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Abstract. A flower graph consists of a half line and N symmetric loops connected at a single
vertex with N ≥ 2 (it is called the tadpole graph if N = 1). We consider positive single-lobe states
on the flower graph in the framework of the cubic nonlinear Schrödinger equation. The main novelty
of our paper is a rigorous application of the period function for second-order differential equations
towards understanding the symmetries and bifurcations of standing waves on metric graphs. We
show that the positive single-lobe symmetric state (which is the ground state of energy for small
fixed mass) undergoes exactly one bifurcation for larger mass, at which point (N − 1) branches of
other positive single-lobe states appear: each branch has K larger components and (N−K) smaller
components, where 1 ≤ K ≤ N − 1. We show that only the branch with K = 1 represents a local
minimizer of energy for large fixed mass, however, the ground state of energy is not attained for
large fixed mass. Analytical results obtained from the period function are illustrated numerically.

1. Introduction

A flower graph is a metric graph which consists of a half-line and N symmetric loops connected
at a single common vertex. We denote such a graph by ΓN . Without loss of generality, we normalize
the length of symmetric loops to 2π and parameterize the loops by [−π, π]. The half-line coincides
with [0,∞). We count N + 1 edges and 2 vertices (one at infinity), so that the Betti number of ΓN
is equal to N . Figure 1 gives schematic examples of the flower graph for two and three loops.

Figure 1. A schematic example of the flower graph ΓN with N = 2 (left) and N = 3 (right).

Standing waves in the nonlinear Schrödinger (NLS) equation on metric graphs have attracted
much attention in recent years [14]. The NLS equation with a power nonlinearity is usually posed
in the normalized form

(1.1) iΨt + ∆Ψ + (p+ 1)|Ψ|2pΨ = 0,

where the Laplacian ∆ is defined componentwise on the metric graph subject to proper boundary
conditions (see, e.g., monographs [6, 12]).
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Let the wave function Ψ = (ψ1, ψ2, . . . , ψN , ψ0) on the flower graph ΓN be represented by the
functions {ψj}Nj=1 : [−π, π] 7→ C on the N symmetric loops and by ψ0 : [0,∞) 7→ C on the half-line.

We define the space of square-integrable functions L2(ΓN ) componentwise as

L2(ΓN ) = L2(−π, π)× · · · × L2(−π, π)︸ ︷︷ ︸
N times

×L2(0,∞)

The NLS equation is locally well-posed in the energy space H1
C(ΓN ) := H1(ΓN ) ∩ C0(ΓN ), where

the Sobolev space H1(ΓN ) is also defined componentwise as

H1(ΓN ) = H1(−π, π)× · · · ×H1(−π, π)︸ ︷︷ ︸
N times

×H1(0,∞),

and C0(ΓN ) denotes the space of continuous functions on edges of ΓN and across the vertex point
in ΓN . The local solution to the NLS equation (1.1) conserves the energy

(1.2) E(Ψ) = ‖∇Ψ‖2L2(ΓN ) − ‖Ψ‖
2p+2
L2p+2(ΓN )

and the mass

(1.3) Q(Ψ) = ‖Ψ‖2L2(ΓN ).

A standing wave of the NLS equation (1.1) is given by the solution of the form Ψ(t, x) =
Φ(x)e−iωt, where Φ ∈ H1

C(ΓN ) is a solution of the stationary NLS equation

(1.4) ωΦ = −∆Φ− (p+ 1)|Φ|2pΦ,

and ω < 0 is a frequency parameter. Among all standing wave solutions, we are particularly
interested in the positive single-lobe states in the sense of the following definition.

Definition 1. We say that the standing wave Φ ∈ H1
C(ΓN ) is a positive single-lobe state if Φ(x) > 0

for every x ∈ ΓN and on each bounded edge of ΓN , either the maximum of Φ is achieved at a single
internal point and the minima of Φ occur at the vertices or the minimum of Φ is achieved at a
single internal point and the maxima of Φ occur at the vertices.
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Figure 2. Examples of a positive single-lobe state on a bounded edge. Left: the
maximum is achieved at the internal point, and the minima is achieved at the
vertices. Right: the minimum is achieved at the internal point, and the maxima is
achieved at the vertices.

If N = 1, the graph Γ1 is usually called the tadpole graph. Construction of standing waves of the
cubic NLS equation (p = 1) on the tadpole graph Γ1 was obtained with the use of elliptic functions
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in [8]. Bifurcations and stability of standing waves for small negative ω were analyzed for any p > 0
in [16] by using Sturm’s theory and asymptotic methods.

For the subcritical powers with p ∈ (0, 2) and for the tadpole graph N = 1, it was shown in [2]
based on the variational method and symmetric energy-decreasing rearrangements in [1] that the
ground state of energy E(Ψ) subject to the fixed mass µ := Q(Ψ) is attained for every µ > 0 at the
positive single-lobe state Φ, which is symmetric on the loop [−π, π] and monotonically decreasing
on [0, π] and [0,∞). The ground state Φ ∈ H1

C(ΓN ) is the global minimizer of the variational
problem

(1.5) Eµ = inf
Ψ∈H1

C(ΓN )
{E(Ψ) : Q(Ψ) = µ} .

In the case N = 1, Eµ = E(Φ) is attained on the ground state Φ ∈ H1
C(ΓN ) for p ∈ (0, 2). Generally,

Eµ may not be attained on unbounded metric graphs [1]. For instance, a sufficient condition on µ
was found in Theorem 5.1 of [2] which ensures that Eµ is not attained on a graph with a compact
core and exactly one half-line for p ∈ (0, 2). This result is applicable to the flower graph ΓN in the
limit of large N .

For the critical power p = 2, it was shown in Theorem 3.3 in [3] that the ground state on the
metric graph with exactly one half-line is attained if and only if µ ∈ (µR+ , µR], where µR+ is the
mass of the half-soliton on the half-line R+ and µR is the mass of the full-soliton on the full line R,
both values are independent of ω for p = 2. It is shown in the recent work [15] for the tadpole graph
Γ1 that the ground state is again given by the positive single-lobe state Φ, which is symmetric on
the loop [−π, π] and monotonically decreasing on [0, π] and [0,∞).

Another relevant result is Theorem 3.3 in [4], where the existence of local energy minimizers was
proven in the limit of large mass µ for p ∈ (0, 2) under the additional condition that the energy
minimizer is localized on one bounded edge of an unbounded graph and attains a maximum on
this edge. This result applies to ΓN for every N ≥ 1. Alternative characterization of the standing
waves in the limit of large mass µ was obtained in the cubic case (p = 1) by using the elliptic
functions [7] where the state of minimal energy at a fixed large mass µ was identified among the
local minimizers.

The purpose of this work is to study the interplay between the existence of standing waves of
the NLS equation (1.1) and the symmetry of the metric graph in the particular case of the flower
graph ΓN . We develop a novel analytical method to treat the existence of positive single-lobe states
from properties of the period function for second-order differential equations. Such properties are
typically used for analysis of existence of periodic solutions to nonlinear evolution equations [9, 11]
as well as their spectral stability [10]. The main novelty of our paper is to show how applications
of this method allow us to obtain precise analytical results on the existence of positive single-lobe
states. For clarity, we consider the cubic case (p = 1) only. However, since we are not using elliptic
functions, the results here can be applied for any subcritical power with p ∈ (0, 2).

Let us now present the main results and the organization of this paper.
We complete the formulation of the standing wave Φ = (φ1, φ2, . . . , φN , φ0) as a strong solution

to the stationary NLS equation (1.4) by using the natural Neumann–Kirchhoff boundary conditions
given by

(1.6)

{
φ1(±π) = φ2(±π) = · · · = φN (±π) = φ0(0),∑N

j=1

[
φ′j(π)− φ′j(−π)

]
= φ′0(0),

where the derivatives are defined as the one-sided limits of quotients. We say that Φ ∈ H2
NK(ΓN ) if

Φ ∈ H2(ΓN ) satisfies the Neumann–Kirchhoff boundary conditions (1.6), where the Sobolev space
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H2(ΓN ) is also defined componentwise as

H2(ΓN ) = H2(−π, π)× · · · ×H2(−π, π)︸ ︷︷ ︸
N times

×H2(0,∞).

The space H2
NK(ΓN ) is the maximal domain of the Laplacian operator ∆ : H2

NK(ΓN ) ⊂ L2(ΓN )→
L2(ΓN ), where ∆ is defined componentwise in L2(ΓN ). By Theorem 1.4.4 in [6], the Laplacian
operator is self-adjoint in L2(ΓN ). One can verify via integration by parts that for every Φ ∈
H2

NK(ΓN ) we have

〈(−∆)Φ,Φ〉L2(ΓN ) = ‖∇Φ‖2L2(ΓN ) ≥ 0.

Hence σ(−∆) ⊆ [0,∞) and ω in the stationary NLS equation (1.4) is restricted to be negative. It is
shown in Appendix A that σ(−∆) = [0,∞) includes the continuous spectrum and a set of positive
embedded eigenvalues.

Thanks to the symmetry of the flower graph ΓN , we are first interested in the existence of
symmetric state, according to the following definition.

Definition 2. We say that the standing wave is symmetric if Φ ∈ H2
NK(ΓN ) satisfies the symmetry

condition

(1.7) φ1(x) = φ2(x) = · · · = φN (x) for x ∈ [−π, π].

The first main result states that there exists the unique positive single-lobe symmetric state with
the monotonically decreasing tail in the stationary NLS equation (1.4) for every ω < 0. The proof
of this result is given in Section 2.

Theorem 1. Fix p = 1. For every ω < 0, there exists only one positive single-lobe symmetric
state Φ ∈ H2

NK(ΓN ) which satisfies the stationary NLS equation (1.4), is symmetric on each loop
parameterized by [−π, π], and is monotonically decreasing on [0, π] and [0,∞) The map (−∞, 0) 3
ω 7→ Φ(·, ω) ∈ H2

NK(ΓN ) is C1 and the mass µ(ω) := Q(Φ(·, ω)) is a C1 monotonically decreasing
function satisfying the limits µ(ω)→ 0 as ω → 0 and µ(ω)→∞ as ω → −∞.

Remark 1.1. There exist other positive symmetric states satisfying the stationary NLS equation
(1.4) with more than one maximum on the N loops or with a non-monotonically decreasing tail on
[0,∞). However, these other positive symmetric states are not local energy minimizers, and do not
exist for small negative ω, hence we ignore them here.

In what follows, we will often omit the dependence of Φ(·, ω) on ω obtained in Theorem 1. Given
the positive single-lobe symmetric state Φ ∈ H2

NK(ΓN ) to the stationary NLS equation (1.4), we
can define the self-adjoint linear operator L : H2

NK(ΓN ) ⊂ L2(ΓN )→ L2(ΓN ) given by

(1.8) L = −∆− ω − (p+ 1)(2p+ 1)|Φ|2p.
Since φ0(x)→ 0 as x→∞ on the half-line, application of Weyl’s Theorem yields that the continuous
spectrum of L is given by

(1.9) σa.c.(L) = σ(−∆− ω) = [|ω|,∞).

This implies that there are only finitely many eigenvalues of L of finite multiplicities located below
|ω|. Let n(L) be the Morse index (the number of negative eigenvalues of L counted with their
multiplicities) and z(L) be the nullity index of the kernel of L (the multiplicity of the zero
eigenvalue of L). Since

(1.10) 〈LΦ,Φ〉L2(ΓN ) = −(2p)(p+ 1)‖Φ‖2p+2
L2p+2(ΓN )

< 0,

there is always a negative eigenvalue of L so that n(L) ≥ 1. When the nullity index is nonzero, we
define bifurcations of the symmetric state, according to the following definition.
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Definition 3. We say that the positive single-lobe symmetric state Φ has a bifurcation if z(L) ≥ 1.

The second main result states that the positive single-lobe symmetric state of Theorem 1 under-
goes exactly one bifurcation in the parameter continuation in ω. The proof of this result is given
in Section 3.

Theorem 2. Fix p = 1, assume N ≥ 2, and consider the positive single-lobe symmetric state
Φ ∈ H2

NK(ΓN ) of Theorem 1. There exists ω∗ ∈ (−∞, 0) such that z(L) = N − 1 for ω = ω∗ and
z(L) = 0 for ω 6= ω∗. Moreover, n(L) = N for ω ∈ (−∞, ω∗) and n(L) = 1 for ω ∈ [ω∗, 0).

Figure 3 shows the bifurcation diagram on the parameter plane (ω, µ) in the case N = 2 (left)
and N = 3 (right). At the bifurcation point ω∗ of Theorem 2, it follows from Fig. 3 that (N − 1)
branches of positive asymmetric single-lobe states appear, according to the following definition.

Definition 4. Fix 1 ≤ K ≤ N − 1. We say that the positive single-lobe state Φ ∈ H1
C(ΓN ) is

asymmetric and K-split if, up to permutation between the components in the N loops, components
of Φ satisfy the condition:

(1.11) φ1(x) = · · · = φK(x), φK+1(x) = · · · = φN (x), for x ∈ [−π, π].

For convenience, we denote the positive single-lobe state satisfying (1.11) by Φ(K) and assume that
the K components have larger amplitudes (L∞ norms on the corresponding edges), whereas the
(N −K) components have smaller amplitudes.
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Figure 3. The bifurcation diagram of positive single-lobe states on the parameter
plane (ω, µ) for N = 2 (left) and N = 3 (right). The blue line shows the positive

single-lobe symmetric state Φ. The red line is the single-lobe state Φ(1) with one
component having larger amplitude than the other components. The green line (for

N = 3) is the single-lobe state Φ(2) with two components having larger amplitudes
than the third one.

It follows from the insert of Figure 3 (right) in the case of N = 3 that the new branch given
by the green line is only located for ω < ω∗, whereas the other new branch given by the red line
exists for ω > ω∗ near the bifurcation point at ω∗ and has a fold point at ω1 ∈ (ω∗, 0). The branch
turns at the fold point and extends for every ω < ω1. Hence, two points on the same branch are
located for a fixed value of ω in (ω∗, ω1). Details of the numerical approximation which produce
the bifurcation diagram on Figure 3 are described in Section 5.

Although the behavior of (N − 1) branches can be complicated near the bifurcation point ω∗,
it becomes simple for large negative values of ω. Our third main result states a rather simple
characterization of the positive single-lobe asymmetric states for large negative ω. The proof of
this result is given in Section 4.
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Theorem 3. Fix p = 1. There exists ω∞ ∈ (−∞, ω∗) such that for every ω ∈ (−∞, ω∞) there
are exactly N (up to permutations between the components in the N loops) positive single-lobe

states Φ(K) ∈ H2
NK(ΓN ) with 1 ≤ K ≤ N , which satisfy the stationary NLS equation (1.4), are

symmetric on each loop parameterized by [−π, π], and are monotonically decreasing on the half-line
[0,∞). Moreover, the first K components in (1.11) are monotonically decreasing on [0, π] and the
other N −K components in (1.11) are monotonically increasing on [0, π]. For every K, the map

(−∞, ω∞) 3 ω 7→ Φ(K)(·, ω) ∈ H2
NK(ΓN ) is C1 and the mass µ(K)(ω) := Q(Φ(K)(·, ω)) is a C1

monotonically decreasing function satisfying the limits µ(K)(ω)→∞ as ω → −∞. Moreover,

(1.12) µ(1)(ω) < µ(2)(ω) < · · · < µ(N−1)(ω) < µ(N)(ω), ω ∈ (−∞, ω∞),

where Φ(N) = Φ with µ(N)(ω) = µ(ω) are given by the symmetric state in Theorem 1.

It follows from characterization of local minimizers of energy in the limit of large mass in [4]

that the Morse index of Φ(K=1) is 1, whereas Theorem 3 defines monotonically decreasing map
ω 7→ µ(K=1) for large negative ω. By Theorems 1 and 2, the Morse index of Φ ≡ Φ(N) is 1 for small
negative ω and the map ω 7→ µ(K=1) is monotonically decreasing for every ω. By the standard
theory of orbital stability of standing waves, the following corollary is deduced from these results.

Corollary 1. Fix p = 1 and assume N ≥ 2. There exist µ∗ and µ∞ satisfying 0 < µ∗ ≤ µ∞ <∞
such that the positive single-lobe symmetric state Φ of Theorem 1 is a local minimizer of energy
E(Ψ) subject to the fixed mass Q(Ψ) = µ for µ ∈ (0, µ∗), whereas the positive single-lobe state

Φ(K=1) of Theorem 3 is a local minimizer of energy E(Ψ) subject to the fixed mass Q(Ψ) = µ for
µ ∈ (µ∞,∞). Moreover, µ∗ = µ(ω∗) = Q(Φ(·, ω∗)), where ω∗ is defined in Theorem 2.

Remark 1.2. One can show by the methods used in [7] and [16] that the symmetric state Φ of
Theorem 1 is the ground state of the constrained minimization problem (1.5) for small µ, whereas

the asymmetric state Φ(K=1) of Theorem 3 is not the ground state for large µ if N ≥ 2, because the
infimum of the constrained minimization problem (1.5) is not attained. These results are given in
Appendices B and C for completeness.

Remark 1.3. For the tadpole graph (N = 1), no ω∗ or µ∗ exist and the symmetric state of Theorem
1 is a local constrained minimizer of energy for every ω ∈ (−∞, 0). Moreover, by Corollary 3.4 and
the construction on Figure 4 in [2], it is the ground state of energy for every mass µ ∈ (0,∞).

It follows from Proposition 3.3 in [1] that only positive states are candidates for minimizers of the
energy E(Ψ) subject to the fixed mass Q(Ψ) = µ. By Theorem 2.2 in [1], Eµ satisfies the bounds

(1.13) − 1

3
µ3 ≤ Eµ ≤ −

1

12
µ3,

where the lower bound is the energy of a half-soliton on a half-line with the same mass µ and
the upper bound is the energy of a full soliton on a full line with the same mass µ. By Theorem
3.3 and Corollary 3.4 in [2], the infimum is attained if there exists Ψ∗ ∈ H2

NK(ΓN ) such that

E(Ψ∗) ≤ − 1
12µ

3.
Figure 4 shows the branch of the positive single-lobe state Φ in the case N = 1 on the (ω, µ)

plane (left) and on the (µ, η) plane (right), where η := E(Φ). The shaded area on Figure 4 (right)
is defined between the lower and upper bounds in (1.13). The branches are computed numerically
by using the numerical methods based on the period function, see Section 5.

In agreement with Remark 1.3, the positive single-lobe state for N = 1 is the ground state of the
constrained minimization problem (1.5) in the sense that the solution branch on the (µ, η) plane
is located in the shaded area for every µ > 0. It approaches the lower bound as µ → 0 when Φ is
close to the half-soliton on the half-line and it approaches the upper bound as µ → ∞ when Φ is
close to the full soliton on the full line (see Appendices B and C).
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Figure 4. The branch of the positive single-lobe state Φ in the case N = 1 on the
plane (ω, µ) (left) and on the mass–energy plane (right).

Figure 5. Bifurcation diagram of positive single-lobe states on the mass–energy
plane for N = 2 (left) and N = 3 (right).

Figure 5 shows numerically computed branches of the positive single-lobe states on the (µ, η)
plane for N = 2 (left) and N = 3 (right). Compared to the case N = 1 on Figure 4 (right) and in
agreement with Remark 1.2, the branch for the positive single-lobe symmetric state Φ is located
inside the shaded region only for small mass µ and it goes beyond the shaded region, where the
bifurcation of Theorem 2 occurs. All new branches of positive single-lobe asymmetric states in
Theorem 3 bifurcating from the branch for Φ stay away the shaded region, hence these states are
not the ground state of the constrained minimization problem (1.5) for any µ > 0. Nevertheless,

we note that the branch for Φ is close to the lower bound as µ → 0 and the branch for Φ(K=1)

approaches the upper bound as µ→∞ from the unshaded region (see Appendices B and C).

2. Existence of the positive single-lobe symmetric state

We shall first reformulate the stationary NLS equation (1.4) with p = 1 equipped with the
Neumann–Kirchhoff boundary conditions (1.6) in the form for which we can use the dynamical
system theory for orbits on the phase plane, e.g. the period function. Then, we obtain estimates
on the period function and on the mass of the symmetric state, from which we prove Theorem 1.

2.1. Reformulation of the existence problem. We use the following scaling transformation for
ω := −ε2 < 0 with ε > 0:

(2.1) φ0(x) = εu0(εx), φj(x) = εuj(εx), j ∈ {1, 2, . . . , N}.
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In new variables, the stationary NLS equation (1.4) with p = 1 transforms to the following system
of differential equations:

(2.2)

{
−u′′j (z) + uj(z)− 2|uj(z)|2uj(z) = 0, z ∈ (−Tε, Tε), j ∈ {1, 2, . . . , N},
−u′′0(z) + u0(z)− 2|u0(z)|2u0(z) = 0, z > 0,

where z = εx and Tε = πε. The only dependence of system (2.2) on ε is due to the length
of the intervals [−Tε, Tε]. The boundary conditions (1.6) transforms to the equivalent boundary
conditions:

(2.3)

{
u1(±Tε) = u2(±Tε) = · · · = uN (±Tε) = u0(0),∑N

j=1 u
′
j(Tε)− u′j(−Tε) = u′0(0),

The only positive decaying solution to the system (2.2) for u0 on the half-line is expressed by the
shifted NLS soliton:

(2.4) u0(z) = sech(z + a), z > 0,

where a ∈ R is an arbitrary translation parameter. If a > 0, u0 is monotonically decreasing on
[0,∞) and if a < 0, u0 is non-monotone on [0,∞). In order to prove Theorem 1, we only consider
the positive states with the monotonically decreasing u0, hence we select a > 0.

Each second-order differential equation in the system (2.2) is integrable with the first-order
invariant:

(2.5) E(u, v) = v2 −A(u), v :=
du

dz
, A(u) := u2(1− u2),

where the value of E(u, v) = E is independent of z. Note that there exists only one positive p∗
such that A′(p∗) = 0, in fact, p∗ = 1√

2
. Two symmetric (positive and negative) homoclinic orbits

exist for E = 0. Periodic orbits inside each of the two homoclinic loops exist for E ∈ (E∗, 0) with
E∗ = −A(p∗) = −1

4 and they are either strictly positive or strictly negative. Periodic orbits outside
the two homoclinic loops exist for E ∈ (0,∞) and they are sign-indefinite.

The homoclinic orbit with the decaying solution (2.4) corresponds to E = 0 for which either

v =
√
A(u) if z + a < 0 or v = −

√
A(u) if z + a > 0. If a > 0, then v = −

√
A(u) for all z > 0.

Let us define p0 := sech(a), that is, the value of u0(z) at z = 0. Then, −
√
A(p0) is the value

of u′0(z) at z = 0. Note that p0 ∈ (0, 1) is a free parameter obtained from a ∈ (0,∞) such that
p0(a)→ 1 when a→ 0 and p0(a)→ 0 when a→∞.

Under the scaling transformation (2.1), the symmetry condition (1.7) yields

(2.6) u1(z) = u2(z) = · · · = uN (z) for z ∈ [−Tε, Tε],

hence the positive symmetric state of Definition 2 is found from the following boundary-value
problem:

(2.7)


−u′′1(z) + u1(z)− 2|u1(z)|2u1(z) = 0, z ∈ (−Tε, Tε),
u1(Tε) = u1(−Tε) = p0,

u′1(−Tε) = −u′1(Tε) = 1
2N

√
A(p0),

where p0 ∈ (0, 1) is a free parameter of the problem. The positive single-lobe states of Definition 1
correspond to a part of the integral curve which intersects p0 only twice at the ends of the interval
[−Tε, Tε].

Figure 6 shows integral curves (2.5) in the phase plane (u, v). The dashed line represents the
homoclinic orbit at E = 0 with the solid part depicting the tail of the soliton (2.4) for a = 0.7
(left) and a = 1 (right). The dashed-dotted vertical line gives the value of p0 = u0(0) = sech(a).

The red solid line shows the value of q0 = 1
2N

√
A(p0) versus p0 ∈ (0, 1) in the derivative boundary

condition of the system (2.7). The integral curve at p0 = sech(a) and q0 = 1
2N

√
A(p0) corresponds
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to the value of E = q2
0 − A(p0). Again the dashed line presents the whole integral curve while the

solid part depicts a suitable solution to the boundary-value problem (2.7).
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Figure 6. Construction of the positive single-lobe symmetric state on the phase
plane for N = 2 with a = 0.7 (left) and a = 1 (right).

We shall make this geometric picture rigorous by using analytical tools of the period function.
We define two period functions for a given (p0, q0):

(2.8) T+(p0, q0) :=

∫ p+

p0

du√
E +A(u)

, T−(p0, q0) :=

∫ p0

p−

du√
E +A(u)

,

where the value E and the turning points p+ and p− are defined from (p0, q0) by

(2.9) E = q2
0 −A(p0) = −A(p+) = −A(p−).

For the integral curves inside the separatrix loop on Figure 6, we can order the turning points as
follows: 0 < p− < p∗ < p+ < 1.

The positive single-lobe state satisfying the boundary-value problem (2.7) is found from the
nonlinear equation:

(2.10) Tε = T (p0), where T (p0) := T+

(
p0,

1

2N

√
A(p0)

)
.

Since Tε = πε and T (p0) is uniquely defined by p0 ∈ (0, 1), the problem (2.10) defines a unique
mapping (0, 1) 3 p0 7→ ε(p0) ∈ (0,∞). Monotonicity of this mapping is shown next.

2.2. Monotonicity of the period function. It follows that p∗ = 1√
2

is a double root of A(u)−
A(p∗) thanks to A′(p∗) = 0 and A′′(p∗) 6= 0, where we can use the explicit computations of
A′(u) = 2u(1− 2u2) and A′′(u) = 2(1− 6u2).

At the integral curve with a constant value of E(u, v) = v2 −A(u) = E, we can write

d

[
2(A(u)−A(p∗))v

A′(u)

]
=

[
2− 2(A(u)−A(p∗))A

′′(u)

[A′(u)]2

]
vdu+

2(A(u)−A(p∗))

A′(u)
dv.

where the quotients are not singular for every u > 0. This allows us to express

A(u)−A(p∗)

v
du = −

[
2− 2(A(u)−A(p∗))A

′′(u)

[A′(u)]2

]
vdu+ d

[
2(A(u)−A(p∗))v

A′(u)

]
.(2.11)

The following lemma justifies monotonicity of the mapping (0, 1) 3 p0 7→ T (p0) ∈ (0,∞) from the
representation (2.11).

Lemma 2.1. The function p0 7→ T (p0) is C1 and monotonically decreasing for every p0 ∈ (0, 1).
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Proof. Since q0 = 1
2N

√
A(p0) in (2.10) for a given p0 ∈ (0, 1), the value of T (p0) is obtained from

the integral curve at the energy level E = E0(p0), where

(2.12) E0(p0) := q2
0 −A(p0) = −

(
1− 1

4N2

)
A(p0).

For every p0 ∈ (0, 1), we use the formula (2.11) to get

[E0(p0) +A(p∗)] T (p0) =

∫ p+

p0

[
v − A(u)−A(p∗)

v

]
du

=

∫ p+

p0

[
3− 2(A(u)−A(p∗))A

′′(u)

[A′(u)]2

]
vdu+

2(A(p0)−A(p∗))q0

A′(p0)
,

where q0 = 1
2N

√
A(p0). Because the integrands are free of singularities and E0(p0) + A(p∗) > 0,

the mapping (0, 1) 3 p0 7→ T (p0) ∈ (0,∞) is C1. We only need to prove that T ′(p0) < 0 for every
p0 ∈ (0, 1).

Because the mapping is C1, we differentiate the previous expression with respect to p0:

[E0(p0) +A(p∗)] T ′(p0) = − A(p∗)

4N2q0
− A′(p0)

2

(
1− 1

4N2

)∫ p+

p0

[
1− 2(A(u)−A(p∗))A

′′(u)

[A′(u)]2

]
du

v

= − A(p∗)

4N2q0
− A′(p0)

8

(
1− 1

4N2

)∫ p+

p0

1− 2u2

u2v
du.

Since A′(p0) < 0 for any p0 ∈ (p∗, 1), we get that T ′(p0) < 0 for any p0 ∈ (p∗, 1). Similarly, since
A′(p∗) = 0, we also have T ′(p∗) < 0.

If p0 ∈ (0, p∗) we use A′(u) = 2u(1− 2u2) and proceed with integration by parts to get∫ p+

p0

1− 2u2

u2v
du =

∫ p+

p0

A′(u)

2u3
√
E0(p0) +A(u)

du(2.13)

= −
√
E0(p0) +A(p0)

p3
0

+ 3

∫ p+

p0

√
E0(p0) +A(u)

u4
du

= − q0

p3
0

+ 3

∫ p+

p0

v

u4
du.

Substituting this into the equation above, we have

[E0(p0) +A(p∗)] T ′(p0) = − A(p∗)

4N2q0
− A′(p0)

8

(
1− 1

4N2

)∫ p+

p0

1− 2u2

u2v
du

= − A(p∗)

4N2q0
+
A′(p0)

8

(
1− 1

4N2

)
q0

p3
0

− 3A′(p0)

8

(
1− 1

4N2

)∫ p+

p0

v

u4
du.

The last term is negative since A′(p0) > 0 for every p0 ∈ (0, p∗). To evaluate the first two terms we
use that A(p∗) = 1

4 , A′(p0) = 2p0(1− 2p2
0), and 4N2q2

0 = p2
0 − p4

0 so that we get

− A(p∗)

4N2q0
+
A′(p0)

8

(
1− 1

4N2

)
q0

p3
0

= − 1

16N2q0
+

(1− 2p2
0)q0

4p2
0

− A′(p0)q0

32N2p3
0

= −(3− 2p2
0)p2

0

16N2q0
− A′(p0)q0

32N2p3
0

,

which is negative for every p0 ∈ (0, p∗). As a result of the above calculations, for every p0 ∈ (0, p∗)
we have T ′(p0) < 0. �
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2.3. Monotonicity of the mass of the symmetric state. By construction of the symmetric
state Φ, we compute the mass µ(ω) := Q(Φ(·, ω)) in the form

µ = N

∫ π

−π
φ2

1dx+

∫ ∞
0

φ2
0dx.

Thanks to the scaling transformation (2.1), the explicit solution on the half-line (2.4), and the
invariant curve on the phase plane (2.5, the mass integral can be rewritten as follows:

(2.14) µ = 2Nε

∫ p+

p0

u2du√
E +A(u)

+ ε

(
1−

√
1− p2

0

)
.

where p0 ∈ (0, 1) is the same parameter as in (2.10), E = E0(p0) is fixed at the energy level (2.12),

A(u) = u2 − u4, and we have used tanh(a) =
√

1− p2
0 that follows from sech(a) = p0 with a > 0.

Using T (p0) = πε in (2.10), we rewrite (2.14) as

(2.15) M(p0) := πµ = T (p0)

[
2N

∫ p+

p0

u2du√
E +A(u)

+

(
1−

√
1− p2

0

)]
.

Recall that ω = −ε2 and that the function p0 7→ T (p0) = πε is C1 and monotonically decreasing
for every p0 ∈ (0, 1). The following lemma gives monotonicity of the mapping (0, 1) 3 p0 7→
M(p0) ∈ (0,∞).

Lemma 2.2. The function p0 7→ M(p0) is C1 and monotonically decreasing for every p0 ∈ (0, 1).

Proof. We denote B(p0) :=
∫ p+
p0

u2du√
E+A(u)

and prove that the mapping (0, 1) 3 p0 7→ B(p0) ∈ (0,∞)

is C1. At the integral curve with the constant value of E(u, v) = E0(p0), we can write

d

[
2(A(u)−A(p∗))u

2v

A′(u)

]
= 2

[
1 +

2(1 + 2u2)(A(u)−A(p∗))

[A′(u)]2

]
u2vdu+

2(A(u)−A(p∗))

A′(u)
u2dv.

where the relations A′(u) = 2u(1 − 2u2) and A′′(u) = 2(1 − 6u2) have been used. Since 2vdv =
A′(u)du along the integral curve E(u, v) = E0(p0), we obtain

(A(u)−A(p∗))

v
u2du = d

[
2(A(u)−A(p∗))u

2v

A′(u)

]
−2

[
1 +

2(1 + 2u2)(A(u)−A(p∗))

[A′(u)]2

]
u2vdu,(2.16)

where the quotients are not singular for every u > 0. For every p0 ∈ (0, 1) we use the formula (2.16)
to write

[E0(p0) +A(p∗)]B(p0) =

∫ p+

p0

[
vu2 − (A(u)−A(p∗))u

2

v

]
du

=

∫ p+

p0

[
3 +

4(1 + 2u2)(A(u)−A(p∗))

[A′(u)]2

]
u2vdu+

2(A(p0)−A(p∗))p
2
0q0

A′(p0)
,

where q0 = 1
2N

√
A(p0). Because the integrands are free of singularities and E0(p0)+A(p∗) > 0, the

mapping (0, 1) 3 p0 7→ B(p0) ∈ (0,∞) is C1. Hence, the mapping (0, 1) 3 p0 7→ M(p0) ∈ (0,∞) is
C1. It remains to prove that M′(p0) < 0 for every p0 ∈ (0, 1).

We differentiate (2.15) with respect to p0:

(2.17) M′(p0) = T ′(p0)

[
2NB(p0) +

(
1−

√
1− p2

0

)]
+ 2NT (p0)B′(p0) + T (p0)

p0√
1− p2

0

.
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It follows from the proof of Lemma 2.1 that

(2.18) [E0(p0) +A(p∗)] T ′(p0) = − A(p∗)

4N2q0
− A′(p0)

8

(
1− 1

4N2

)∫ p+

p0

1− 2u2

u2v
du < 0.

Similarly, differentiating the expression for B(p0) yields the following expression:

[E0(p0) +A(p∗)]B′(p0) = −A(p∗)p
2
0

4N2q0
+
A′(p0)

8

(
1− 1

4N2

)∫ p+

p0

1− 2u2

v
du.(2.19)

It follows from the right-hand side of (2.17) that the first term is always negative, whereas the
third term is always positive. The third term can be of either sign depending on the value of
p0 ∈ (0, 1). In order to prove that M′(p0) < 0 for every p0 ∈ (0, 1), we shall balance the positive
terms in the right-hand side of (2.17) with the negative terms.

We combine the second and third terms in the right-hand side of (2.17) after multiplication by
(E0(p0) +A(p∗)) and obtain:

I := (E0(p0) +A(p∗))

[
2NT (p0)B′(p0) + T (p0)

p0√
1− p2

0

]

= T (p0)
p0√

1− p2
0

(E0(p0) +A(p∗)) + 2NT (p0)

[
−A(p∗)p

2
0

4N2q0
+
A′(p0)

8

(
1− 1

4N2

)∫ p+

p0

1− 2u2

v
du

]

= −
(

1− 1

4N2

)
T (p0)

[
p0A(p0)√

1− p2
0

+
NA′(p0)

4

∫ p+

p0

2u2 − 1

v
du

]

where we have used E0(p0) = −
(
1− 1

4N2

)
A(p0), A(p∗) = 1

4 , and q0 =

√
A(p0)

2N . The first term in I
is already negative, however, the second term is sign-indefinite.

For p0 ∈ (p∗, 1), the second term is negative because A′(p0) < 0 and 2u2− 1 > 0 for u ∈ [p0, p+].
Using the integration by parts, we write∫ p+

p0

2u2 − 1

v
du = −

∫ p+

p0

A′(u)du

2u
√
E +A(u)

=
q0

p0
−
∫ p+

p0

v

u2
du.

Substituting this expression into the expression for I yields

I = −
(

1− 1

4N2

)
T (p0)

[
p0(1 + 2p2

0)
√

1− p2
0

4
− NA′(p0)

4

∫ p+

p0

v

u2
du

]
which is negative since A′(p0) ≤ 0 for p0 ∈ [p∗, 1). Hence, M′(p0) < 0 for p0 ∈ [p∗, 1).

For p0 ∈ (0, p∗), we have A′(p0) > 0 but 2u2 − 1 is sign-indefinite for u ∈ [p0, p+]. We combine
the second term in the right-hand side of I and the second term in the right-hand side of (2.18)
in the first term of (2.17), all other terms in the right-hand side of (2.17) are negative. Hence, we
consider

II := −NA
′(p0)

4

(
1− 1

4N2

)[
T (p0)

∫ p+

p0

2u2 − 1

v
du+ B(p0)

∫ p+

p0

1− 2u2

u2v
du

]
= −NA

′(p0)

4

(
1− 1

4N2

)[(∫ p+

p0

u2du

v

)(∫ p+

p0

du

u2v

)
−
(∫ p+

p0

du

v

)2
]
,

where A′(p0) > 0 if p0 ∈ (0, p0). Thanks to the Cauchy–Schwarz inequality∫ p+

p0

du

v
=

∫ p+

p0

u√
v

du

u
√
v
≤
(∫ p+

p0

u2du

v

)1/2(∫ p+

p0

du

u2v

)1/2

,

the expression is negative. Hence, M′(p0) < 0 for p0 ∈ (0, p∗). �
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2.4. Proof of Theorem 1. By monotonicity of the period function T (p0) in p0 given by Lemma
2.1 and by the nonlinear equation (2.10) with Tε = πε, we have a diffeomorphism (0, 1) 3 p0 7→
ε(p0) ∈ (0,∞). Let us show that ε(p0) → 0 as p0 → 1 and ε(p0) → ∞ as p0 → 0. Then, since the
function T (p0) is monotonically decreasing, the range of the mapping p0 7→ ε(p0) is indeed (0,∞).

Since p+ is obtained from p0 from the relation

p2
+(1− p2

+) =

(
1− 1

4N2

)
p2

0(1− p2
0),

and p0 < p+ < 1, it follows that p+ → 1 as p0 → 1 so that |p+ − p0| → 0 as p0 → 1. Since the
weakly singular integrand below is integrable, we have

(2.20) T (p0) =

∫ p+

p0

du√
E +A(u)

=

∫ p+

p0

du√
A(u)−A(p+)

→ 0 as p0 → 1,

hence ε(p0)→ 0 as p0 → 1. On the other hand, for every 0 < p0 < p+ < 1 we obtain

(2.21) T (p0) =

∫ p+

p0

du√
A(u)−A(p+)

≥
∫ p+

p0

du

u
√

1− u2
.

Since p+ → 1 as p0 → 0 and ∫ 1

0

du

u
√

1− u2
=∞,

we have T (p0)→∞ as p0 → 0, hence ε(p0)→∞ as p0 → 0.
Thus, for each p0 = sech(a) ∈ (0, 1) or equivalently, for each a ∈ (0,∞), there exists exactly one

root ε ∈ (0,∞) of the nonlinear equation (2.10). By using ω = −ε2, the scaling transformation (2.1),
the soliton (2.4), and the symmetry (2.6), we obtain a unique solution Φ ∈ H2

NK(ΓN ) satisfying the
stationary NLS equation (1.4), which is symmetric on each loop parameterized by [−π, π] and is
monotonically decreasing on [0, π] and [0,∞). Moreover, by Lemma 2.1 and by the construction,
the map (−∞, 0) 3 ω 7→ Φ(·, ω) ∈ H2

NK(ΓN ) is C1.
Let us now define the mass µ(ω) := Q(Φ(·, ω)) on the unique solution Φ ∈ H2

NK(ΓN ) for each
ω ∈ (−∞, 0). By Lemma 2.2, the mapping (0, 1) 3 p0 7→ M(p0) ∈ (0,∞) is C1 and monotonically
decreasing, whereM(p0) = πµ(ω). Since the mapping (0,∞) 3 ε 7→ p0(ε) is C1 and monotonically
decreasing, whereas ω = −ε2, we obtain that the mapping (−∞, 0) 3 ω 7→ µ(ω) ∈ (0,∞) is C1 and
monotonically decreasing, which follows from the chain rule

(2.22)
dµ

dω
=

dµ

dp0

dp0

dε

dε

dω
.

It remains to prove that µ(ω)→ 0 as ω → 0 and µ(ω)→∞ as ω → −∞.
Since ε→ 0 as p0 → 1, it follows from (2.14) that µ→ 0 as p0 → 1. Moreover, the first term in

(2.14) is smaller than the second term in (2.14) thanks to the limit similar to (2.20). As a result,
we deduce the following precise limit:

lim
ε→0

µ

ε
= 1.

On the other hand, since ε → ∞ as p0 → 0, we obtain µ → ∞ as p0 → 0. Moreover, the second
term in (2.14) is smaller than the first term in (2.14), which yields the following precise limit:

lim
ε→∞

µ

ε
= 2N

∫ 1

0

udu√
1− u2

= 2N.

Thus, the mass µ(ω) in (2.14) satisfies µ(ω)→ 0 as ω → 0 and µ(ω)→∞ as ω → −∞. The proof
of Theorem 1 is complete.
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Remark 2.1. For every ε > 0, the solution u1 to the boundary-value problem (2.7) which corre-
sponds to Theorem 1 is given by a positive, even function on [−Tε, Tε] such that u′(z) < 0 for every
z ∈ (0, Tε].

Remark 2.2. In the proof of Theorem 1, we show that T (p0) = T+(p0,
1

2N

√
A(p0))→∞ as p0 → 0

using the estimate (2.21) in the limit p+ → 1 as p0 → 0. In a similar manner, we can prove that

T+(p0, C
√
A(p0))→∞ as p0 → 0 for any positive constant C.

3. Bifurcations from the positive single-lobe symmetric state

By Theorem 1, for every ω < 0, there exists a unique positive single-lobe symmetric state Φ ∈
HNK(ΓN ). For every such Φ, we define the self-adjoint operator L : HNK(ΓN ) ⊂ L2(ΓN )→ L2(ΓN )
as in (1.8). Thanks to the exponential decay of φ0(x) → 0 as x → ∞, by Weyl’s theorem, the
spectrum of L in L2(ΓN ) consists of finitely many isolated eigenvalues of finite multiplicities below
|ω|, which is the infimum of the continuous spectrum of L in (1.9).

Here we prove Theorem 2. We shall first group the negative and zero eigenvalues of L into three
sets. By using the Sturm comparison theorem and the analytical properties of the period function
T+(p0, q0), we control the lowest eigenvalues in each set. In the end, we prove that there exists only
one value of ω ∈ (−∞, 0), labeled as ω∗, for which z(L) = N − 1, whereas z(L) = 0 for ω 6= ω∗. We
also show that n(L) = 1 for ω ∈ (ω∗, 0) and n(L) = N for ω ∈ (−∞, ω∗).

Note that we avoid the surgery techniques for the count of nodal domains [5], which do not
provide precise information on the Morse index for graphs with positive Betti number. Instead, we
explore Sturm’s comparison theory on bounded intervals and further analytical properties of the
period function. In particular, we show that the bifurcation at ω∗ is related to the existence of a
critical point of the period function T+(p0, q0) with respect to the parameter q0 at the corresponding
integral curve on the phase plane.

3.1. Eigenvalues of L. Let us consider the spectral problem LΥ = ε2λΥ, where Υ ∈ H2
NK(ΓN ) is

an eigenfunction of L corresponding to the eigenvalue ε2λ and the parameter ε is used to express ω =
−ε2 and the positive single-lobe symmetric state Φ by using the scaling transformation (2.1) with
(u1, u2, . . . , uN , u0). By using a similar transformation with (v1, v2, . . . , vN , v0) for the eigenfunction
Υ, we rewrite the spectral problem LΥ = ε2λΥ as the following boundary-value problem:

(3.1)


−v′′j (z) + vj(z)− 6|uj(z)|2vj(z) = λvj(z), z ∈ (−Tε, Tε), j ∈ {1, 2, . . . , N},
−v′′0(z) + v0(z)− 6|u0(z)|2v0(z) = λv0(z), z > 0,
v1(±Tε) = v2(±Tε) = · · · = vN (±Tε) = v0(0),∑N

j=1 v
′
j(Tε)− v′j(−Tε) = v′0(0),

where Tε = πε. In what follows, ε > 0 is a fixed parameter and the statements hold for every ε > 0.
Due to the symmetry (2.6) on the positive single-lobe symmetric state Φ, we have the following

trichotomy.

Lemma 3.1. Eigenvalues λ of the boundary-value problem (3.1) with λ ≤ 0 are grouped into three
sets:

• S1: Simple eigenvalues with v0 6≡ 0 and even v1 = v2 = · · · = vN on [−Tε, Tε];
• S2: Eigenvalues of multiplicity (N − 1) with v0 ≡ 0 and even vj on [−Tε, Tε] for every j;
• S3: Eigenvalues of multiplicity N with v0 ≡ 0 and odd vj on [−Tε, Tε] for every j.

Moreover, S1 ∩ S2 = ∅ and S2 ∩ S3 = ∅.

Proof. If v0 6≡ 0, there exists only one solution of the second-order equation for v0 which decays to
0 as z →∞, as is shown, e.g., in [13, Lemma 5.1]. Hence, if v0 6≡ 0, the multiplicity of λ in the set
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S1 is one. In fact, the solution v0 (up to normalization) is available in the following analytic form:

(3.2) v0(z) = V0(z;λ) := e−
√

1−λz 3− λ+ 3
√

1− λ tanh(z + a)− 3sech2(z + a)

3− λ+ 3
√

1− λ
,

where a > 0 for every ε > 0 by Lemma 2.1. For every λ ≤ 0, it follows from (3.2) that v0(z) > 0
for every z ≥ 0.

Thanks to the symmetry condition (2.6) with even uj and the boundary conditions vj(−Tε) =
vj(Tε) = v0(0) 6= 0, it follows that each uniquely defined, even function vj on [−Tε, Tε] is identical to
each other, thus satisfying the symmetry v1 = v2 = · · · = vN . Then, each vj satisfies the following
boundary-value problem:

(3.3) SP1 :

 −v
′′(z) + v(z)− 6|u1(z)|2v(z) = λv(z), z ∈ (−Tε, Tε),

v(−Tε) = v(Tε) = V0(0;λ),
2Nv′(Tε) = V ′0(0;λ),

where the prime denotes the derivative in z.
If v0 ≡ 0, then each vj is found from the following Sturm–Liouville boundary-value problem

(3.4) SP2 :

{
−v′′(z) + v(z)− 6|u1(z)|2v(z) = λv(z), z ∈ (−Tε, Tε),
v(−Tε) = v(Tε) = 0.

If (v1, λ) is a solution to SP2, then so are v2, . . . , vN . By the linear superposition principle, the
solution v is either even or odd. If v1 is even, then the derivative boundary condition in (3.1) yields
a nontrivial constraint:

(3.5)

N∑
j=1

v′j(Tε) = 0

and since v′(Tε) 6= 0 for a nonzero solution of the spectral problem (3.4), then there are only N − 1
combinations of v1, v2, . . . , vN satisfying the constraint (3.5). Hence the eigenvalue λ in the set S2

has multiplicity (N − 1).
If v1 is odd, then the derivative boundary condition in (3.1) is trivially satisfied, hence there are

N linearly independent functions v1, v2, . . . , vN and the eigenvalue λ in the set S3 has multiplicity
N .

The boundary-value problem SP2 is the Sturm–Liouville problem with the Dirichlet boundary
conditions, hence its eigenvalues are all simple. This implies S2 ∩ S3 = ∅.

Each v(z) satisfying SP1 is even on (−Tε, Tε). Since V0(0;λ) > 0 for every λ ≤ 0, this implies
that v(±Tε) > 0 so that v(z) does not satisfy SP2 and vice versa. This implies that S1 ∩ S2 = ∅
for eigenvalues λ with λ ≤ 0. �

Let us order the eigenvalues in the spectral problem (3.1) counting their multiplicities as follows:

(3.6) λ1 ≤ λ2 ≤ λ3 ≤ . . .
By Lemma 3.1, each eigenvalue of the spectral problem (3.1) corresponds to either v0 6≡ 0 or v0 ≡ 0,
and so, the set of eigenvalues (counting multiplicities) in the spectral problem (3.1) is in one-to-one
correspondence with the union of sets of eigenvalues of the boundary-value problems SP1 and SP2.
Next, we control the sign of the lowest eigenvalues of the boundary-value problems SP1 and SP2.

3.2. Lowest eigenvalues of the boundary-value problems SP1 and SP2. We start with the
lowest eigenvalue λ1 of the spectral problem (3.1). By the Courant minimization principle, this
eigenvalue can be characterized variationally as follows:

(3.7) λ1 = inf
Υ̃∈H1

C(Γ̃N )

{
〈L̃Υ̃, Υ̃〉L2(Γ̃N ) : ‖Υ̃‖L2(Γ̃N ) = 1

}
,
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where L̃ is the ε-scaled version of the linearized operator L and Υ̃ = (v1, v2, . . . , vN , v0) is the scaled

eigenfunction on the ε-scaled graph Γ̃N . The following lemma states that λ1 < 0 and λ1 < λ2 in
(3.6).

Lemma 3.2. Let λ = γ1 be the smallest eigenvalue of SP1. Then, λ1 = γ1, moreover, λ1 is
negative and simple with a strictly positive eigenfunction Υ̃1 on Γ̃N .

Proof. It follows from (1.10) that λ1 is negative. By the variational analysis on graphs, as in [1,

Proposition 3.3], the infimum (3.7) is uniquely attained at some strictly positive Υ̃1 which belongs

to H2
HK(Γ̃N ). This positive Υ̃1 = (v1, v2, . . . , vN , v0) is the corresponding eigenfunction in the

spectral problem (3.1). Hence, v0 6≡ 0 and so, λ1 coincides with the smallest eigenvalue γ1 in the
set S1 by Lemma 3.1. Since S1 ∩ S2 = ∅, whereas the smallest eigenvalue of the Sturm–Liouville
problem (3.4) corresponds to the even eigenfunction, it follows that λ1 is not an eigenvalue in SP2,
hence λ1 is simple. �

Before proceeding with other eigenvalues, we review the Sturm–Liouville theory for the boundary-
value problem (3.4). The following three propositions are well-known, see, e.g., [17].

Proposition 3.1. Let βn be the n-th eigenvalue of the Sturm–Liouville problem (3.4) for n ∈ N.
Then, βn is simple and its corresponding eigenfunction is even (odd) if n is odd (even). Moreover,
the eigenfunction vanishes on (−Tε, Tε) at exactly n− 1 nodal points.

Proposition 3.2. Let β1 be the first eigenvalue of the Sturm–Liouville problem (3.4). Then, for
β < β1, the initial value problem

(3.8)

{
−v′′(z) + v(z)− 6|u1(z)|2v(z) = βv(z), z ∈ (−Tε, Tε),
v(0) = 1, v′(0) = 0,

has the unique solution v, which is even and strictly positive on [−Tε, Tε]. For β > β1, the unique
solution v is sign-indefinite.

Proposition 3.3. Let β2 be the second eigenvalue of the Sturm–Liouville problem (3.4). Then, for
β < β2, the initial value problem

(3.9)

{
−v′′(z) + v(z)− 6|u1(z)|2v(z) = βv(z), z ∈ (−Tε, Tε),
v(0) = 0, v′(0) = 1,

has the unique solution v, which is odd on [−Tε, Tε] and strictly positive on (0, Tε]. For β > β2, the
unique solution v is sign-indefinite on (0, Tε].

The following three lemmas state the ordering between the second eigenvalue of the boundary-
value problem SP1 and the first two eigenvalues of the boundary-value problem SP2. These
eigenvalues contribute to the order of eigenvalues λ2 and λ3 in (3.6).

Lemma 3.3. Let λ = β1 be the lowest eigenvalue of the boundary-value problem SP2 in (3.4)
and λ = γ2 be the second eigenvalue of the boundary-value problem SP1 in (3.3). If λ2 in (3.6)
is negative or zero, then λ2 = β1 < γ2. Moreover, the eigenvalue λ2 has an algebraic multiplicity
(N − 1) and is associated with (N − 1) even eigenfunctions Υ̃ on Γ̃N .

Proof. Let λ2 be the second eigenvalue of the spectral problem (3.1) with an eigenfunction Υ̃2 =
(v1, v2, . . . , vN , v0). If λ2 ∈ (−∞, 0], then either v0 ≡ 0 or v0(z) > 0 for all z ≥ 0 thanks to the
analytic form (3.2).

If v0 ≡ 0, then λ2 coincides with the smallest eigenvalue in SP2, which is β1. Then, by Proposition
3.1, each vj is even and λ2 belongs to the set S2 in Lemma 3.1. Since S1∩S2 = ∅ in Lemma 3.1, then
λ2 6= γ2, and since γ2 is also an eigenvalue of the spectral problem (3.1), it follows that λ2 < γ2.

If v0(z) > 0 for all z ≥ 0, we have that λ2 = γ2 belongs to set S1. Since S1 ∩ S2 = ∅ in Lemma
3.1, we have λ2 6= β1, and since β1 is also an eigenvalue of the spectral problem (3.1), it follows that
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λ2 < β1. Therefore, each even vj is constant proportional to the unique solution of the initial-value
problem (3.8) with β = λ2 < β1. By Proposition 3.2, each vj is strictly positive on [−Tε, Tε]. As a

result, the eigenfunction Υ̃2 is strictly positive on Γ̃N . Since the eigenfunction Υ̃1 in Lemma 3.2 is
also strictly positive on Γ̃N , the L2(Γ̃N )-inner product of Υ̃1 and Υ̃2 is not zero, which contradicts
to the orthogonality of eigenfunctions for distinct eigenvalues to the spectral problem (3.1). Hence
v0 6≡ 0 is impossible so that λ2 = β1 < γ2. �

Lemma 3.4. Let λ = γ2 be the second eigenvalue of the boundary-value problem SP1 in (3.3).
Then, γ2 6= 0.

Proof. To show that γ2 6= 0, we consider the boundary-value problem

(3.10)

 −u
′′(z) + u(z)− 2|u(z)|2u(z) = 0, z ∈ (−T+(p0, q0), T+(p0, q0)),

u(−T+(p0, q0)) = u(T+(p0, q0)) = p0,
u′(−T+(p0, q0)) = −u′(T+(p0, q0)) = q0,

where T+(p0, q0) is defined in (2.8) with two independent parameters p0 ∈ (0, 1) and q0 ∈ (0,∞).

The unique solution of the boundary-value problem (2.7) is obtained at q0 = 1
2N

√
A(p0), for which

T (p0, q0) = T (p0) = πε in (2.10). We use the notation u(z) = u(z; p0, q0) and recall that u(z; p0, q0)
is a C1 function with respect to parameters p0 and q0.

Define s(z; p0, q0) := ∂q0u(z; p0, q0). Then, s(z; p0, q0) is an even solution of the following differ-
ential equation:

(3.11) − s′′(z) + s(z)− 6|u(z)|2s(z) = 0, z ∈ (−T+(p0, q0), T+(p0, q0)).

Moreover, since u(0; p0, q0) = p+, where p+ is defined by (2.9), we have s(0; p0, q0) = ∂q0p+, where
∂q0p+ 6= 0. Indeed, after differentiating E = q2

0 −A(p0) = −A(p+) with respect to q0, we have

2q0 = 2p+(2p2
+ − 1)∂q0p+.

Since p+ > p∗ = 1√
2

and q0 > 0, we have s(0; p0, q0) = ∂q0p+ > 0.

Similarly, we define t(z; p0, q0) := ∂p0u(z; p0, q0), and notice that t(z; p0, q0) is also an even
solution of the differential equation (3.11). Differentiating E = q2

0 −A(p0) = −A(p+) with respect
to p0 yields

2p0(2p2
0 − 1) = 2p+(2p2

+ − 1)∂p0p+.

If p0 = p∗ = 1/
√

2, then t(0; p0, q0) = ∂p0p+ = 0 so that t(z; p0, q0) ≡ 0 is zero solution to (3.11).
Otherwise, t(0; p0, q0) = ∂p0p+ 6= 0 and t(z; p0, q0) is a nonzero even solution to (3.11).

For q0 = 1
2N

√
A(p0), we have T+(p0, q0) = T (p0) = πε, and since s(0; p0, q0) 6= 0, the solution

s(z; p0, q0) of the differential equation (3.11) with this q0 is constant proportional to the unique
solution to the initial-value problem (3.8) with β = 0. Moreover, if p0 6= p∗, the above statement also
applies to t(z; p0, q0), so that there exists a nonzero constant C such that t(z; p0, q0) = Cs(z; p0, q0).

If λ = γ2 = 0 in SP1, we know from (3.2) that V0(z; 0) = 1
2sech(z + a) tanh(z + a), where a

is related to p0 by p0 = sech(a). Moreover, by Lemma 2.1, a and p are C1 functions of ε, that is
a = a(ε) and p0 = p0(ε). We also define ϕ(z) := sech(z), and rewrite the boundary values in the
spectral problem SP1 as follows:

(3.12) V0(0; 0) = −1

2
ϕ′(a), and V ′0(0; 0) = −1

2
ϕ′′(a).

Solution to the differential equation in SP1 for λ = 0 is given by v(z) = C0s(z; p0, q0), where

q0 = 1
2N p0

√
1− p2

0 and C0 is a real constant. By using the boundary conditions in SP1 and the
representation (3.12), we obtain the following system of equations:

(3.13)

{
−2C0s(πε; p0, q0) = ϕ′(a)
−4NC0s

′(πε; p0, q0) = ϕ′′(a),
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where T+(p0, q0) = T (p0) = πε by (2.10). Since a(ε) > 0 for every positive ε, we know ϕ′(a) 6= 0
and from (3.13) we obtain

(3.14)
2Ns′(πε; p0, q0)

s(πε; p0, q0)
=
ϕ′′(a)

ϕ′(a)
.

On the other hand, using that p0 = ϕ(a) and q0 = − 1
2Nϕ

′(a) we rewrite the boundary values in
(3.10) at T+(p0, q0) = T (p0) = πε to be

(3.15)

{
u(πε; p0, q0) = ϕ(a)
2Nu′(πε; p0, q0) = ϕ′(a),

For p0 6= p∗, we use that a, p0, and q0 are C1 functions of ε, hence we differentiate (3.15) with
respect to ε and since t(z; p0, q0) = Cs(z; p0, q0) we obtain

(3.16)

{
s(πε; p0, q0) [Cp′0(ε) + q′0(ε)] = ϕ′(a)

[
a′(ε)− π

2N

]
2Ns′(πε; p0, q0) [Cp′0(ε) + q′0(ε)] = ϕ′′(a) [a′(ε)− 2πN ]

Note that Cp′0(ε) + q′0(ε) 6= 0 since ϕ′(a) 6= 0 6= ϕ′′(a) for p0 6= p∗. Hence, it follows from (3.16)
that

2Ns′(πε; p0, q0)

s(πε; p0, q0)
=
ϕ′′(a) [a′(ε)− 2πN ]

ϕ′(a)
[
a′(ε)− π

2N

] ,
which contradicts to (3.14) since ϕ′′(a) 6= 0 for p0 6= p∗.

For p0 = p∗, we have s′(πε; p0, q0) = 0 by (3.13). Then, we differentiate the invariant relation

q2
0 − p2

0 + p4
0 = [u′(z; p0, q0)]2 − u2(z; p0, q0) + u4(z; p0, q0) with respect to q0 and obtain

(3.17) 2q0 = 2u′(z; p0, q0)s′(z; p0, q0) + 2u(z; p0, q0)
[
2u2(z; p0, q0)− 1

]
s(z; p0, q0).

For z = T+(p0, q0) = T (p0) = πε, we substitute s′(πε; p0, q0) = 0 and u(πε; p0, q0) = p∗ in (3.17) to
get 2q0 = 0, which is a contradiction. In both cases, λ = γ2 = 0 is impossible in SP1. �

Lemma 3.5. Let λ = β2 be the second eigenvalue of the boundary-value problem SP2 in (3.4).
Then, β2 > 0.

Proof. Define r(z; p0, q0) := u′(z; p0, q0), where the prime stands for the derivative with respect to
z. We have that r(z; p0, q0) is odd and that r′(0; p0, q0) = u′′(0; p0, q0) = (1 − 2p2

+)p+ < 0. For

q0 = 1
2N

√
A(p0), we have T+(p0, q0) = T (p0) = πε, and since r′(0; p0, q0) 6= 0, r(z; p0, q0) with this

q0 is constant proportional to the unique solution to the initial-value problem (3.9) with β = 0.
By the construction of u(z; p0, q0) in (3.10) and negativity of r′(0; p0, q0), the function −r(z; p0, q0)
with this q0 is strictly positive on (0, Tε], and by Proposition 3.3, 0 = β < β2. �

3.3. Existence of a zero eigenvalue in SP2. It follows from Lemmas 3.2, 3.3, 3.4, and 3.5 that
the only eigenvalue of the spectral problem (3.1) which may cross zero and become the second
negative eigenvalue λ2 in addition to the eigenvalue λ1 = γ1 is the lowest eigenvalue λ = β1 of the
Sturm–Liouville problem SP2 in (3.4).

Here we study the conditions for β1 to become negative from the analytical properties of the
period function T+(p0, q0), which appears in the boundary-value problem (3.10). The following two
lemmas state properties of T+(p0, q0) with respect to q0 separately for p0 ∈ (0, p∗] and p0 ∈ (p∗, 1).

Lemma 3.6. For every p0 ∈ (0, p∗], T+(p0, q0) is a monotonically decreasing function of q0 in
(0,∞).

Proof. By using the same approach as in the proof of Lemma 2.1, we write

[E0(p0, q0) +A(p∗)]T+(p0, q0) =

∫ p+

p0

[
3− 2(A(u)−A(p∗))A

′′(u)

[A′(u)]2

]
vdu+

2(A(p0)−A(p∗))q0

A′(p0)
,
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where E0(p0, q0) = q2
0 − A(p0) and the integrands are free of singularities. Compared to Lemma

2.1, p0 ∈ (0, 1) and q0 ∈ (0,∞) are independent parameters. All terms in the representation are C1

functions in q0. Differentiating in q0 yields the expression

[E0(p0, q0) +A(p∗)]
∂

∂q0
T+(p0, q0) = q0

∫ p+

p0

[
1− 2(A(u)−A(p∗))A

′′(u)

[A′(u)]2

]
du

v
+

2(A(p0)−A(p∗))

A′(p0)
,

or equivalently

E0(p0, q0) +A(p∗)

2q0

∂

∂q0
T+(p0, q0) =

∫ p+

p0

1− 2u2

8vu2
du− 1− 2p2

0

8p0q0
.(3.18)

Recall that E0(p0, q0) + A(p∗) > 0 for every p0 ∈ (0, 1) and q0 ∈ (0,∞). If p0 = p∗, the first term
in (3.18) is negative and the second term is zero, hence ∂

∂q0
T+(p∗, q0) < 0.

For any p0 ∈ (0, p∗), we intoduce the value p̃0 ∈ (p∗, 1) by setting p̃2
0 := 1 − p2

0. It follows from
(2.5) that A(p0) = A(p̃0) with 0 < p0 < p∗ < p̃0 < p+ < 1. Next, we rewrite the equation (3.18) as

E0(p0, q0) +A(p∗)

2q0

∂

∂q0
T+(p0, q0) =

∫ p∗

p0

1− 2u2

8vu2
du+

∫ p̃0

p∗

1− 2u2

8vu2
du(3.19)

+

∫ p+

p̃0

1− 2u2

8vu2
du− 1− 2p2

0

8p0q0
.

The substitution z =
√

1− u2 in the second integral implies that∫ p̃0

p∗

1− 2u2

8vu2
du = −

∫ p∗

p0

(1− 2z2)z

8v(1− z2)3/2
dz.

Substituting this equation into (3.19) and calling z as u again, we get

E0(p0, q0) +A(p∗)

2q0

∂

∂q0
T+(p0, q0) =

∫ p∗

p0

1− 2u2

8v

(
1

u2
− u

(1− u2)3/2

)
du(3.20)

+

∫ p+

p̃0

1− 2u2

8vu2
du− 1− 2p2

0

8p0q0
.

The second term in the right-hand side of (3.20) is negative since p̃0 ∈ (p∗, p+), whereas the first
and last terms satisfy∫ p∗

p0

1− 2u2

8v

(
1

u2
− u

(1− u2)3/2

)
du− 1− 2p2

0

8p0q0
≤ 1− 2p2

0

8q0

∫ p∗

p0

(
1

u2
− u

(1− u2)3/2

)
du− 1− 2p2

0

8p0q0

=
(1− 2p2

0)

8q0

[
1√

1− p2
0

− 2

p∗

]
,

which is negative since p∗ < p̃0 =
√

1− p2
0. As a result, the entire right-hand side of (3.20) is

negative, hence ∂
∂q0
T+(p0, q0) < 0 for p0 ∈ (0, p∗). �

Lemma 3.7. For every p0 ∈ (p∗, 1), T+(p0, q0) is a non-monotone function of q0 in (0,∞) such
that T+(p0, q0)→ 0 as q0 → 0 and q0 →∞.

Proof. First we claim that T+(p0, q0) → 0 as q0 → 0. Indeed, if q0 = 0, the only admissible root
for p+ ≥ p0 in the nonlinear equation (2.9) is p+ = p0. Hence, as q0 → 0, the length of integration
in T+(p0, q0) given by (2.8) shrinks to zero whereas the integrand remains absolutely integrable so
that T+(p0, q0)→ 0 as q0 → 0.
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Next, we claim that T+(p0, q0)→ 0 as q0 →∞. By (2.8) and (2.9), we bound T+(p0, q0) as in

T+(p0, q0) =

∫ p+

p0

du√
E + u2 − u4

≤
∫ p+

0

du√
u2 − u4 − p2

+ + p4
+

.

By change of variables u = p+x, we rewrite the estimate as

(3.21) T+(p0, q0) ≤ 1

p+

∫ 1

0

dx
√

1− x2
√

1 + x2 − 1
p2+

.

We define A(x) := 1√
(1+x)(1+x2−1/p2+)

, and using the integration by parts, we rewrite the integral

in (3.21) as ∫ 1

0

A(x)dx√
1− x

=
[
−2
√

1− xA(x)
] ∣∣∣1

0
+ 2

∫ 1

0

√
1− xA′(x)dx,

which is finite for p+ > 1 since A(x) is continuously differentiable on [0, 1] for p+ > 1. Since for
fixed p0, we have p+ →∞ as q0 →∞, the representation (3.21) implies that

T+(p0, q0) ≤ 1

p+

∫ 1

0

A(x)dx√
1− x

→ 0

as q0 →∞. �

The following lemma defines the necessary and sufficient condition for the lowest eigenvalue β1

of the Sturm–Liouville problem SP2 to become zero. This condition is given by the intersection
of the critical point of the function T+(p0, q0) as a function of q0 for p0 ∈ (p∗, 1) with the curve

defined by q0 = 1
2N

√
A(p0).

Lemma 3.8. Let s(z; p0, q0) be the even solution to the differential equation (3.11). Then,

s(±T+(p0, q0); p0, q0) = 0 if and only if
∂T+

∂q0
(p0, q0) = 0.

Moreover, the smallest eigenvalue λ = β1 of the Sturm–Liouville problem SP2 is zero if and only

if ∂T+
∂q0

(p0, q0) = 0 at q0 = 1
2N

√
A(p0).

Proof. Since u(z; p0, q0) satisfying (3.10) and s(z; p0, q0) satisfying (3.11) are even, it is sufficient to
consider the left boundary condition at z = −T+(p0, q0) rewritten again as

(3.22)

{
u(−T+(p0, q0); p0, q0) = p0,
u′(−T+(p0, q0); p0, q0) = q0.

We differentiate the first equation in (3.22) with respect to q0 and obtain

(3.23) ∂q0u(−T+(p0, q0); p0, q0)− u′(−T+(p0, q0); p0, q0)
∂

∂q0
T+(p0, q0) = 0.

By using the definition of s(z; p0, q0) and the second equation in (3.22), we rewrite (3.23) in the
form:

(3.24) s(−T+(p0, q0); p0, q0) = q0
∂

∂q0
T+(p0, q0).

Since q0 ∈ (0,∞), it follows from (3.24) that s(−T+(p0, q0); p0, q0) = 0 if and only if ∂T+∂q0
(p0, q0) = 0.

If q0 = 1
2N

√
A(p0), then we have T+(p0, q0) = T (p0) = Tε so that the differential equation (3.11)

coincides with that in the Sturm–Liouville problem SP2 with λ = 0 in (3.4). If ∂T+
∂q0

(p0, q0) = 0

for this q0, then it follows from (3.24) that s(±Tε; p0, q0) = 0, hence s(z; p0, q0) with this q0 is
the eigenfunction of SP2 with β1 = 0. On the other hand, if β1 = 0, then the corresponding
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eigenfunction is even and hence it coincides up to a scalar multiplication with s(z; p0, q0) for this q0

by uniqueness of solutions of the second-order differential equations. Then, it follows from (3.24)
that ∂

∂q0
T+(p0, q0) = 0 for this q0. �

The following lemma ensures that there is only one critical (maximum) point of T+(p0, q0) with
respect to q0 at each energy level E0(p0, q0) = q2

0 −A(p0).

Lemma 3.9. Let E(p, q) = q2 − A(p) be the first-order invariant for the boundary-value problem
(3.10). There are no distinct points (p1, q1) and (p2, q2) in (0, 1)× (0,∞) with E(p1, q1) = E(p2, q2)

such that ∂T+
∂q1

(p1, q1) = 0 and ∂T+
∂q2

(p2, q2) = 0.

Proof. Assume that such points (p1, q1) and (p2, q2) in (0, 1) × (0,∞) do exist, and pick p1 < p2

without loss of generality. Then, we have ∂T+
∂q1

(p1, q1) = 0 and ∂T+
∂q2

(p2, q2) = 0. For j ∈ {1, 2}, con-

sider the boundary-value problem (3.10) with the boundary values (pj , qj). By Lemma 3.8, we know
that s(z; pj , qj) is a solution to the differential equation (3.11) such that s(±T+(pj , qj); pj , qj) = 0,
hence s(z; pj , qj) is the eigenfunction of the corresponding Sturm–Liouville problem.

Since E(p1, q1) = E(p2, q2) and p1 < p2 by assumption, we have u(z; p1, q1) = u(z; p2, q2) for
all z ∈ [−T+(p2, q2), T+(p2, q2)]. Then, the function s(z; p1, q1) is proportional to a solution to
the initial-value problem (3.8) for β = 0 on [−T+(p1, q1), T+(p1, q1)], where it vanishes at least at
two internal points ±T+(p2, q2). By Proposition 3.1, s(z; p1, q1) is the eigenfunction of the Sturm–
Liouville problem corresponding to (at least) the third eigenvalue of SP2, which implies that the
second eigenvalue β2 is negative. However, this contradicts to Lemma 3.5 which ensures that β2 > 0.
Hence, no two distinct points exist as in the assertion of the lemma. �

By Lemma 3.7, there exists at least one local maximum of T+(p0, q0) in q0 for p0 ∈ (p∗, 1). Let
us denote the corresponding value of q0 by qmax(p0). Since T+(p0, q0) is a C1 function of (p0, q0)
in (0, 1)× (0,∞), qmax is a continuous function of p0. The following lemma shows that qmax(p0) is

the unique critical point of T+(p0, q0) in q0 inside (0,
√
A(p0)).

Lemma 3.10. There exists p∗∗ ∈ (p∗, 1) such that for every p0 ∈ (p∗, p∗∗), there is exactly one

critical point of T+(p0, q0) in q0 inside (0,
√
A(p0)). For p0 ∈ [p∗∗, 1), T+(p0, q0) has no critical

points in q0 inside (0,
√
A(p0)).

Proof. Let qmax(p0) be the point of maximum of T+(p0, q0) in q0 for p0 ∈ (p∗, 1). We first show

that qmax(p0)→ 0 as p0 → p∗ and qmax(p0) >
√
A(p0) for p0 near 1.

It follows from (3.18) that if ∂
∂q0
T+(p0, qmax(p0)) = 0, then on the energy level E = E0(p0, qmax(p0))

we have

(3.25) qmax(p0)

∫ p+

p0

2u2 − 1

vu2
du =

2p2
0 − 1

p0
.

Integration by parts with the help of

(3.26) d
( v
u3

)
= −2u2 − 1

vu2
du− 3v

u4
du

yields

(3.27) qmax(p0)2 − (2p2
0 − 1)p2

0 = 3p3
0qmax(p0)

∫ p+

p0

v

u4
du > 0.

This gives the lower bound for qmax(p0) as

qmax(p0) > p0

√
2p2

0 − 1.
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Recall that
√
A(p0) = p0

√
1− p2

0. Hence, qmax(p0) >
√
A(p0) if p0 >

√
2/3. By continuity of qmax

and Lemma 3.9, there exists unique p∗∗ ∈ (p∗,
√

2/3) such that qmax(p∗∗) =
√
A(p∗).

To prove that qmax(p0) → 0 as p0 → p∗, we assume the contrary. That is, let qmax(p0) > ε for
some ε > 0 whenever 0 < p0 − p∗ < δ0 with sufficiently small δ0 > 0. Then, there is some positive
δ1 such that p+ > p0 + δ1. Then,

(3.28)

∫ p+

p0

2u2 − 1

vu2
du >

∫ p+

p0+δ1

2u2 − 1

vu2
du >

2(p0 + δ1)2 − 1

p2
+

∫ p+

p0+δ1

du

v
.

Since p0 ∈ (p∗, p∗ + δ0) and qmax(p0) is continuous, p+ is bounded from above, so that there exists
some δ2 > 0 such that

2(p0 + δ1)2 − 1

p2
+

> δ2.

Since qmax(p0) > ε and the integration in (3.28) goes along the energy level containing (p0, qmax(p0)),
there exists some δ3 > 0 such that∫ p+

p0+δ1

du

v
= T+(p0 + δ1, qmax(p0)) > δ3.

Combining the computations above, we get that (3.25) becomes

2p2
0 − 1

p0
= qmax(p0)

∫ p+

p0

2u2 − 1

vu2
du > εδ2δ3,

which is the contradiction since
2p20−1
p0
→ 0 as p0 → p∗. Hence qmax(p0)→ 0 as p0 → p∗.

Thus, the graph of the function p0 7→ qmax(p0) starts from zero at p0 = p∗ and traverses beyond
the homoclinic orbit for p0 > p∗∗. By continuity of qmax in p0, qmax intersects at least once each
energy level (2.12) inside the homoclinic orbit. By Lemma 3.9, the intersection of qmax with each
energy level is unique. This proves the assertion of this lemma. �

By Lemma 3.10, qmax intersects at least once with every energy level E = E0(p0, q0) inside the

homoclinic orbit. For p0 ∈ (0, 1), the curve given by the boundary condition q0 = 1
2N

√
A(p0) lies

entirely within the homoclinic orbit, so that qmax intersects with this curve at least once. The
following lemma shows that this intersection is in fact unique.

Lemma 3.11. There exists exactly one value of p0 ∈ (p∗, p∗∗) for which qmax(p0) = 1
2N

√
A(p0).

Proof. Consider the function F : (p∗, p∗∗)→ R given by

(3.29) F(p0) = p2
0(2p2

0 − 1)− q0p
3
0

∫ p+

p0

2u2 − 1

vu2
du,

where q0 = 1
2N

√
A(p0) and the integration is performed along the integral curve with E(u, v) =

E0(p0, q0). By (3.25), F(p0) = 0 if and only if qmax(p0) = 1
2N

√
A(p0). Since by Lemma 3.10,

F(p0) = 0 has at least one root in (p∗, p∗∗), it suffices to show that there are no other roots.
By using (3.26), we obtain

(3.30) F(p0) = (2p2
0 − 1)p2

0 − q2
0 + 3q0p

3
0

∫ p+

p0

v

u4
du.

We claim that F ′(pbif) at the root pbif of F(p0) = 0, so that the root pbif is unique. Indeed, taking

the derivative in (3.30) with respect to p0, and using that q0 = 1
2N

√
A(p0) and F(p0) = 0 we obtain

F ′(p0) = p0(2p2
0 + 1)− ∂p0q0

q0

[
q2

0 + (2p2
0 − 1)p2

0

]
+ p0(2p2

0 − 1)

[
1− 1

4N2

] ∫ p+

p0

du

vu4
,
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Figure 7. Numerical illustration of Lemmas 3.10 and 3.11 on the phase plane.

which is strictly positive since ∂p0q0 = A′(p0)

4N
√
A(p0)

< 0 for p0 ∈ (p∗, 1). This completes the proof. �

Figure 7 illustrates the results of Lemmas 3.10 and 3.11. The black dashed curve displays the
homoclinic orbit at the energy level E = 0. The red dashed curve gives the curve of the boundary
conditions for which q0 = 1

2N

√
A(p0) with N = 3. The blue solid curve shows the function qmax(p0)

for p0 ∈ (p∗, 1). There exists only one intersection of qmax with the red dashed curve and it occurs
at pbif ≈ 0.711 (for N = 3) The existence of the unique value of pbif is stated in Lemma 3.11.
Moreover, qmax crosses the zero energy level for the homoclinic orbit at p∗∗ ≈ 0.782 in agreement
with Lemma 3.10.

3.4. Proof of Theorem 2. Recall that in the spectral problem (3.1), we have Tε = πε. By Lemma
2.1 for T (p0) = Tε defined in (2.10), the mapping from p0 ∈ (0, 1) to ε ∈ (0,∞) is a monotonic
bijection.

For sufficiently small values of ε > 0, the value of p0 is near 1. Then, by Lemmas 3.7 and 3.10,
T+(p0, q0) has no critical points with respect to q0 in (0,

√
A(p0)) and is monotonically increasing

in q0. In this case, the solution s(z; p0, q0) to the differential equation (3.11) with q0 = 1
2N

√
A(p0)

satisfies s(z; p0, q0) > 0 for z ∈ [−Tε, Tε]. By Proposition 3.2, we conclude that the smallest
eigenvalue λ = β1 in SP2 is positive. Therefore, Lemmas 3.2 and 3.3 imply that the spectral
problem (3.1) has exactly one negative eigenvalue and no zero eigenvalues, so that n(L) = 1 and
z(L) = 0 for sufficiently small ε > 0.

Let β1 be the smallest eigenvalue in SP2 and γ2 be the second eigenvalue in SP1. Since β1 > 0
and γ2 > 0 for sufficiently small ε > 0, it suffices to show that β1 = 0 at some unique point
ε∗ ∈ (0,∞) so that β1 < 0 for all ε > ε∗, whereas γ2 > 0 for all ε > 0. By Lemma 3.4 it follows that
γ2 6= 0 for every ε > 0, hence γ2 > 0 for all ε > 0.

Next, we show that β1 = 0 for some ε∗ ∈ (0,∞). Indeed, by Lemmas 3.10 and 3.11, the graph

of (p∗, 1) 3 p0 7→ qmax(p0) ∈ (0,∞) intersects the curve of the boundary condition q0 = 1
2N

√
A(p0)

exactly once at some pbif ∈ (p∗, 1). By Lemma 3.8, β1 = 0 at this pbif and by Lemma 2.1, there
exists a unique value ε∗ for this pbif . By Lemma 3.1, β1 has multiplicity N − 1 in the spectral
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problem (3.1) so that z(L) = N − 1 for this ε∗. No other intersections exist so that z(L) = 0 for
ε 6= ε∗.

Finally, for ε > ε∗, qmax(p0) < 1
2N

√
A(p0) for p0 ∈ (p∗, pbif) or does not exist if p0 ∈ (0, p∗]

by Lemma 3.6. In both cases, the solution s(z; p0, q0) to the differential equation (3.11) with

q0 = 1
2N

√
A(p0) vanishes at some internal points in [−Tε, Tε]. By Proposition 3.2, it follows that

β1 < 0 for ε > ε∗, so that n(L) = N for ε > ε∗.
Theorem 2 is proven. Figure 8 illustrates the result of Theorem 2. The second smallest eigenvalue

λ2 of the spectral problem (3.1) is computed by using numerical approximation of the lowest
eigenvalue λ = β1 in the Sturm–Liouville problem SP2 and is shown versus ω. It follows from Fig.
8 that there exists a value ω∗ ∈ (−∞, 0) for which λ2 = β1 crosses zero. This is the bifurcation
point for the positive single-lobe symmetric state Φ in Theorem 2.
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Figure 8. The second smallest eigenvalue λ2 = β1 of the spectral problems (3.1)
and (3.4) as a function of the parameter ω for the positive single-lobe symmetric
state Φ on the flower graph ΓN with N = 3. The eigenvalue crosses zero at ω = ω∗.

4. Existence of other positive single-lobe states

Recall that by Theorem 2, there exists an unique ω∗ ∈ (−∞, 0), and unique corresponding
pbif ∈ (p∗, 1), at which the single-lobe symmetric state Φ defined in Theorem 1 admits a bifurcation
in the sense of Definition 3.

Here we are interested in the existence of asymmetric, K-split, single-lobe states of Definition
4 for p0 ∈ (0, p∗). This range of values of p0 does not cover the entire admissible interval since
pbif ∈ (p∗, 1), but it allows us to sort out different states and prove all results from analysis of the
period functions.

After the scaling transformation (2.1), the asymmetric positive state (u1, u2, . . . , uN , u0) satisfies
the system of differential equations given by (2.2)–(2.3). Taking into account the solution (2.4)
for u0 with p0 = sech(a) = u0(0), each component uj for j = 1, . . . , N satisfies the following
boundary-value problem

(4.1)

{
−u′′j (z) + uj(z)− 2|uj(z)|2uj(z) = 0, z ∈ (−Tε, Tε),
uj(−Tε) = uj(Tε) = p0,

where Tε = πε. Assuming that uj is even, the derivative condition in (2.3) is satisfied if the
derivative of the components satisfy the scalar equation

(4.2) 2
N∑
j=1

u′j(−Tε) =
√
A(p0).



STANDING WAVES ON A FLOWER GRAPH 25

Using the first-order invariant in (2.5), any single-lobe solution to the boundary-value problem
(4.1) satisfies either

(4.3)


E(uj , u

′
j) = E(p0, qj),

uj(−T+(p0, qj)) = p0,
u′j(−T+(p0, qj)) = qj ≥ 0,

T+(p0, qj) = Tε,

or

(4.4)


E(uj , u

′
j) = E(p0, qj),

uj(−T−(p0, qj)) = p0,
u′j(−T−(p0, qj)) = −qj ≤ 0,

T−(p0, qj) = Tε,

where the period functions T+ and T− are given in (2.8) with fixed value of E(uj , u
′
j) = E. There-

fore, any asymmetric single-lobe state is a combination of the solutions of type (4.3) or (4.4).
In order to prove Theorem 3, we first study monotonicity of the period function T−(p0, q0) in q0

for p0 ∈ (0, p∗). Then, we prove existence and uniqueness of the asymmetric positive single-lobe
states with K-split profile described by Definition 4. Finally, we study the mapping from p0 ∈ (0, p∗)
to ε ∈ (0,∞), which extends to the limit ε→∞ that corresponds to the limit ω → −∞.

4.1. Monotonicity of the period function T−. The following lemma shows that the period
function T−(p0, q0) defined by (2.8) is monotonically increasing for p0 ∈ (0, p∗).

Lemma 4.1. For every p0 ∈ (0, p∗), T−(p0, q0) is a monotonically increasing function of q0 in

(0,
√
A(p0)). Moreover, T−(p0, q0)→ 0 as q0 → 0, and T−(p0, q0)→∞ as q0 →

√
A(p0).

Proof. We write

[E0(p0, q0) +A(p∗)]T−(p0, q0) =

∫ p0

p−

[
v − A(u)−A(p∗)

v

]
du

=

∫ p0

p−

[
3− 2(A(u)−A(p∗))A

′′(u)

[A′(u)]2

]
vdu− 2[A(p0)−A(p∗)]q0

A′(p0)
,

where E0(p0, q0) = q2
0 − A(p0) and the integrands are non-singular for every u ∈ (0, 1). Since

dE0 = 2q0dq0 at fixed p0 ∈ (0, 1) and dE = 2vdv at fixed u ∈ (0, 1), we differentiate the previous
expression in q0 and obtain

E0(p0, q0) +A(p∗)

2q0

∂

∂q0
T−(p0, q0) =

∫ p0

p−

[
1− 2(A(u)−A(p∗))A

′′(u)

[A′(u)]2

]
du

2v
− A(p0)−A(p∗)

q0A′(p0)
.

Recall that E0(p0, q0) + A(p∗) > 0 for every p0 ∈ (0, 1) and q0 ∈ (0,∞). Substituting A(u)
transforms the previous expression to the form:

E0(p0, q0) +A(p∗)

2q0

∂

∂q0
T−(p0, q0) =

∫ p0

p−

1− 2u2

8vu2
du+

1− 2p2
0

8p0q0
.(4.5)

Since both terms in the right-hand side of (4.5) are strictly positive if p0 ∈ (0, p∗) with q0 ∈ (0,∞),
we conclude that ∂

∂q0
T−(p0, q0) > 0 if p0 ∈ (0, p∗).

It follows that T−(p0, q0)→ 0 as q0 → 0 similarly as in Lemma 3.7. On the other hand, p− → 0

as q0 →
√
A(p0), hence T−(p0, q0)→∞ as q0 →

√
A(p0). �

The following lemma follows from monotonicity of the period functions T+ and T− in q0 for every
p0 ∈ (0, p∗), thanks to Lemmas 3.6 and 4.1.
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Lemma 4.2. For every p0 ∈ (0, p∗), there are no distinct solutions uj(z) and ui(z) to the boundary-
value problem (4.1) such that uj(z) and ui(z) are either both of type (4.3) or both of type (4.4).

Proof. If uj(z) and ui(z) are distinct and both have the type (4.3), then qj 6= qi. By Lemma 3.6,
we have T+(p0, qj) 6= T+(p0, qi) which contradicts to the condition T+(p0, qj) = Tε = T+(p0, qi) in
(4.3).

Similarly, if uj(z) and ui(z) are distinct and both have the type (4.4), then qj 6= qi. By Lemma
4.1, we have T−(p0, qj) 6= T−(p0, qi) which contradicts to the condition T−(p0, qj) = Tε = T−(p0, qi)
in (4.4). �

4.2. Construction of asymmetric single-lobe states. By Lemma 4.2, every asymmetric single-
lobe state must have the particular structure of Definition 4 if p0 ∈ (0, p∗) with K components
being of type (4.3) and (N −K) components being of type (4.4). Up to permutation between the
components in the N loops, we order the K-split state as follows:

(4.6) q1 = q2 = · · · = qK ≥ 0 and qK+1 = qK+2 = · · · = qN ≥ 0.

The existence of asymmetric, K-split, single-lobe states for a given p0 ∈ (0, p∗) is equivalent to the
existence of (q1, q2, . . . , qN ) satisfying (4.6) and solving the system of two nonlinear equations on
q1 and qN :

(4.7)

{
T+(p0, q1) = T−(p0, qN ),

2Kq1 − 2(N −K)qN =
√
A(p0),

where the second equation comes from the boundary condition (4.2). The following lemma provides
the unique solution to the system (4.7) for each K.

Lemma 4.3. Let p0 ∈ (0, p∗). For every K = 1, 2, . . . , N − 1, there exists the unique solution to
the system (4.7) and the unique asymmetric, K-split, single-lobe state in the sense of Definition 4.

Proof. By Lemma 4.2, for every asymmetric single-lobe state, there are no distinct components
uj(z) and ui(z) of the same type. If uj(z) and ui(z) are distinct, then one of them is uniquely given
by (4.3), while the other one is uniquely given by (4.4). Hence, the assertion of the lemma holds if
we can prove the existence of the unique solution to the system (4.7).

Consider the function F (q1) defined by

(4.8) F (q1) := T+(p0, q1)− T−(p0, qN (q1)),

where qN (q1) is obtained from the second equation of system (4.7) in the form:

(4.9) qN (q1) =
K

N −K
q1 −

1

2(N −K)

√
A(p0).

Since qN ≥ 0, we have q1 ≥ 1
2K

√
A(p0). In addition, it follows from positivity of the single-lobe

solution that qN ≤
√
A(p0), so that q1 ≤ 2(N−K)+1

2K

√
A(p0). Hence, we are only interested in the

behavior of F on the interval

I(p0;K) :=

[
1

2K

√
A(p0),

2(N −K) + 1

2K

√
A(p0)

]
.

Since qN is monotonically increasing function of q1, Lemmas 3.6 and 4.1 imply that the function
F is monotonically decreasing in q1. We show that F (q1) = 0 has an unique root in I(p0;K).

As q1 → 1
2K

√
A(p0), we have qN (q1) → 0, and by Lemma 4.1, F (q1) → T+(p0,

1
2K

√
A(p0)) > 0.

On the other hand, as q1 → 2(N−K)+1
2K

√
A(p0), we have qN (q1) →

√
A(p0), and by Lemma 4.1,

F (q1)→ −∞. Therefore, by monotonicity of F , there exists the unique root of F in I(p0;K). �
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The conclusion of Lemma 4.3 is illustrated on Fig. 9. The left panel shows plots of T+(p0, q0)
and T−(p0, q0) in q0 for a fixed value of p0 ∈ (p∗, 1). The dependencies are monotonic in agreement
with Lemmas 3.6 and 4.1. The right panel shows the function F in q1 defined by (4.8) for K = 1
and N = 3. The function is monotonic and has the unique root in the interval I(p0;K). Similar
picture holds for K = 2 and N = 3.

Figure 10 show how the asymmetric, K-split, single-lobe states are constructed for the same
value of p0 and N = 3. The left panel shows the state with K = 1 and the right panel shows the
state with K = 2 by using orbits on the phase plane.
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Figure 9. Numerical illustration to the statement of Lemma 4.3 for p0 = 0.7003 ∈
(0, p∗), N = 3, and K = 1. Left: the blue and red lines show respectively the
dependence of T+(p0, q0) and T−(p0, q0) in q0. Right: The graph of the function F
defined in (4.8) with the only root.
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Figure 10. Construction of the positive, asymmetric, K-split, single-lobe states on
the phase plane for a = 0.895 and N = 3 in the case of K = 1 (left) and K = 2
(right).

4.3. The mapping (0, p∗) 3 p0 7→ ε ∈ (0,∞). Fix K = 1, 2, . . . , N − 1. By Lemma 4.3, for every
p0 ∈ (0, p∗), there is the unique vector (q1, q2, . . . , qN ) satisfying (4.6) and (4.7), and this defines
uniquely the following mappings:

(4.10) (0, p∗) 3 p0 7→ q1(p0;K) ∈ (0,∞) and (0, p∗) 3 p0 7→ qN (p0;K) ∈ (0,
√
A(p0)),
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where q1(p0;K) ∈ I(p0;K) is uniquely defined as the root of F given by (4.8) and qN (p0;K) ∈
(0,
√
A(p0)) is uniquely defined by (4.9). By using the first equation in (4.7) we also define an

unique mapping

(4.11) (0, p∗) 3 p0 7→ T+(p0, q1(p0;K)) ∈ (0,∞).

The following lemmas describe the dependence of Tε = T+(p0, q1(p0;K)) on p0 which gives mono-
tonicity of the mapping (0, p∗) 3 p0 7→ ε ∈ (0,∞).

Lemma 4.4. For every K = 1, 2, . . . , N − 1, the mappings (4.10) and (4.11) are C1 for every
p0 ∈ (0, p∗).

Proof. Recall that the period functions T+(p0, q0) and T−(p0, q0) are C1 in both p0 and q0 thanks
to the representation (2.11), see the proofs of Lemmas 2.1, 3.6, and 4.1.

Consider the function G(p0, q1, qN ) : (0, p∗)× (0,∞)× (0,
√
A(p0))→ R2 given by

(4.12) G(p0, q1, qN ) =

(
T+(p0, q1)− T−(p0, qN )

2Kq1 − 2(N −K)qN −
√
A(p0)

)
.

Note that the system (4.7) is equivalent to G(p0, q1, qN ) = 0. The C1 dependence of q1(p0;K)
and qN (p0;K) with respect to p0 is a direct consequence of the Implicit Function Theorem ap-
plied to the function G. Indeed, G is a C1 function in all its variables, and the Jacobian matrix
D(q1,qN )G(p0, q1, qN ) is invertible since the determinant of

D(q1,qN )G(p0, q1, qN ) =

(
∂
∂q1
T+(p0, q1) − ∂

∂qN
T−(p0, qN )

2K −2(N −K)

)
is strictly positive due to monotonicity results in Lemmas 3.6 and 4.1.

The differentiability of the function T+(p0, q1(p0;K)) in p0 comes from differentiability of T+(p0, q0)
and q1(p0;K) in its variables. �

Lemma 4.5. There exists p∞ ∈ (0, p∗) such that the mapping p0 7→ T+(p0, q1(p0;K)) defined in
(4.11) is monotonically decreasing for every p0 ∈ (0, p∞) and every K = 1, 2, . . . , N − 1.

Proof. We shall prove that for every K = 1, 2, . . . , N − 1, it follows that T+(p0, q1(p0;K)) → ∞
as p0 → 0. Since this function is C1 for every p ∈ (0, p∗) by Lemma 4.4, the mapping p0 7→
T+(p0, q1(p0;K)) is monotonically decreasing for small positive p0 and the assertion of the lemma
follows.

Set CN,K := 2(N−K)+1
2K for simplicity. Since q1(p0;K) ∈ I(p0;K), it is true that q1(p0;K) ≤

CN,K
√
A(p0). Using the monotonicity of the period function in Lemma 3.6, we obtain

T+(p0, q1(p0;K)) ≥ T+(p0, CN,K
√
A(p0)),

where the lower bound diverges by Remark 2.2:

T+(p0, CN,K
√
A(p0))→∞ as p0 → 0.

Hence, T+(p0, q1(p0;K))→∞ as p0 → 0. �

4.4. Proof of Theorem 3. By Lemma 4.3, for every p0 ∈ (0, p∗), there are exactly N positive

single-lobe states Φ(K) with 1 ≤ K ≤ N satisfying the system of differential equations (2.2)–(2.3)
with u0(0) = p0 completed with the symmetry and monotonicity conditions of Theorem 3.

For every K = 1, 2, . . . , N − 1, by using the fact that T+(p0, q1(p0;K)) = Tε = πε, we obtain the
mapping (0, p∗) 3 p0 7→ ε(p0;K) ∈ (0,∞). By smoothness result in Lemma 4.4 monotonicity result
in Lemma 4.5, we get the bijection

(0, p∞) 3 p0 7→ ε(p0;K) ∈ (ε∞(K),∞),
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where p∞ ∈ (0, p∗) is defined in Lemma 4.5 independently ofK. Defining ε∞ := max1≤K≤N−1 ε∞(K),
we get all asymmetric, positive, single-lobe, K-split states exist for ω ∈ (−∞, ω∞), where ω∞ =

−ε2∞. For K = N , the existence of symmetric, positive, single-lobe state Φ ≡ Φ(N) follows by
Theorem 1.

Moreover, for every K = 1, 2, . . . , N , the mapping (−∞, ω∞) 3 ω 7→ Φ(K)(·, ω) ∈ H2
NK(ΓN ) is

C1 by Lemma 4.4. By construction, the mass µ(K)(ω) := Q(Φ(K)(·, ω)) is equal to

µ(K)(ω) = K

∫ π

−π
φ2

1dx+ (N −K)

∫ π

−π
φ2
Ndx+

∫ ∞
0

φ2
0dx,

which yields

µ(K)(ω) = 2Kε(p0;K)

∫ p+

p0

u2du√
A(u)−A(p+)

+ 2(N −K)ε(p0;K)

∫ p0

p−

u2du√
A(u)−A(p−)

+ε(p0;K) [1− tanh(a)] ,

where the first integral is defined along the integral curve with E(u, v) = E(p0, q1(p0)) and the
second integral is defined along the integral curve with E(u, v) = E(p0, qN (p0)).

As p0 → 0, we have a → ∞ and ε(p0;K) → ∞, and so µ(K)(ω) → ∞ as ω → ∞ with the
following precise limit:

lim
ε→∞

µ

ε
= 2K

∫ 1

0

udu√
1− u2

= 2K.

This asymptotic result justifies the ordering of µ(K)(ω) given by (1.12) by redefining ω∞ if needed.

5. Numerical approximation of positive single-lobe states

The analytical results on asymmetric, K-split, single-lobe states in Section 4 were restricted to
the region p0 ∈ (0, p∗), for which monotonicity results of Lemmas 3.6 and 4.1 were sufficient to
guarantee that the K-split states satisfy (4.6) and are found from the system (4.7). In other words,
the K components are of the type (4.3) and (N −K) components are of the type (4.4).

Here we explore numerically the asymmetric, K-split, single-lobe states for the case p0 ∈ (p∗, 1)
in particular, near the bifurcation point pbif ∈ (p∗, 1) found in Section 3. Figure 11 suggests that
the graphs of T+(p0, q0) and T−(p0, q0) in q0 do not intersect for p0 ∈ (p∗, 1). Therefore, the K-
split single-lobe states may only be combinations of K components of the type (4.3) and different
(N−K) components of the same type (4.3). Note that if all components are of the same type (4.4),
the boundary condition (4.2) is not satisfied since the left-hand side is negative and the right-hand
side is positive.

Hence, we are looking for the asymmetric, K-split, single-lobe states from the roots of the
following system:

(5.1)

{
T+(p0, q1) = T+(p0, qN ),

2Kq1 + 2(N −K)qN =
√
A(p0)

where q1 6= qN and q1, qN ≥ 0. Using Lemma 3.10, for every p0 ∈ (p∗, p∗∗), the period func-
tion T+(p0, q0) has the unique critical point q0 = qmax(p0), which corresponds to its maximum.
Therefore, assuming q1 > qN , the first equation in system (5.1) yields the one-to-one function

(5.2) (0, qmax(p0)) 3 qN 7→ q1(qN ) ∈ (qmax(p0),∞),

for any p0 ∈ (p∗, p∗∗). It remains to compute numerically the value of qN ∈ (0, qmax(p0)) for which
the second equation in system (5.1) with q1(qN ) given by the mapping (5.2) is satisfied. Therefore,
for p0 ∈ (p∗, p∗∗), we construct the function F : (0, qmax(p0))→ R defined as

(5.3) F (qN ) := Kq1(qN ) + (N −K)qN
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Figure 11. The blue and red lines show respectively the dependence of T+(p0, q0)
and T−(p0, q0) in q0 for p0 = 0.7078.

for every qN ∈ (0, qmax(p0)). The second equation in system (5.1) is equivalent to the equation

F (qN ) = 1
2

√
A(p0).

Figures 12 and 13 show the graph of the function F defined by (5.3) in qN (left) and the
asymmetric, K-split, single-lobe state constructed from integral curves on the phase plane (right)
for p0 ∈ (p∗, pbif), N = 3 with K = 1 and K = 2 respectively. There exist exactly one value of

qN ∈ (0, qmax(p0)) such that F (qN ) = 1
2

√
A(p0) for both cases, which give only one state Φ(1) and

Φ(2) for this p0.
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Figure 12. The graph of the function F (qN ) (left) and the construction of the
positive, asymmetric, K-split, single-lobe state on the phase plane (right) for a =
0.875 (p0 = 0.7103 ∈ (p∗, pbif)), N = 3, and K = 1. The red dashed horizontal line

on the left panel corresponds to the value of 1
2

√
A(p0).

Figure 14 shows the graph of the function F in qN for p0 ∈ (pbif, p∗∗), N = 3, with K = 1
(left) and K = 2 (right). For K = 1, there exist two values of qN ∈ (0, qmax(p0)) such that

F (qN ) = 1
2

√
A(p0), which give two states Φ(1) for this p0. The two states constructed from integral

curves on the phase plane are shown on Fig. 15. The coexistence of two states Φ(1) for p0 & pbif

explains the fold bifurcation seen for the red line on the insert of Fig. 3 (right). On the other hand,

there are no values of qN ∈ (0, qmax(p0)) such that F (qN ) = 1
2

√
A(p0) for K = 2. As a result, the

state Φ(2) only exists for p0 . pbif , as on the insert of Fig. 3 (right).
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Figure 13. The same as in Figure 12 but for a = 0.875, N = 3, and K = 2.
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Figure 14. The graph of the function F (qN ) for a = 0.8726 (p0 = 0.7115 ∈
(pbif, p∗∗)), N = 3, with K = 1 (left) and K = 2 (right). The red dashed hori-

zontal line on the left panel corresponds to the value of 1
2

√
A(p0).
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Figure 15. Construction of the positive, asymmetric, K-split, single-lobe state Φ(1)

on the phase plane for each of the two roots on Fig. 14 (left) for a = 0.8726, N = 3,
and K = 1.
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Appendix A. Spectrum of −∆ in L2(ΓN )

Here we show that the spectrum of −∆ in L2(ΓN ) consists of continuous spectrum on [0,∞) and

a set of embedded eigenvalues {n2}n∈N of multiplicity N and {
(
n− 1

2

)2}n∈N of multiplicity N − 1.

We first look for the discrete spectrum of eigenvalues λ, for which there exists Φ ∈ H2
NK(ΓN )

such that −∆Φ = λΦ. The discrete spectrum consists of two sets, depending whether φ0 ≡ 0 or
φ0 6= 0. If φ0(x) = 0 for every x ∈ [0,∞), then the general solutions

φj(x) = cj cos(
√
λx) + dj sin(

√
λx), x ∈ [−π, π], j ∈ {1, . . . , N}.

satisfy φj(±π) = 0 from the continuity boundary conditions in (1.6). This yields{
cj cos(π

√
λ) = 0,

dj sin(π
√
λ) = 0,

j ∈ {1, . . . , N}.

From the derivative boundary condition in (1.6), we have
∑N

j=1

[
φ′j(π)− φ′j(−π)

]
= 0 which yields

√
λ

N∑
j=1

cj sin(π
√
λ) = 0.

If cj = 0 for every j, then the eigenvalues correspond to the roots of sin(π
√
λ), which are located

at {n2}n∈N. Each eigenvalue has multiplicity N since coefficients (d1, . . . , dN ) are independent of
each other.

If dj = 0 for every j, then the eigenvalues correspond to the roots of cos(π
√
λ), which are located

at {
(
n− 1

2

)2}n∈N. In addition, coefficients (c1, . . . , cN ) satisfy the constraint
∑N

j=1 cj = 0 which
follows from the derivative boundary condition. Therefore, each eigenvalue has multiplicity N − 1.

The second part of the discrete spectrum, if it is non-empty, correspond to φ0 6= 0. Since the
half-line tail is semi-infinite, we have φ0 ∈ H2(0,∞) if and only if λ < 0, for which we obtain

φ0(x) = c0e
−
√
|λ|x, x ∈ [0,∞),

with some c0 and

φj(x) = cj cosh(
√
|λ|x) + dj sinh(

√
|λ|x), x ∈ [−π, π], j ∈ {1, . . . , N}.

From the continuity boundary conditions in (1.6), we have φj(±π) = c0 which yield{
cj cosh(π

√
|λ|) = c0,

dj sinh(π
√
|λ|) = 0,

j ∈ {1, . . . , N}.

Hence, dj = 0 for every j and cj are uniquely expressed for every j by c0 and λ < 0. From the

derivative boundary condition in (1.6), we have
∑N

j=1

[
φ′j(π)− φ′j(−π)

]
= −c0

√
|λ| which yields

√
λc0

(
2N tanh(π

√
|λ|) + 1

)
= 0.

This equation yields c0 = 0 since tanh(π
√
|λ|) > 0. Hence, the second part of the discrete spectrum

is empty.
Finally, the continuous part of the spectrum of −∆ in L2(ΓN ) is due to the non-compact tail

and it is equivalent to the spectrum of −∆ : H2(0,∞) ⊂ L2(0,∞) → L2(0,∞) which is located
at [0,∞). Hence, all eigenvalues of the discrete spectrum of −∆ in L2(ΓN ) are embedded into the
continuous spectrum.
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Appendix B. The symmetric state Φ for small mass

Here we show that there exists ω0 < 0 such that for every ω ∈ (ω0, 0), the positive single-lobe
symmetric state Φ of Theorem 1 is the ground state of the constrained minimization problem (1.5)
for small µ.

Let us parameterize the negative values of ω by ω = −ε2 with ε > 0 and use the scaling
transformation (2.1). By using the shifted NLS soliton (2.4) for u0 and the symmetry condition
(2.6) for u1 = · · · = uN , we obtain the boundary-value problem:

(B.1)

 −u
′′
1(z) + u1(z)− 2|u1(z)|2u1(z) = 0, z ∈ (−Tε, Tε),

u1(−Tε) = u1(Tε) = p0,
u′1(−Tε) = −u′1(Tε) = q0,

where Tε = πε, p0 = sech(a), and q0 = 1
2N sech(a) tanh(a) computed for some a > 0.

Since the support of [−Tε, Tε] shrinks to zero as ε → 0, the power series solution provides an
asymptotic expansion in powers of ε:

u1(z) = u1(0) +
1

2
u1(0)

[
1− 2|u1(0)|2

]
z2 +O(z4), z ∈ [−Tε, Tε].

The continuity and derivative boundary conditions imply that{
p0 = u1(0) +O(ε2),

p0

√
1− p2

0 = 2Nπεu1(0)
[
1− 2|u1(0)|2

]
+O(ε3),

which admits a unique asymptotic solution with u1(0) = p0 +O(ε2) and p0 = 1− 2N2π2ε2 +O(ε4)
or equivalently, a = 2Nπε+O(ε3) as ε→ 0.

We compute asymptotically the mass µ(ω) = Q(Φ(·, ω)) as follows:

µ(ω) = 2Nε

∫ πε

0
u2

1(z)dz + ε [1− tanh(a)]

= ε+O(ε2) as ε→ 0.

Similarly, we compute asymptotically the energy η(ω) := E(Φ(·, ω)) as follows:

η(ω) = 2Nε3
∫ πε

0

[
[u′1(z)]2 − u1(z)4

]
dz + ε3

[
2

3
tanh(a)sech2(a)− 1

3
+

1

3
tanh(a)

]
= −1

3
ε3 +O(ε4) as ε→ 0.

Therefore, Eµ = −1
3µ

3 +O(µ4), which implies that Eµ belongs to the interval (1.13). By Theorem
2.2 of [1], this implies that Φ is a ground state of the constrained minimization problem (1.5) for
small µ.

Appendix C. The asymmetric state Φ(K=1) for large mass

Here we show that there exists ω∞ < 0 such that for every ω ∈ (−∞, ω∞), the positive single-

lobe asymmetric state Φ(K=1) of Theorem 3 is not the ground state of the constrained minimization
problem (1.5) for large µ with N ≥ 2.

In the limit ω → −∞ (or ε → ∞ after rescaling), the solution Φ(K=1) of Theorem 3 consists of
the truncated NLS soliton in one component, say in u1, and exponentially small solution in the
other components (u2, . . . , uN ) and u0. The truncated NLS soliton is given exactly by either the
cnoidal wave

(C.1) u1(z) =
k√

2k2 − 1
cn

(
z√

2k2 − 1
; k

)
, z ∈ R,
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or the dnoidal wave

(C.2) u1(z) =
1√

2− k2
dn

(
z√

2− k2
; k

)
, z ∈ R,

where k ∈ (0, 1) is the elliptic modulus and cn, dn are Jacobian elliptic functions. The parameter
k is selected uniquely near k = 1, where u1(z) = sech(z). In fact, the Jacobi real transformation
k 7→ k−1 maps the cnoidal wave (C.1) with k < 1 to the dnoidal wave (C.2) with k > 1, therefore,
it is sufficient to consider the single analytic expression (C.2) for k near 1.

The Dirichlet and Neumann data at the end points of [−πε, πε] are given by

p0 = u1(−πε) =
1√

2− k2
dn

(
πε√

2− k2
; k

)
,

and

q0 = u′1(−πε) =
k2

2− k2
sn

(
πµ√

2− k2
; k

)
cn

(
πµ√

2− k2
; k

)
.

Applying the main result of [7] on the looping edge to the flower graph ΓN , it follows that k is
found from the nonlinear equation 2q0 = (2N − 1)p0 + Rµ(p0, q0), where Rµ(p0, q0) denotes the
remainder terms which are exponentially smaller than the linear terms in p0 and q0. By Theorem
4.3 in [7], k is found uniquely in the form

k = 1 + 8
2N − 3

2N + 1
e−2πε +O(e−4πε) as ε→∞,

whereas the mass µ(ω) = Q(Φ(·, ω)) and energy η(ω) := E(Φ(·, ω)) are given asymptotically by

µ(ω) = 2ε− 16π
2N − 3

2N + 1
ε2e−2πε +O(εe−2πε) as ε→∞.

and

η(ω) = −2

3
ε3 +O(ε4e−2πε) as ε→∞.

By the Comparison Lemma (Lemma 5.2 in [7]), Φ(K=1) is not the ground state for N ≥ 2 which

follows from µ(ω) < 2ε. On the other hand, Φ(K=1) = Φ is the ground state for N = 1, for which
µ(ω) > 2ε, the latter conclusion agrees with the result following from Corollary 3.4 and Fig. 4 of
[2].

In both cases N ≥ 2 and N = 1, we have Eµ ∼ − 1
12µ

3 as µ→∞, which implies that the branch

of Φ(K=1) on the (µ, η) plane approaches the upper bound of the interval (1.13) from outside for
N ≥ 2 and from inside for N = 1, in agreement with Figures 4 and 5.
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