that the reduced problem (6) remains Hamiltonian
in this case (see Remark 2.2); but in view of the jump condition, the disjoint slow portions of the
singular heteroclinic connections that we seek will typically lie on different energy surfaces. These
slow segments happen to lie on the same level set in the symmetric case (see, e.g., Figure 2), but
this scenario is exceptional.

Altogether, the line of symmetric standing waves can be continued to a regular codimension-1 sub-
manifold of singular heteroclinic bifurcations by, e.g., letting the first three parameters vary and
leaving the wavespeed c as a free parameter.

4.2.3 Singular heteroclinic connections for a > 0

Let us now extend the parameter space in the above analysis by the regularisation weighting pa-
rameter a. We demonstrate that the heteroclinic orbits in the previous section persist as transversal
intersections of (un)stable manifolds of the saddle points in the extended parameter space.
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Figure 9: (a) Bifurcation diagram in (δ, w)-space for the shock height selection in the layer problem,
corresponding to a segment of the branch Γ−, as shown in Fig. 6. Here, δm ≈ 0.248. (b) Bifurcation
diagram in (a, c)-space for the singular heteroclinic orbits. Parameter set: β = 6, γ1 = 7/12,
γ2 = 3/4, κ = 5, α = 1/5.

Let a ≥ 0 be specified; then as c varies, the corresponding extreme values u = uL(c), uR(c) selected
by the shock also vary continuously according to the height condition wh(δ) = wh(ac) = −Φ(u)
specified by the layer problem; see Figure 9(a).

Varying c simultaneously varies the (un)stable manifolds of the saddle points in the reduced prob-
lem. Suppose that the stable manifold W s(p+, c) of the saddle point at u+ = 0 has its first
intersection with the cross-section {u = uL(c)} at a point pl(c), and similarly that the unstable
manifold W u(p−, c) of the saddle point at p− = 1 has its first intersection with the cross-section
{u = uR(c)} at pr(c). Under variation of c we can then locate a locally unique value c = c(a) at
which the v-coordinates of pl(c) and pr(c) coincide; i.e., so that the shock simultaneously connects
two slow trajectories that join the two saddle points.

Altogether, we have defined a bifurcation problem for the singular heteroclinic orbits with respect
to the regularisation weighting parameter a; see Figure 9(b) for the resulting bifurcation diagram
for our example parameter set. Figure 10 depicts an example of a singular heteroclinic connection
formed under variation of the wavespeed parameter c for fixed a > 0. We emphasize that each
such invasion shock front formed within the parameter interval a ∈ [0, am], with am ≈ 1.2465,
satisfies a distinct generalised area rule! For the parameter set in the figure, a fixed wavespeed
cm ≈ 0.1994 is selected for each a > am, since this is the wavespeed at which the portions of
the singular heteroclinic connection that lie on the critical manifold connect to a viscous shock at
the fixed height specified by wh(δ) = wsn = −Φ(u), which is in turn satisfied for each δ > δm as
depicted in Figure 6.

4.3 Persistence of heteroclinics for a ≥ 0 and ε > 0

Our study of the existence of shock-fronted travelling waves for the RND PDE (13) now culminates
in a persistence analysis of the family of singular heteroclinic orbits we have constructed in the
previous sections. In this section we sketch the relevant geometrical construction for fixed a ≥ 0
and all sufficiently small values of ε > 0. The sketch for the ‘interpolated’ shock case (0 ≤ |δ| < δm)
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Figure 10: Singular heteroclinic orbit for (a∗, c∗) ≈ (0.5182, 0.19817), formed as a transversal
intersection of the stable manifold W s(p+, c) (blue curves) and unstable manifold W u(p−, c) (red
curves) as c is increased within the interval [0.18, 0.25]. Jump values u = uL(c∗), uR(c∗) satisfying
−wh(δ∗ = a∗c∗) = Φ(u) denoted by dashed black lines. Vertical magenta arrows: direction of
variation of (un)stable manifolds; horizontal orange arrows: variation of the endpoints of the shock,
as c increases. Parameter set: β = 6, γ1 = 7/12, γ2 = 3/4, κ = 5, α = 1/5.

is slightly different from the viscous shock case (|δ| ≥ δm), so we treat them separately.

The ‘interpolated’ shock (0 ≤ |δ| < δm) subcase. We consider the extended five-dimensional dynam-
ical system formed by appending the equation c′ = 0 to the system (15). The (un)stable manifolds
W s(u−) andW

u(u+) in the four-dimensional system are now extended to three-dimensional center-
stable and center-unstable manifolds W cs(u−) and W cu(u+). In the extended system, a dimen-
sion count readily verifies that intersections between these manifolds are generically transversal.
Transversality in the singular limit can be verified using a Melnikov-type analysis along the singular
layer connections and Fenichel theory (see e.g. Secs. 4 and 5 in [43]). The transversal connection
is depicted in the extended system for an example parameter set in Fig. 10.

The viscous shock (|δ| ≥ δm) subcase. As before, we must verify transversality of the singular
heteroclinic connection in the extended problem. In this case, Fenichel theory breaks down at
the fold where the viscous-type shock lands. The technical tool to extend the relevant normally
hyperbolic segments of the critical manifold across small neighbourhoods of the fold is geometric
blow-up theory; see e.g. [30].

Thus, our family of singular heteroclinic orbits defined for ε = 0 generically perturbs to a codimension-
one manifold of heteroclinic bifurcations of (16) in (a, c, ε) parameter space. An example of such an
orbit, which satisfies a generalised area rule for a nontrivial value of a > 0, is depicted in Figure 11.
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Figure 11: (a) A (u, v, w)-projection of a heteroclinic orbit of (16) for ε = 10−4, a ≈ 0.5182, and
c = 0.19826. Black curve segments on the critical manifold (obscured by red curve) denote the
slow portions of the corresponding singular heteroclinic orbit depicted in Figure 10. (b) Side view
of the heteroclinic orbit demonstrating that the connection satisfies the perturbed generalised area
rule wh(δ) = −Φ(u). Parameter set: β = 6, γ1 = 7/12, γ2 = 3/4, κ = 5, α = 1/5. Computations
performed with the bvp4c boundary value solver in MATLAB 2021a, with a relative error tolerance
of 10−5.

4.4 (Non)monotone wave transition and termination, and shock-fronted trav-
elling waves with tails in the aggregation regime

We now use numerical continuation to explore the eventual fate of the monotone5 waves we have
constructed. Let us return our focus to the singular limit ε = 0 and choose α (which specifies the
middle root of the reaction term) as the continuation parameter, leaving the wavespeed parameter
c free. Varying α within the interval 0 < α < γ1, the corresponding stable fixed point (α,−cα) of
the desingularised problem now plays a central role in the curving of the stable manifold W s(p+)
on Sl

s. At the same time, the folded singularity at u = ufl is now of folded saddle (FS) type (see
Table 2), allowing for the existence of canard solutions crossing from the stable middle branch
(when δ > 0) of the critical manifold into the saddle-type left branch.

5(Non)monotonicity always refers to the density variable u.
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Figure 12: (a) Singular bifurcation diagram depicting a monotone (blue, MTW) to nonmonotone
(red, NMTW) shock-fronted travelling wave transition, via a codimension-two tangency bifurcation
(green square) of W s(p+) with the landing curve {u = ul}. The family of nonmonotone waves
terminates on the folded-saddle-to-saddle heteroclinic bifurcation (FS-to-S) curve (grey dashed
curve). For each fixed a > 0, the FS-to-S curve contains an open subset (black solid curve) where
shock-fronted travelling waves with canard segments (TW-C) begin to appear. Parameter set:
β = 1, γ1 = 0.4, γ2 = 0.75, κ = 3, a = 0.5. For this parameter set, we have δm ≈ 0.2121. (b)
(Non)monotone wave bifurcation curves for three different values of a: (i) a = 0.5 (blue and red
solid), (ii) a = a∗ ≈ 3.2304 (magenta solid), and (iii) a = 7 (green solid and with bubble markers).
Solid red, blue, magenta, and green curves denote interpolated shock rules and the green curve
with bubble markers denotes monotone waves with viscous shocks. Orange dot: codimension-three
scenario for (a∗, c∗, α∗) ≈ (3.2304, 0.0657, 0.1384) in which the monotone waves (magenta curve)
terminate at an FS-to-S connection precisely as the shock rule changes from interpolated type to
viscous type. Remaining parameters as in (a).

The interplay between these equilibria, together with the relevant shock rule defined by δ = ac,
determines the termination of monotone waves, as well as the emergence of two new types of so-
lutions: nonmonotone shock-fronted travelling waves, and shock-fronted travelling wave solutions
containing nontrivial slow passage through regions of aggregation/negative diffusion (i.e., the wave
trajectory now has a canard segment, visiting the slow manifold near the middle branch Sm for
O(1) periods of ‘time’ with respect to the travelling wave frame coordinate z). We now show how
all of these new phenomena are organised and explained by global singular bifurcations.

Let us first continue the family of monotone shock-fronted travelling waves in the parameter α, for
small fixed values of a > 0. For decreasing α, the stable manifold W s(p+) eventually develops a
tangency to the jump curve {u = ul} on Sl

s at the end of the shock; see the termination of the blue
curve at the green square in Figure 12(a), and the corresponding tangency depicted in phase space
in Figure 13(a). This global singular bifurcation heralds the termination of the monotone waves
and the birth of nonmonotone shock-fronted travelling waves at increasing wavespeeds; see the
example in Figure 13(b), corresponding to a point on the red bifurcation curve segment in Figure
12(a). This new family of nonmonotone waves can be continued in α, where they too eventually
terminate in a one-parameter family of folded saddle-to-saddle (FS-to-S) heteroclinic connections
on Sl

s connecting W s(p+) to W
u(ufl) (the dashed grey curve in Figure 12(a)).
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Figure 13: (a) Travelling wave at the moment of tangency of W s(p+) with the landing curve of the
shock {u = ul}. Parameters: (c, α) ≈ (0.0756, 0.1212) (corresponding to the location of the green
square in Figure 12(a)). (b) A (singular) nonmonotone travelling wave for (c, α) ≈ (0.1, 0.115).
Red point: folded saddle at (ufl ,−cufl); magenta point: equilibrium at (α,−cα). Remaining
parameters: β = 1, γ1 = 2/5, γ2 = 3/4, κ = 3, a = 1/2.

We can investigate how this sequence of transitions morphs for different choices of a. In Figure
12(b), we have plotted the singular heteroclinic bifurcation curves for three different values of a.
As we fix larger values of a > 0, the endpoints of the shock begin to move to the right relatively
quickly as the wavespeed c increases, as a result of the dependence of the shock selection rule on
the parameter δ = ac. Indeed, for sufficiently large a > 0, the shock rule changes from ‘interpo-
lated’ type to ‘viscous’ type along the monotone wave branch (i.e. we enter the parameter regime
δ > δm along the corresponding bifurcation curve) before a tangency ofW s(p+) with the jump curve
{u = ul} has a chance to form. Therefore, no nonmonotone waves emerge; instead, the monotone
family terminates directly on the FS-to-S branch; see the green curve in Figure 12(b) corresponding
to a singular heteroclinic bifurcation curve for a large fixed value of a, and in particular the tran-
sition from interpolated shock rules (green solid) to viscous shock rules (green with bubble markers).

The transition between these two scenarios implies the existence of an intermediate critical value
a = a∗, for which the family of monotone waves terminates on the FS-to-S branch at a point (c∗, α∗)
precisely when the shock selection rule changes from ‘interpolated’ to ‘viscous’ type (i.e., we have
δm = a∗c∗). We have numerically identified this intermediate scenario in an example parameter
set; see the magenta curve terminating at the orange dot on the FS-to-S curve in Figure 12(b).
This termination point can be interpreted as a codimension-three global singular bifurcation at
(a, c, α) = (a∗, c∗, α∗), whose unfolding includes the emergence of nonmonotone traveling waves.

4.4.1 Shock-fronted travelling waves with canard segments

We now turn to the existence of shock-fronted travelling wave solutions containing canard segments
passing through the FS point. To find such solutions, it is natural to search along the codimension-
one family of FS-to-S heteroclinic connections (the grey dashed curve in Figure 12(a)). Recalling
that Sm is attracting when δ > 0, we search for parameter values along this branch for which the
singular stable fast fibre bundle over the unstable manifold of the FS point (with respect to the
orientation-reversed desingularised problem) on Sm transversely intersects the unstable fast fibre
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Figure 14: Singular heteroclinic orbit with a singular (vrai) canard segment through a folded
saddle (FS) point. Green curve: stable manifold W s(p+); magenta solid curve: unstable manifold
W u(p−); magenta dashed curve: segment of the projection of W u(p−) onto Sm; black dashed lines:
fold curves. Parameter set: β = 1, γ1 = 2/5, γ2 = 3/4, κ = 3, α ≈ 0.068984, c = 0.2.

bundle sitting over W u(p−) (in R4). A transverse intersection of this type is depicted in Figure 14
by projecting the corresponding segment of W u(p−) onto Sm via the layer flow.

These transverse crossings along the FS-to-S curve give rise to shock-fronted travelling waves con-
taining singular (slow) canard segments that connect Sm to Sl

s, as shown in Figure 14. Such
transverse intersections persist robustly under parameter variation, i.e., the codimension-one FS-
to-S manifold will intersect the parameter set where such transverse crossings exist in an open
neighbourhood. In other words, we still retain a well-defined codimension-one singular heteroclinic
bifurcation problem. See the black solid curve segment (labeled TW-C) representing such a subset
in Figure 12(a).

In this scenario, we are interested in the ‘shock selection rule’ (i.e. the set of allowable layer connec-
tions) that specifies how Sr

s connects to Sm. The regularisation weighting parameter a continues
to play an important role: the composite parameter δ = ac must be sufficiently large so that a long
enough segment of W u(p−) can be projected onto Sm via the layer flow to transversely intersect
the unstable manifold of the FS point. This constraint arises due to the relative orientation with
which the (un)stable manifolds break apart when crossing the heteroclinic bifurcation curve Γ−
transversely in Figure 6. In particular, suitable connections from Sr

s to Sm are found in the open
region of parameter space to the top-right of Γ− only.

Remark 4.5. Canards may also arise via slow passage through folded node (FN) points, which
also appear in our model (see Table 2). However, the stability classification of the critical manifold
and the ‘stability’ of the FN singularities (relative to the desingularised problem) do not appear to
be compatible with the existence of an invasion shock front (i.e., with c > 0), which both connects
W u(p−) to W

s(p+) and simultaneously contains a canard segment passing through the FN point.
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5 Spectral stability of monotone shock-fronted travelling waves

We now assess the stability of the monotone travelling waves constructed in the previous section,
leaving a stability analysis of the nonmonotone travelling waves as well as the travelling waves with
canards for future work. Stability results for monotone waves of our RND PDE were initiated in
[31, 32] for the viscous and ‘Cahn-Hilliard’-type regularisation limits; here we focus on extending
these results to the case of composite regularisation. We adopt the standard approach of deter-
mining the spectral stability of the linearised operator L associated with the PDE (1) near the
travelling wave. Our first step is to write down a suitable coordinate representation of L.

Let ũ(z, t) = u(z)+νeλtp(z)+O(ν2) denote a perturbation of a travelling wave u(z) of (1), where λ
is the temporal eigenvalue parameter and the variables in the linear term are assumed to separate.
Inserting this solution into (1) and collecting terms of linear order in ν, we obtain the equation

(f ′(u)− λ)p = −(cpz + (D(u)p)zz + εa(λpzz − cpzzz)− ε2pzzzz). (51)

Defining linearised variables y := (p, q, r, s) corresponding to the nested derivatives on the right
(analogously to what is done for the travelling wave system (15)), we arrive at the following nonau-
tonomous linear system:

εṗ = q

εq̇ = (D(u) + εaλ)p+ s− δq

ṙ = (f ′(u)− λ)p

ṡ = r + cp,

(52)

or more compactly,

ẏ =M(z, λ, ε)y, (53)

where M(z, λ, ε) is a convenient matrix representation of L. We highlight the terms εaλp and −δq
arising due to the viscous relaxation contribution.

By general theory (see e.g. [22]), the spectrum σ(L) of L (i.e. the set of λ in the complex plane,
where L − λ is not invertible on L2(R)) can be decomposed into its point and essential spectrum
σ(L) = σp(L) ∪ σc(L). Our task is to ensure that the spectrum is bounded within the left half
complex plane, except for an eigenvalue at the origin that necessarily exists due to translational
invariance. We must also check that this translational eigenvalue is simple.

5.1 Essential spectrum and sectoriality

We first give a brief overview of recent results for the essential spectrum. In [32], it was shown that
for each a ≥ 0, the essential spectrum is bounded well inside the left-half plane. To briefly summarise
the approach, the Fredholm borders of σe(L) are computed by tracking changes in the Fredholm
index of the asymptotically constant matrices M±(λ, ε) := limz→±∞M(z, λ, ε), which characterise
the hyperbolic dynamics near the tails of the wave. We obtain the following parametrisations for
the dispersion relations (with k ∈ R):
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λ±(k) =
f ′(u±)−D(u±)k

2 − ε2k4

1 + aεk2
+ ick. (54)

We first verify that the essential spectrum lies entirely within the left-half plane. This can be
seen by noting that the denominator of the real part of λ±(k) in (54) is strictly positive, and then
applying Descartes’ rule of signs to the numerator, noting that f ′(u±) < 0, and D(u±) and ε are
both positive. Since the numerator is an even polynomial, there are no real roots of the real part
of λ±(k). Therefore, the essential spectrum is entirely contained in the left-half plane.

Let us recall the definition of sectoriality of a linear operator from Definition 1.3.1 in [16]. A linear
operator A in a Banach space (X, || · ||) is sectorial if it is a closed, densely defined operator such
that for some ϕ ∈ (0, π/2), some real a, and some M ≥ 1,

(i) the sector Sa,ϕ := {λ ∈ C : ϕ ≤ |arg(λ− a)| ≤ π, λ ̸= 0} lies inside the resolvent set of A, and

(ii) ||λ−A||−1 ≤M/|λ− a|.

Sectoriality allows us to conclude nonlinear stability from spectral stability under mild regularity
conditions on the operator along travelling wave solutions, i.e. we can deduce the existence of a
neighbourhood of initial conditions of the shock-fronted travelling wave tending to a translate of
the wave exponentially quickly as time increases; see Ex. 6 in Sec. 5.1.1 of [16]. Simultaneously,
this property allows us to deduce the existence of a maximal compact contour K in the complex
plane containing all of the point spectrum inside it.

We showed that the essential spectrum is asymptotically vertical (obstructing sectoriality) in the
viscous relaxation limit (11) (see [32]), whereas the linearised operator is sectorial in the ‘Cahn-
Hilliard’ regularisation limit (12), corresponding to setting a = 0 (see [31]). In this section, we
verify the sector estimate (i) in the list above for a ≥ 0 by using a geometric compactification
technique, i.e. a rescaling ‘at infinity,’ as we now describe.

Remark 5.1. The resolvent estimate (ii) in the list above was verified for the a = 0 case with the
aid of spectral perturbation theorems; to summarise, sectoriality of a fourth-order spatial derivative
operator was retained under perturbation by lower-order terms (see [31]). In the present case, this
argument is more difficult to adapt due to the presence of the mixed-derivative viscous term uxxt
for a > 0, and so we defer a complete functional-analytic treatment of this issue for future work.

We follow the general approach of the proof of Prop 2.2 in Sec. 5-B of [1]: we identify a suitable
rescaling of the linearised variables in (52) in powers of |λ|, such that the |λ| → ∞ limiting system
takes an especially simple form. We use this simple form to determine that there is no unstable-to-
stable connection made (i.e. there can be no spectrum for sufficiently large values of |λ|), as long
as λ lies inside a suitable sector specified by the constraint on arg(λ).

It turns out that the appropriate choice of rescaling weights depends on whether a = 0 or a > 0.
This dichotomy is not unexpected in view of the distinct asymptotic behaviour of the dispersion
relations (54) in each case: the relations flair to the left with quartic growth when a = 0, but with
only quadratic growth when a > 0.
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Figure 15: A schematic of the dispersion relations (black) from (54) enclosing the essential spectrum
(grey), and an asymptotically bounding sector (red online). A bounding angle η is chosen such
that the viscous relaxation contribution causes the dispersion relations to ‘flair out’ above the
sector. The contributions from the Fourier transform of the nonlocal terms eventually take over
for sufficiently large values of |λ|, and the dispersion relations return to being on the left of the
bounding sector.

We first consider the case a = 0, repeating the analysis in [31] but with a focus on rescaling the
representation (52). Define the rescaled quantities

p̃ = p, q̃ = q/|λ|, r̃ = r/|λ|3, s̃ = s/|λ|2, z̃ = z|λ|.

Writing the eigenvalue system (52) in terms of the rescaled variables (p̃, q̃, r̃, s̃) with rescaled ‘time’
z̃, and then taking the limit |λ| → ∞, we arrive at the hyperbolic, constant coefficient linear system

ε ˙̃p = q̃

ε ˙̃q = s̃

˙̃r = −eiargλp̃
˙̃s = r̃.

(55)

The (spatial) eigenvalues of (55) are obtained from the roots of the quartic characteristic polynomial

ei argλ + ε2µ4 = 0,

which can be solved explicitly to obtain the expressions

µ =
ei(argλ+mπ)/4

√
ε

, m = 0, 1, 2, 3.

Note that this matches the ‘large-scale’ eigenvalues in [31] (c.f. eq. (20)), which were calculated
using a different choice of rescaling weights. We also highlight that the asymptotic eigenvalue
problem is independent of the wavespeed parameter.

Choose any η ∈ (0, π/2). Then for each fixed ε > 0, two of these eigenvalues have strictly positive
real part and the remaining two have strictly negative real part whenever |arg(λ)| < π − η. Since
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(55) is autonomous, the corresponding unstable subbundle forms an attractor near to which solu-
tions of the eigenvalue problem remain close by for all y, i.e. for sufficiently large |λ| within the
sector specified by the choice of η, there can be no contribution to the spectrum of the linearised
operator. Furthermore, the eigenvalues remain well separated as ε→ 0.

Now we consider the case a > 0. In order to control the additional λ-dependent term in (52)
when |λ| grows large, we must also include |λ| in the rescaling. We introduce an auxiliary rescaling
parameter σ > 0 and write

p̃ = p, q̃ = qσ, r̃ = rσ3, s̃ = sσ2, z̃ = z/σ, |λ| = 1/σ2. (56)

With respect to this scaling, we have

ε ˙̃p = q̃

ε ˙̃q =
(
σ2D(u) + εaei arg(λ)

)
p̃+ s̃− σδq̃

˙̃r = (σ4f ′(u)− σ2ei arg(λ))p̃

˙̃s = r̃ + σ3cp̃.

(57)

We are concerned with the dynamics near the limit σ → 0. As in the purely nonlocal case, the
limiting linear system has constant coefficients, but it is now nonhyperbolic:

ε ˙̃p = q̃

ε ˙̃q = εaei argλp̃+ s̃

˙̃r = 0

˙̃s = r̃,

(58)

with eigenvalues

µ = 0, 0, ±
√
a

ε
ei arg(λ)/2. (59)

The analysis here is more delicate than in the previous case: we do not have access to an attractor
(an unstable 2-plane bundle) in the large |λ| limit, and the weak (un)stable directions degenerate
to a two-dimensional center subspace. We resort to standard perturbation theory. The eigenvalues
of (57) can be determined to arbitrary order in σ (i.e. 1/|λ|1/2); we find that the pair of zero
eigenvalues perturbs as

µ = ±
√

1

aε

1

|λ|1/2
+O

(
1

|λ|

)
. (60)

We remind the reader that the system (57) is nonautonomous, but the relevant contributions
from D(u) and f ′(u) are bounded and do not affect the signs of the two smaller eigenvalues at
leading order. An invariant attractor over the unstable subbundle can be constructed explicitly by
projectivizing the system and then using the theory of relatively invariant sets for nonautonomous
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systems (see Sec. B in [11]), but we avoid these technical details here. The argument for the sector
estimate (i) in terms of bounding angles η then follows as in the ‘pure Cahn-Hilliard regularisation’
case. See Fig. 15 for a depiction of a bounding sector in relation to the essential spectrum.

Remark 5.2. The scaling weights np, nq, . . . in p̃ = p/|λ|np , q̃ = q/|λ|nq , etc. can be chosen such
that the limiting system (55) is autonomous, and so that the exponent of |λ| balances to zero in the
slow equation. This rescaling procedure can be interpreted geometrically as an extended Poincaré
compactification of the vector field (52) ‘at infinity’; see [46].

Our choice of weights is also consistent with the scaling derived using the method of dominant
balance in the WKB approximation of (51) (see [3]). Furthermore, the corresponding eigenvalue
expansions in (59)–(60) match the output of the WKB calculations.

We have shown that the appropriate cone estimate required for sectoriality holds for each a ≥ 0,
extending the result in [31]. Assuming that the resolvent estimate can also be verified for each
a ≥ 0 (see Remark 5.1), this result has the following interesting implication: it is possible to retain
sectoriality (and hence nonlinear stability) for travelling waves containing viscous shocks, when
viscous relaxation is counterbalanced by ‘Cahn-Hilliard type’ regularisation. This is in contrast to
the ‘pure viscous relaxation’ limit in [32], where the asymptotically vertical nature of the essential
spectrum obstructs sectoriality of the operator.

5.2 Computation of the point spectrum

In both the viscous relaxation limit (11) and the ‘pure Cahn-Hilliard’ regularisation limit (12),
there exist only two eigenvalues in the point spectrum for sufficiently small ε > 0: the simple
translational eigenvalue λ0 = 0, and another simple real eigenvalue λ1 ∈ (max(R′(0), R′(1)), 0) that
does not destabilise the travelling wave (see [31, 32]). In this section, we augment these results by
sampling the point spectrum of the corresponding linearised operator for δ > 0 and small values of
ε > 0.

Remark 5.3. Throughout this section we fix the parameter set β = 6, γ1 = 7/12, γ2 = 3/4, κ = 5,
α = 1/5 in order to make concrete computations; this parameter set is also used as a running
example in [29, 31, 32]. However, we emphasize that there is nothing particularly special about this
parameter set in the spectral stability calculation, and the following approach that we develop can
be applied in general.

Let us outline the strategy to compute the point spectrum. For each λ ∈ C to the right of the es-
sential spectrum, we can define an unstable complex 2-plane bundle φ−(z, λ, ε) extending from the
unstable subspace of the saddle point at u = 1, resp. a stable complex 2-plane bundle φ+(z, λ, ε)
extending from the stable subspace of the saddle point at u = 0, by using the eigenvalue problem
(52). A (spatial) eigenvalue λ ∈ σp(L) is found whenever φ− and φ+ have a nontrivial intersection
at some value z; see [1] for details.

In view of this geometric characterization for the spatial eigenvalues, we will use a Riccati-Evans
function to compute these intersections. The eigenvalue problem (52) induces a nonlinear flow on
the Grassmannian Gr(2, 4) of complex 2-planes in C4. On a suitable coordinate patch of Gr(2, 4),
the nonlinear flow is defined using a matrix Riccati equation of the form

W ′ = C +DW −WA−WBW, (61)
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Figure 16: (a) Semicircular contour K of radius 105 along which the Riccati-Evans function (63)
is evaluated. A small detour avoids the translational eigenvalue at the origin (inset). (b) Image
E(z0,K) in the complex plane. Note that the image does not wind around the origin (inset).
Parameter set as in Fig. 11.

whereW is a complex-valued 2×2 matrix variable defined using frame coordinates for the 2-planes,
and the 2 × 2 matrices A,B,C,D are defined via a block decomposition of the linear operator M
in (53):

M =

(
A B

C D

)
. (62)

See [13] and [28] for the derivation of (61), and [31] for the specific construction in the case of ‘pure
Cahn-Hilliard-type’ regularisation (12).

In terms of the representation (63) of the projectivised dynamics, φ− is equivalent to the unique
trajectory of (61) that converges to the unstable subspace of the saddle point at u = 1 as z → −∞;
there is also an analogous characterisation of φ+. We can now formulate a shooting problem defined
on a suitable cross section that intersects the travelling wave transversely, say Σ = {u = 0.7}, with
the corresponding intersection point z0 ∈ Σ. The unstable bundle φ−(z, λ, ε) is flowed forward from
u = 1 and the stable bundle φ+(z, λ, ε) is flowed backward from u = 0. Suppressing the notation
for ε, the Riccati-Evans function E(z0, λ) is defined by

E(z0, λ) = det(φ+(z0, λ)− φ−(z0, λ)). (63)

We can then find eigenvalues λ ∈ σp(L) by locating zeroes of E(z0, λ); see [13]. Using the argument
principle, we locate these zeroes by computing the winding number of E along suitably chosen
contours in the complex plane and to the right of the essential spectrum.

We use a semicircular contour K with increasingly large radii R = 103, 104, 105 opening in the
right half complex plane, with a small semicircular detour that avoids the translational eigen-
value at the origin (see Fig. 16(a)). We sampled the interval [0, am] with a grid of 100 equally
spaced points, and we fix ε = 10−4. For each a in this sample, we evaluate E(z0, λ) around K
to find a winding number of 0 (see e.g. Fig. 16(b)). Thus we obtain strong numerical evidence
that there is no point spectrum within K, and hence that the corresponding family of shock-fronted
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travelling waves remains nonlinearly stable for each a ∈ [0, am] and for each sufficiently small ε > 0.

We also investigated the zeroes of E(z0, λ) along the real line. For each sampled parameter value
δ, we found evidence of only one simple translational eigenvalue λ0 = 0 and one other simple real
eigenvalue λ1 ≈ −0.8. We note that this result is entirely consistent with the calculation of the
point spectrum in the ‘pure Cahn-Hilliard type’ and ‘purely viscous’ regularisation cases [31, 32];
indeed, these eigenvalues are accounted for by the corresponding reduced slow eigenvalue problem
defined on the critical manifold. As depicted in Fig. 9(b), singular heteroclinic connections are
formed over a small range of wavespeeds c ∈ [0.1973, 0.1993] as a ≥ 0 is varied. This in turn slightly
perturbs the dynamics of the reduced eigenvalue problem along the singular heteroclinic connec-
tion. As a consequence of these small variations, the (singular limit of the) secondary eigenvalue
λ1 moves continuously within the small interval [−0.81,−0.79] on the real line as a is varied. The
key point that we would like to emphasize is that a slow eigenvalue problem (defined for ε = 0)
continues to approximate the eigenvalues of the ‘full’ problem (defined for 0 < ε≪ 1) when a > 0.

Remark 5.4. It is interesting to ask whether the translational eigenvalue can bifurcate under vari-
ation of the regularisation parameter a via e.g. transcritical crossings with the secondary eigenvalue
λ1 = λ1(a). In other words, is it possible to destabilize a (regularised) shock-fronted travelling wave
of (13) just by re-weighting the regularisation?

We argue that such a destabilization scenario is not possible for families of monotone travelling
waves. We showed using comparison methods in [32] that if a projectivised solution along a singu-
lar heteroclinic orbit of the reduced eigenvalue problem has no winds at λ = λ0 ∈ R, then no further
winds are generated for each real λ > λ0, and furthermore, there are no nontrivially complex
eigenvalues—i.e. there are no more eigenvalues to the right of λ0. Now suppose that the transla-
tional eigenvalue had a transcritical bifurcation for some critical value a = ac such that λ1(a) > 0
for a > ac. Then it must be true for nearby values of a > ac that the variational solution winds
around at least once, i.e., the singular heteroclinic of (24) in (u, v)-space makes a full revolution.

6 Concluding remarks

We have given a comprehensive description of shock-fronted travelling wave solutions arising in
regularised RND PDEs of the form (13), focusing on a weighted composite of two well-known
regularisations—viscous relaxation and a ‘Cahn-Hilliard type’ fourth-order spatial regularisation.
We highlight the role played by symmetry, in both the layer and reduced problems (see Sec. 4), in
enforcing the existence of a locus of monotone standing waves. This set serves as a starting point
for the continuation of a codimension-one bifurcation manifold of singular heteroclinic connections
in parameter space.

We track these monotone connections until they terminate, identifying the global singular bifurca-
tions that play a key role in their termination. This bifurcation analysis simultaneously explains
their transition into new kinds of shock-fronted travelling wave solutions: nonmonotone waves and
waves with canard segments. It is an interesting problem to determine parameter sets such that
the (non)monotone travelling wave bifurcation branches intersect the travelling wave-with-canard
branch in a singular bifurcation diagram (e.g. intersections of the red and/or blue (N)MTW curves
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with the solid black TW-C curve, in a diagram drawn as in Figure 12(a)). In such a scenario,
these intersection points in parameter space would correspond to the simultaneous coexistence of
two distinct types of travelling wave solutions in phase space, and could therefore be interpreted
as codimension-two branch switching bifurcations.

We highlight the role played by Melnikov theory in the construction of the heteroclinic bifurca-
tion manifold—in particular, we provide a new adaptation to piecewise-smooth planar systems (see
Lemma 4.1 and Sec. A.2). This new piecewise-smooth formula motivates the development of a
more general piecewise-smooth Melnikov theory for autonomous dynamical systems in Rn.

We also investigated the spectral stability of the shock-fronted travelling wave solutions in our RND
PDE, finding numerical evidence that our model admits spectrally stable monotone shockwaves. It
is worthwhile to investigate the spectral stability of the nonmonotone and canard-type shockwave
families we have identified. We conjecture that nonmonotonicity may be a geometric mechanism to
destabilize these families. Let us highlight that while the canard-type shockwaves are apparently
monotone near the tails (see Fig. 14), fast connections from Sr

s to Sm can now introduce winding in
the shock layer: since Sm contains subsets where the nontrivial layer eigenvalues become complex,
a shock departing from Sr

s can potentially rotate infinitely often as it approaches Sm. A thorough
investigation of this scenario, from the point-of-view of slow-fast splittings of the eigenvalue prob-
lem (as done in [31, 32], and this paper), is a topic of future work.

Finally, we wish to point out that other, unrelated types of high-order regularisations appear in
the shockwave literature. For example, numerical regularisations have been derived by using the
technique of modified PDE analysis applied to finite difference schemes; see [2]. We expect that
GSPT will continue to provide a flexible and powerful approach to explain the dynamics of RND
PDEs subject to a wide class of high-order regularisations.
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A Melnikov theory for autonomous vector fields

One of the main analytical tools that deals with the existence and bifurcation of heteroclinic orbits
in dynamical systems is known as Melnikov theory. We follow the treatment of Vanderbauwhede
[45] for sufficiently smooth autonomous dynamical systems in arbitrary dimensions; see also the
extension to heteroclinic problems on non-compact domains in [46]. Here we provide a succinct
summary of this theory for autonomous problems, tailored towards the heteroclinic orbit analysis
of the layer problem in section 4.1.

We then adapt Melnikov theory to the case of planar piecewise-smooth dynamical systems, which is
needed to show the existence of singular heteroclinic orbits in section 4.2. The Melnikov method has
been adapted to the piecewise-smooth setting in different nonsmooth contexts, with an emphasis on
time-periodic perturbations of planar vector fields with either Hamiltonian or trace-free structure
(see e.g. [12, 25]); however, the following Vanderbauwhede-style presentation for piecewise smooth
autonomous vector fields is new, to the best of our knowledge.

A.1 The smooth case

We work with a system of the form

x′ = h(x, µ) (64)

with x = x(t) ∈ Rn, n ≥ 2, h sufficiently smooth, and the parameters are denoted by µ ∈ Rm,
m ≥ 1. We assume the existence of a unique heteroclinic connection Γ = {γ(t) ∈ Rn : t ∈ R}
between saddle equilibria p− and p+ for some µ = µ0, i.e., Γ = W u

µ0
(p−) ∩W s

µ0
(p+) is the one-

dimensional intersection of the unstable manifold W u
µ0
(p−) of p− and the stable manifold W s

µ0
(p+)

of p+ with dimW u
µ0
(p−) = lu, 1 ≤ lu < n, and dimW s

µ0
(p+) = ls, 1 ≤ ls < n.6 We further assume

that lu + ls − 1 < n. Otherwise, the intersection W u
µ0
(p−) ∩W s

µ0
(p+) is transverse implying the

persistence of this heteroclinic orbit for nearby µ-values.7

We define a suitable cross section Σ of the unique heteroclinic orbit Γ. Without loss of generality
we assume the intersection of Γ with Σ occurs at t = 0.
The main task is to measure the distance between the stable and unstable manifolds W u

µ (p−) and
W s

µ(p+) in this cross section Σ for nearby µ-values. Melnikov theory defines a corresponding dis-
tance function8 ∆ = ∆(µ), noting that ∆(µ0) = 0. In the following, we derive computable formulas
for ∆ = ∆(µ).

Let x(t) = γ(t) +X(t), with X ∈ Rn, which transforms (64) to the non-autonomous problem

X ′ = A(t)X + g(X, t, µ)

6For the general setup with possible higher dimensional heteroclinic connections we refer to [45, 46].
7Note that these stable and unstable manifolds Wu

µ0
(p−) and W s

µ0
(p+) persist for nearby µ-values due to the

robustness of the hyperbolic saddle equilibria. With a slight abuse of notation, we will denote these perturbed saddle
equilibria by p± independent of µ.

8In higher dimensional problems, the distance function is vector-valued.
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with the non-autonomous matrix A(t) := Dxh(γ(t);µ0) and the nonlinear remainder g(X, t;µ) =
h(γ +X;µ)− h(γ;µ0)−A(t)X . The linear equation

X ′ = A(t)X (65)

is the variational equation along γ(t). The corresponding adjoint equation is given by

Ψ′ +A⊤(t)Ψ = 0 .

Note that solutions of the variational and adjoint equations preserve a constant angle along γ, i.e.,
(∂/∂t)(Ψ⊤(t)X(t)) = 0,∀t ∈ R . We can use this fact to define a splitting of the vector space Rn

along γ(t). Following Vanderbauwhede in [45], we define a splitting of the vector space Rn at t = 0
in the following way:

Rn = span {h(γ(0), µ0)} ⊕ Y

where Y is a complementary subspace that admits a further sub-splitting into dynamically distinct
subspaces. In view of our assumption on Γ, we have a splitting

Y = Vs ⊕ Vu ⊕W,

where Vs,u denote subspaces complementary to Tγ(0)W
u
µ0
(p−) ∩ Tγ(0)W

s
µ0
(p+) inside the respec-

tive (un)stable tangent spaces Tγ(0)W
s,u and W denotes the orthogonal complement of Tγ(0)W

s +
Tγ(0)W

u.9

Based on this setup, we now specify Σ = γ(0) + Y as a suitable cross-section to perform compu-
tations. A key observation of Vanderbauwhede in [45] is that—by means of projection maps P−(t)
(for t ≤ 0) and Q+(t) (for t ≥ 0), defined using properties of exponential dichotomies, together
with the variation of parameters formula—the (un)stable manifolds of the saddle points can be
characterised analytically as the set of initial conditions whose (forward respectively backward)
trajectories have bounded norms in appropriately chosen function spaces. Indeed, W s

µ(p+) and
W u

µ (p−) are locally expressible as graphs over the images of the corresponding projection maps
near the intersection point γ(0) ∈ Σ. For a suitable neighbourhood Ω containing γ(0), we have

W s
µ(p+) ∩ Ω = {ξ + β+(ξ, µ) : ξ ∈ ω+ ⊂ Im(P+(0))} (66)

and

W u
µ (p−) ∩ Ω = {η + β−(η, µ) : η ∈ ω− ⊂ Im(Q−(0))}, (67)

where the graphs h± are defined using the transition matrix Φ(t, s) of (65), the projection operators
P−(0) and Q+(0), and the corresponding (un)stable manifold segments γ± of the saddle equilibria,
i.e.,

9When dim(Tγ(0)W
u
µ0
(p−) ∩ Tγ(0)W

s
µ0
(p+)) > 1, the splitting for Y generalises to incorporate an additional sub-

space Y = U⊕Vs⊕Vu⊕W . In this case, U can be chosen complementary to span {h(γ(0), µ0)} inside this intersection;
see [45] for details.
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β+(ξ, µ) := −Q+(0)

∫ ∞

0
Φ(0, s)g(s, γ+(ξ, µ)(s), µ)ds (68)

and

β−(η, µ) := P−(0)

∫ 0

−∞
Φ(0, s)g(s, γ−(η, µ)(s), µ)ds. (69)

Note that the splitting defines a local coordinate system in the neighbourhood Ω. The cross-section
is given in local coordinates by ξ = η = 0. We may therefore define a suitable distance function on
Σ by

∆(µ) := β−(0, µ)− β+(0, µ). (70)

We can specify an orthonormal basis {ψ0
1, · · · , ψ0

k} of W , k = n + 1 − (lu + ls),
10 so that each

solution ψi(t) of the adjoint equation with initial conditon ψi(0) = ψ0
i decays exponentially for

t → ±∞.11 Melnikov theory then establishes the following formula for the distance function,
expressed in components (see e.g. [45, 46]):

∆i(µ) =

∫ 0

−∞
ψi(s)

⊤g(γ−(µ)(s), s;µ) ds+

∫ ∞

0
ψi(s)

⊤g(γ+(µ)(s), s;µ) ds

=:

∫ ∞

−∞
ψi(s)

⊤g(γ(µ)(s), s;µ) ds, i = 1, . . . , k ,

(71)

where γ in the final line should be interpreted as the representative of γ± in the relevant domain.

Remark A.1. This distance function (vector) ∆ : Rm → Rk is well-defined since the vector ψ(s)
decays exponentially in forward and backward time and γ± is bounded. Solving ∆(µ) = 0 is well
defined for m ≥ k. For m = k and rk (Dµ∆) = k, µ = µ0 is an isolated zero. For m > k, we expect
the solution set to be a submanifold of codimension k.

Remark A.2. The distance formula has a particularly simple representation which is independent
of the projection operators, because we have some freedom in choosing P−(t) and Q+(t); indeed, we
can choose them so that their kernels are orthogonal to the adjoint solution ψ(t) at t = 0. This is
relevant for the derivation of the piecewise-smooth Melnikov function in the next section.

In general, one cannot solve ∆(µ) = 0 explicitly, but one can calculate its leading order Taylor series
expansion. Taking partial derivatives of (71) with respect to µj and referring to the definition of
the nonlinear remainder g(X, t;µ), we obtain the following formulas, defined component-wise:

Dµj∆i(µ0) =

∫ ∞

−∞
ψi(s)

⊤ ∂h

∂µj
(γ0(s), s;µ0) ds, j = 1, . . .m , i = 1, . . . k . (72)

Definition 1. The first-order derivative terms (72) are known as first-order Melnikov integrals.

Remark A.3. In the planar case that we consider, we have k = 1 and Y =W . A suitable adjoint
solution ψ(t) can be chosen so that ψ(0) is orthogonal to h(γ(0), µ0) at t = 0.

10Based on our assumptions, dimW = n+ 1− (lu + ls) ≥ 1.
11Such solutions of the adjoint quation with exponential decay for t → ±∞ exist due to the exponential dichotomy

properties induced by the saddle endpoints of this heteroclinic orbit Γ.
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Figure 17: A sketch of a piecewise-smooth heteroclinic connection γ0.

A.2 The piecewise-smooth planar case

We now adapt the Melnikov method developed in Appendix A.1 to a subclass of piecewise-smooth
planar vector fields, thereby proving Lemma 4.1. Fix δ > 0 and xΣ ∈ R, and consider a pair of
planar vector fields h±(x, µ) = (h1±(x, µ), h

2
±(x, µ)), such that h− is smoothly defined on a compact

subset V− ⊂ {x1 < xΣ + δ} and h+ is smoothly defined on a compact subset V+ ⊂ {x1 > xΣ − δ}.
Both vector fields h± are smoothly dependent on the parameters µ ∈ Rm.

We assume that V−∩V+ is nonempty and contains a (vertical) cross-section Σ ⊂ {x1 = xΣ} of both
vector fields h± for each µ ∈ P ⊂ Rm for a non-trivial subset P in parameter space. In particular,
both vector-fields are assumed to cross (the interior of) Σ unidirectionally, e.g., here from left to
right, for each µ ∈ P ⊂ Rm. With this setup, we may define a piecewise smooth vector field on
U− ∪ U+, with U− := V− ∩ {x1 < xΣ} and U+ := V+ ∩ {x1 > xΣ}, as follows:

ẋ =

{
h−(x, µ) if x ∈ U−

h+(x, µ) if x ∈ U+.
(73)

We assume the existence of a piecewise-smooth heteroclinic orbit which connects a saddle equilibrium
p− ∈ U− to one at p+ ∈ U+ for some µ = µ0 in (the interior of) P as follows: specify an unstable
manifold segmentW u(p−) ⊂ U−∪Σ, defined for t ≤ 0 by a trajectory γ−(t) satisfying ẋ = h−(x, µ0),
and a stable manifold segment W s(p+) ⊂ U+ ∪Σ defined for t ≥ 0 by a trajectory γ+(t) satisfying
ẋ = h+(x, µ0), such that γ(0) := γ−(0) = γ+(0) ∈ Σ. The piecewise-smooth heteroclinic orbit γ0 is
then defined by the set

γ0 =

(⋃
t<0

γ−(t)

)
∪ γ(0) ∪

(⋃
t>0

γ+(t)

)
.

See Figure 17 for a depiction of such a piecewise-defined γ0. As in the smooth case, we seek to
determine the persistence of γ0 under parameter variation via a Melnikov calculation on Σ.

Much of the setup in Appendix A.1 carries over for the problems ẋ = h±(x, µ) defined separately on
the subsets V±. On V−, we can specify a section Σ− through γ(0) which is aligned with a backward
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Figure 18: Local coordinates near Σ on V−.

exponentially decaying adjoint solution ψ−(t) at t = 0. The associated graph representation of the
unstable manifolds in a neighbourhood of γ(0) is given by

β−(η, µ) := P−(0)

∫ 0

−∞
Φ−(0, s)g−(s, γ−(η, µ)(s), µ)ds, (74)

where we denote the appropriate objects in V− by the (−) subscript. Similarly, near an appropriately
chosen cross-section Σ+ which is aligned with a forward exponentially decaying adjoint solution
ψ+(t) at t = 0 there is a graph representation of the stable manifolds on V+, given by

β+(ξ, µ) := −Q+(0)

∫ ∞

0
Φ+(0, s)g+(s, γ+(ξ, µ)(s), µ)ds. (75)

The main conceptual difference in deriving the distance function in the piecewise-smooth case is
that the local coordinates used to specify the (un)stable manifold segments near Σ are adapted to
the sections Σ− and Σ+, neither of which is aligned with Σ in general (e.g. see Fig. 18). This
introduces extra terms into the separation function when measuring the distance between W u(p−)
and W s(p+) on Σ, as we now show.

We denote by α± ∈ (−π/2, π/2) the acute angle of ψ±(0) relative to the vertical cross section
Σ spanned by e2, or, equivalently, the acute angle of γ̇±(0) relative to the horizontal coordinate
axis spanned by e1. Since γ̇±(0) lies in the orthogonal complement of the linear subspaces W±,
i.e., in the span of ψ⊥

±(0), we define the corresponding orthonormal basis vectors in R2|γ(0) =

span {ψ⊥
±(0)} ⊕ span {ψ±(0)} with respect to the angle α±:

ψ⊥
±(0) =

(
cos(α±)
sin(α±)

)
, ψ±(0) =

(
− sin(α±)
cos(α±)

)
.

Hence, the local (un)stable manifolds W
s/u
± (µ) near γ(0) described in this basis are given by
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W u
−(µ) = {η + β−(η, µ) = ψ⊥

−(0)ρ− + ψ−(0)σ−(µ)},
W s

+(µ) = {ξ + β+(ξ, µ) = ψ⊥
+(0)ρ+ + ψ+(0)σ+(µ)}

(76)

with local coordinates ρ± ∈ R and σ±(µ) ∈ R,

σ±(µ) = ψ⊤
±(0)β± =

∫ 0

±∞
ψ⊤
±(s)g±(s, γ±(s), µ) ds .

To measure the distance of these manifoldsW
s/u
± (µ) in Σ, we identify the unique intersection points

W
s/u
± (µ) ∩ Σ which are given by the coordinate relationship ρ∗± := tan(α±)σ±(µ) in the basis de-

fined above, i.e., this coordinate relationship guarantees that the horizontal component vanishes
in the local Euclidean coordinate frame. From the implicit function theorem it follows that this
coordinate relationship can be indeed solved locally as a function of the parameter µ as shown. See
Figure 18 for a sketch of the local coordinates on the patch V−. A similar sketch can be drawn
for the patch V+ to measure the location of the stable manifoldW s

µ(p+) for µ sufficiently close to µ0.

The distance function on Σ can now be defined as

∆(µ) = η∗(µ)− ξ∗(µ) + β−(η
∗(µ), µ)− β+(ξ

∗(µ), µ)

= ψ⊥
−(0) tan(α−)σ−(µ)− ψ⊥

+(0) tan(α+)σ+(µ) + ψ−(0)σ−(µ)− ψ+(0)σ+(µ) .
(77)

Since ∆(µ) ∈ Σ, we are only interested in the vertical component of this vector which is given by

e⊤2 ∆(µ) = sin(α−) tan(α−)σ−(µ)− sin(α+) tan(α+)σ+(µ) + cos(α−)σ−(µ)− cos(α+)σ+(µ)

=
1

cos(α−)
σ−(µ)−

1

cos(α+)
σ+(µ)

=
1

cos(α−)

∫ 0

−∞
ψ⊤
−(s)g−(s, γ−(s), µ) ds+

1

cos(α+)

∫ ∞

0
ψ⊤
+(s)g+(s, γ+(s), µ) ds .

(78)

Remark A.4. The formula (78) also generalises the classical distance formula (70) for sections Σ
that are nonorthogonal to the flow in the smooth case.

Let u± = (v1,±, v2,±)
T denote unit basis vectors obtained from normalising the vector fields

h±(x, µ0) evaluated at γ(0). An algebra calculation shows that cos(α±) = v1,± and we may
choose ψ±(0) = (−v2,±, v1,±)T . Then the corresponding first-order Melnikov integrals, obtained
as in the classical case by differentiating (78) with respect to µi and evaluating at µ = µ0, have the
particularly convenient form

DµiG(µ0) =
1

v−1

∫ 0

−∞
ψ−(s)

⊤∂h−
∂µi

(γ−(s), s;µ0) ds+
1

v+1

∫ ∞

0
ψ+(s)

⊤∂h+
∂µi

(γ+(s), s;µ0) ds. (79)

The formula (79) gives the promised generalisation of (72) in the piecewise-smooth planar setting.
Note that if u− = u+ (so that the heteroclinic γ connects smoothly across the discontinuity surface
Σ), then (79) is identical to (72) up to a positive prefactor (with the improper integral appropriately
interpreted as a sum of two integrals evaluated separately on either side of the discontinuity).

In fact, we also recover the classical Melnikov integral (up to a positive prefactor) if v−1 = v+1 only.
This observation is useful when the piecewise-smooth problem inherits a reflection symmetry in the
vertical component from a smooth problem; see Sec. 4.2.1.
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