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ABSTRACT

We construct a new Evans function for quasi-periodic solutions to the linearisation of the sine-Gordon
equation about a periodic travelling wave. This Evans function is written in terms of fundamental
solutions to a Hill’s equation. Applying the Evans-Krein function theory of [KM2014] to our Evans
function, we provide a new method for computing the Krein signatures of simple characteristic
values of the linearised sine-Gordon equation. By varying the Floquet exponent parametrising the
quasi-periodic solutions, we compute the linearised spectra of periodic travelling wave solutions of
the sine-Gordon equation and track dynamical Hamiltonian-Hopf bifurcations via the Krein signature.
Finally, we show that our new Evans function can be readily applied to the general case of the
nonlinear Klein-Gordon equation with a non-periodic potential.

1 Introduction

We consider the sine-Gordon equation,

utt − uxx + sin(u) = 0, (1)

where u(x, t) :R× [0,+∞)−→R. This equation has been used in the modelling of a number of different physical and
biological systems. For example, equation (1) models the electrodynamics of a long Josephson junction arising in the
theory of superconductors [BP1982, DDKS2012]. Solitary wave solutions to equation (1) have been used to describe
the dynamics of DNA as it interacts with RNA-polymerase [DG2011]. More recent research has seen sine-Gordon
solitons used as scalar gravitational fields in the theory of general relativity, the solutions of which are solitonic stars
and black holes [CFMT2019]. Equation (1) can also be derived from classical mechanics applied to a mechanical
transmission line in which pendula are coupled to their nearest neighbours by springs obeying Hooke’s law [Kno2000].
See [BEMS1971] for an extensive list of applications of the sine-Gordon equation.

In this paper, we focus on the problem of spectral stability of periodic solutions to the sine-Gordon equation. In
[Sco1969], Scott correctly attributed spectral stability and instability to various types of periodic wavetrains, however
this was rigorously proved only recently in [JMMP2013] in which the authors related the sine-Gordon equation to a
Hill’s equation using Floquet theory and known results on Hill’s equation [JMMP2013, MW2013]. There are a number
of approaches taken in order to determine the stability of travelling waves; in [SS2012], Stanislavova and Stefanov
developed a stability index for travelling wave solutions to second order in time PDEs (including the Klein-Gordon-
Zakharov system). The Evans function is another tool that has been used to investigate spectral stability of travelling
waves. Evans used this eponymous function while studying the equations governing electrical pulses in nerve axons
[Eva1972]. Jones was the first to coin the term Evans function in [Jones1984], where he used this function to prove
the stability of travelling wave solutions to the Fitzhugh-Nagumo equations close to a singular limit of the equations.
Alexander, Gardner and Jones in [AGJ1990], and Gardner in [Gar1997], developed much of the theory and approach
we use in this paper to construct and apply a periodic Evans function to problems of spectral stability. Evans function
theory has been applied to a general nonlinear Klein-Gordon equation [LLM2011], and also more specifically to a
perturbed sine-Gordon equation [DDGV2003]. In the previous cases, the Evans functions used in the analyses of
nonlinear Klein-Gordon type equations comes from a classical construction of the Evans function based on the exterior
product of solutions. In [JMMP2014], the authors instead use Floquet theory to construct a periodic Evans function
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for quasi-periodic solutions of the nonlinear Klein-Gordon equation. This paper combines results for Hill’s equation
in [JMMP2013] and the periodic Evans function from [JMMP2014] in order to construct a new Evans function for
quasi-periodic solutions to the linearised sine-Gordon equation. We show how this new Evans function can be used to
calculate the Krein signature - a stability index that is then used to detect Hamiltonian-Hopf bifurcations. Our new
Evans function leverages the simplicity of Hill’s equation, which translates into a more elegant calculation of Krein
signatures when compared to previous results [JMMP2014] and allows for tracking of Hamiltonian-Hopf bifurcations in
terms of the Floquet exponent. This method distinguishes itself from the stationary methods of [JMMP2013, MM2015]
which instead calculate the zeroes of bespoke functions in order to detect the regions of the spectrum that exhibit
Hamiltonian-Hopf instabilities.

1.1 Set-up of the eigenvalue problem

In travelling wave coordinates z = x− ct, τ = t, a travelling wave solution û(z, τ) to equation (1) satisfies:

(c2 − 1)ûzz − 2cûzτ + ûττ + sin(û) = 0. (2)

A standing wave solution Û(z) in travelling wave coordinates will be independent of τ and hence satisfies:

(c2 − 1)Ûzz + sin(Û) = 0, c 6= 1. (3)

Integrating equation (3) with respect to z yields:

1

2
(c2 − 1)Û2

z + 1− cos(Û) = E,

whereE is a constant of integration which we interpret as the total energy of the system. We follow the results established
in [JMMP2013] and [MM2015], where Û(z) is assumed to be periodic modulo 2π. We denote the fundamental period
of Û as T , so that Û(z + T ) = Û(z) (mod 2π). Linearising equation (2) about this periodic standing wave solution,
we write û = Û + εp(z)eλτ with ε� 1 and equate O(ε) terms, which yields the spectral problem:

(c2 − 1)p′′ − 2cλp′ +
(
λ2 + cos(Û)

)
p = 0. (4)

The (Floquet) spectrum σ consists of all λ such that p :R−→C is bounded. In [JMMP2014, Proposition 3.9], Jones et.
al. prove that σ has Hamiltonian symmetry σ = σ∗ = −σ = −σ∗. Consequently, any λ ∈ σ with non-zero real part
implies an unstable eigenvalue. We make the substitution λ = iζ and henceforth use the phrase linearised sine-Gordon
equation to mean:

p′′ − 2icζ

c2 − 1
p′ +

(
− ζ2

c2 − 1
+

cos(Û)

c2 − 1

)
p = 0. (5)

An equivalent condition for ζ ∈ σ is the existence of a non-trivial solution p(z) which can be written in Bloch form à la
[MM2015]:

p(z) = e−iθz/TP (z),

where θ ∈ R is called the Floquet exponent, and P (z) = P (z + T ). The solutions p(z) are quasi-periodic, since:

p(z) = eiθp(z + T ). (6)

We now reframe the spectral problem in equation (5) using the formalism of operator pencils, in particular drawing
on the work of Markus [Mar1988] and Kato [Kat1976]. Given linear operators L0, L1, . . . , Ln with Li :X−→Y for
Banach Spaces X and Y , then

L(λ) := Lnλ
n + Ln−1λ

n−1 + · · ·+ L0

defines a polynomial operator pencil of degree n depending on the complex variable λ in an open set λ ∈ S ⊂ C
[Mar1988, §12.1]. Equation (5) can be rewritten in the form LSG(ζ)p = 0 where

LSG(ζ) := −
ζ2

c2 − 1
I− 2icζ

c2 − 1
∂z +

(
∂2z +

cos(Û)

c2 − 1

)
(7)

is a quadratic operator pencil. We narrow our focus to operator pencils which are holomorphic families of type (A).
Such pencils L(λ) have a domain B that is independent of the spectral variable λ, and for each u ∈ B, L(λ)u is a

2
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holomorphic function of λ. Kollar and Miller note in [KM2014] that LSG defined in equation (7) is a holomorphic
family of type (A) with compact resolvent. Moreover, when ζ ∈ R, LSG(ζ) is self-adjoint. These qualities are necessary
for Krein signatures to be well-defined [KM2014, Theorem 3.3].

As in [KM2014], for L(λ) a holomorphic family of type (A), we say that λ0 ∈ C is a characteristic value if there exists
a characteristic vector u 6= 0 such that L(λ0)u = 0. The geometric multiplicity of λ0 is dim(ker(L(λ0))). If we also
assume that L(λ) is self-adjoint and has compact resolvent, then the eigenvalue problem

L(λ)u(λ) = µ(λ)u(λ)

can be solved for analytic functions u(λ), µ(λ) at λ = λ0. In particular, if dim(ker(L(λ0))) = k, then there exist
exactly k analytic functions µ1(λ), µ2(λ), . . . , µk(λ) called eigenvalue branches, which vanish at λ = λ0. If we let mi

be the order of vanishing of the eigenvalue branch µi(λ) at λ0 for 1 ≤ i ≤ k, that is:

µi(λ0) = µ′i(λ0) = · · · = µ
(mi−1)
i (λ0) = 0, µ

(mi)
i (λ0) 6= 0,

then the algebraic multiplicity M of a characteristic value λ0 ∈ R is given by:

M =

k∑
i=1

mi.

Our main objective in this paper is to construct a new Evans function D(ζ; θ), D :C × [0, 2π)−→ C whose roots
coincide exactly with the isolated characteristic values ζ0 of LSG(ζ) for a given θ, with D(ζ0; θ) vanishing to the order
of algebraic multiplicity of ζ0. Our secondary objective is to use this Evans function to calculate the Krein signatures
of simple characteristic values of LSG(ζ). A characteristic value is called simple when its algebraic and geometric
multiplicities are both 1. Kollar and Miller provide a full treatment of Krein signature theory in [KM2014], however
the procedure for calculating the Krein signature for simple, isolated characteristic values is straightforward given the
pencils in this paper. In particular, for an isolated characteristic value λ0 and its single eigenvalue branch µ(λ) which
vanishes to order 1 at λ = λ0, the graphical Krein signature can be calculated from [KM2014, Definition 3.5]:

κ(λ0) = sign

(
d

dλ
µ(λ0)

)
. (8)

2 Spectrum of the linearised sine-Gordon equation

We begin by surveying the results of [JMMP2013] and [MM2015]. For each ζ ∈ σ, we define the principal fundamental
solution matrix as:

F(z; ζ) :=
(
p1(z; ζ) p2(z; ζ)
p′1(z; ζ) p′2(z; ζ)

)
, (9)

where p1(z; ζ) and p2(z; ζ) are the unique solutions of equation (5) satisfying the initial conditions:

F(0; ζ) =
(
p1(0; ζ) p2(0; ζ)
p′1(0; ζ) p′2(0; ζ)

)
=

(
1 0
0 1

)
. (10)

We may write any solution p(z; ζ) as a superposition of the fundamental solutions:(
p(z; ζ)
p′(z; ζ)

)
= F(z; ζ)

(
C1

C2

)
, C1, C2 ∈ C.

Now if ζ ∈ σ, we can use equation (6) with z = 0:

F(0; ζ)
(
C1

C2

)
= eiθF(T ; ζ)

(
C1

C2

)
,

from which we have:

F(T ; ζ)
(
C1

C2

)
= e−iθ

(
C1

C2

)
. (11)

The matrix F(T ; ζ) is called the monodromy matrix, and its two eigenvalues ρ1, ρ2 are referred to as Floquet multipliers
[JMMP2014]. From equation (11), we identify ρ1 = e−iθ, and we apply Abel’s identity and the initial conditions in
equation (10) to equation (5) to find that:

det (F(z; ζ)) = exp

(
2icζ

c2 − 1
z

)
.

3
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When z = T , we have:

ρ1ρ2 = det (F(T ; ζ)) = exp

(
2icT ζ

c2 − 1

)
,

from which we conclude that:

ρ2 = exp

(
2icT ζ

c2 − 1
+ iθ

)
. (12)

We seek to make use of the results in [JMMP2013] which connect the Floquet multipliers ρ1, ρ2 of equation (5) to
Hill’s equation in equation (14). Making the exponential transform [JMMP2013]:

q(z) = p(z) exp

(
−icζ
c2 − 1

z

)
, (13)

we transform equation (5) into the following form of Hill’s equation:

q′′ +

(
ζ2

(c2 − 1)2
+

cos(Û)

c2 − 1

)
q = 0. (14)

We define the principal fundamental solution matrix for equation (14) as:

H(z; ζ) :=

(
q1(z; ζ) q2(z; ζ)
q′1(z; ζ) q′2(z; ζ)

)
, H(0; ζ) =

(
1 0
0 1

)
. (15)

We write H(T ; ζ) for the monodromy matrix of equation (14), and its two Floquet multipliers are denoted by η1, η2. In
[JMMP2013, Lemma 3.1], Jones et al. prove that ρ1, ρ2 are the Floquet multipliers of equation (5) if and only if

η1 = exp
−icζT
c2 − 1

ρ1, η2 = exp
−icζT
c2 − 1

ρ2 (16)

are the Floquet multipliers of equation (14). Consequently, the function:

D2(ζ; θ) := tr(H(T ; ζ))− (η1 + η2) (17)

vanishes, at least to first order, at precisely the values ζ = ζ0 which are characteristic values of the linearised sine-Gordon
equation for a given Floquet exponent θ. We can calculate η1 and η2 directly using equations (12) and (16):

η1 = exp

(
− icζT

c2 − 1
− iθ

)
, η2 = exp

(
icζT

c2 − 1
+ iθ

)
,

which indeed obeys the condition that η1η2 = det(H(z; ζ)) = 1 by Abel’s identity. Equation (17) then simplifies to:

D2(ζ; θ) := tr(H(T ; ζ))− 2 cos

(
cζT

c2 − 1
+ θ

)
(18)

We pause here to include a relevant result from [JMMP2014, Definition 3.5]. The authors provide an Evans function for
quasi-periodic solutions p(z) = eiθp(z + T ) to the linearised sine-Gordon equation (5):

D1(ζ; θ) := det(F(T ; ζ)− e−iθI). (19)

Theorem 1. The function

D2(ζ; θ) := tr(H(T ; ζ))− 2 cos

(
cζT

c2 − 1
+ θ

)
is an Evans function for characteristic values of LSG(ζ) defined in equation (7) parametrised by the Floquet exponent
θ.

Proof. Magnus and Winkler proved that tr(H(T ; ζ)) is an entire function of ζ [MW2013, Theorem 2.2], so D2(ζ; θ)
is itself an entire function of ζ. We now prove that D1(ζ; θ) (defined in equation (19)) and D2(ζ; θ) vanish at the
same values ζ0 to precisely the same degree, thus qualifying D2(ζ; θ) as an Evans function. We proceed by rewriting
D1(ζ; θ) and D2(ζ; θ) in terms of fundamental solutions in equation (9) and equation (15):

D1(ζ; θ) = det

(
p1(T ; ζ)− e−iθ p2(T ; ζ)

p′1(T ; ζ) p′2(T ; ζ)− e−iθ
)
,

= det(F(T ; ζ))− e−iθ(p1(T ; ζ) + p′2(T ; ζ)) + e−2iθ,

= exp

(
2icT ζ

c2 − 1

)
− e−iθ(p1(T ; ζ) + p′2(T ; ζ)) + e−2iθ.

4
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Similarly:

D2(ζ; θ) = q1(T ; ζ) + q′2(T ; ζ)− 2 cos

(
cζT

c2 − 1
+ θ

)
.

We define r1(z; ζ) and r2(z; ζ) by using the exponential transform in equation (13) applied to p1 and p2:

r1(z; ζ) := p1(z; ζ) exp

(
−icζ
c2 − 1

z

)
,

r2(z; ζ) := p2(z; ζ) exp

(
−icζ
c2 − 1

z

)
,

and we note that r1, r2 are solutions of equation (14). We use the initial conditions of p1, p2 to express r1, r2 in the
basis of fundamental solutions q1, q2, which yields:

r1(z; ζ) = q1(z; ζ)−
icζ

c2 − 1
q2(z; ζ)

r2(z; ζ) = q2(z; ζ).

We can now write p1, p2 in terms of q1, q2:

p1(z; ζ) = exp

(
icζ

c2 − 1
z

)(
q1(z; ζ)−

icζ

c2 − 1
q2(z; ζ)

)
p2(z; ζ) = exp

(
icζ

c2 − 1
z

)
q2(z; ζ).

Finally, we substitute these expressions into equation (20):

D1(ζ; θ) = exp

(
2icT ζ

c2 − 1

)
− exp

(
icζT

c2 − 1
− iθ

)
(q1(T ; ζ) + q′2(T ; ζ)) + e−2iθ (20)

= exp

(
icζT

c2 − 1
− iθ

)(
exp

(
icζT

c2 − 1
+ iθ

)
− q1(T ; ζ)− q′2(T ; ζ) + exp

(
− icζT

c2 − 1
− iθ

))
(21)

= − exp

(
icζT

c2 − 1
− iθ

)
D2(ζ; θ). (22)

It follows that D1(ζ; θ) = 0 ⇐⇒ D2(ζ; θ) = 0. Suppose that ζ0 is a zero of D1(ζ; θ) with degree of vanishing n:

D1(ζ0; θ) = D′1(ζ0; θ) = · · · = D
(n−1)
1 (ζ0; θ) = 0, D

(n)
1 (ζ0; θ) 6= 0.

For some j ≤ n, with base case j = 1, we assume inductively that:

D2(ζ0; θ) = D′2(ζ0; θ) = · · · = D
(j−1)
2 (ζ0; θ) = 0. (23)

We apply the product rule to equation (22) j times, which yields:

D
(j)
1 (ζ0; θ) = − exp

(
icT ζ0
c2 − 1

− iθ
) j∑
k=0

(
j

k

)(
icT

c2 − 1

)j−k
D

(k)
2 (ζ0; θ).

Using the inductive hypothesis in equation (23), we have:

D
(j)
1 (ζ0; θ) = − exp

(
icT ζ0
c2 − 1

− iθ
)
D

(j)
2 (ζ0; θ),

and hence D(j)
1 (ζ0; θ) = 0 =⇒ D

(j)
2 (ζ0; θ) = 0. By induction, this is true for j = 1, . . . , n− 1, and we check that:

D
(n)
1 (ζ0; θ) = − exp

(
icT ζ0
c2 − 1

− iθ
)
D

(n)
2 (ζ0; θ),

meaning that D(n)
1 (ζ0; θ) 6= 0 =⇒ D

(n)
2 (ζ0; θ) 6= 0. Given ζ0 a zero of order n for D1(ζ; θ), then ζ0 is also a zero of

order n forD2(ζ; θ). The zeros ofD1(ζ; θ) are the only zeros ofD2(ζ; θ), which is proved by rearranging equation (22)
to:

D2(ζ; θ) = − exp

(
− icζT

c2 − 1
+ iθ

)
D1(ζ; θ)

and following the same proof by induction as above. Thus D2(ζ; θ) is an Evans function for quasi-periodic solutions of
the linearised sine-Gordon equation.

5
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Corollary 2. The function

D3(ζ; θ) = det

(
H(T ; ζ)− exp

(
− icζT

c2 − 1
− iθ

)
I
)

is also an Evans function for quasi-periodic solutions of the linearised sine-Gordon equation.

Proof. Upon expansion we have:

D3(ζ; θ) = det(H(T ; ζ))− exp

(
− icζT

c2 − 1
− iθ

)
tr(H(T ; ζ)) + exp

(
− 2icζT

c2 − 1
− 2iθ

)
= − exp

(
− icζT

c2 − 1
− iθ

)(
tr(H(T ; ζ))− exp

(
icζT

c2 − 1
+ iθ

)
− exp

(
− icζT

c2 − 1
− iθ

))
= − exp

(
− icζT

c2 − 1
− iθ

)
D2(ζ; θ).

We can use these new Evans functions to compute the spectrum of the linearised sine-Gordon equation using only the
solutions of Hill’s equation (14). In figures 1a, 1b and 1d we reproduce the results of [JMMP2013], while figure 1c is a
reproduction of a result in [MM2015].

2.1 Krein signatures of the linearised sine-Gordon equation

Making the restriction that ζ ∈ R, then LSG(ζ) is a self-adjoint, holomorphic family of type (A) with compact resolvent
[KM2014, Example 11], meaning that its characteristic values have well-defined Krein signatures. The Evans function
D2(ζ; θ) can be turned into a so-called Evans-Krein function, used in calculating the Krein signatures of isolated
characteristic values ζ0. Following Kollar and Miller in [KM2014, Theorem 4.2], an Evans-Krein function E(λ;µ) for
an operator pencil L(λ) is an Evans function for the µ-parametrised pencil:

K(λ;µ) := L(λ)− µI.
In [KM2014, §4.4], Kollar and Miller prove for an isolated, simple characteristic value λ0 that:

µ′(λ0) = −
Eλ(λ0; 0)

Eµ(λ0; 0)
. (24)

In our case, we consider the related pencil

KSG(ζ) := LSG(ζ)− µI,
which has Evans-Krein function:

ESG(ζ;µ) = tr(H(T ; ζ, µ))− 2 cos

(
cζT

c2 − 1
+ θ

)
. (25)

The monodromy matrix H(T ; ζ, µ) is defined as in equation (15), however the related Hill equation is:(
ζ2

(c2 − 1)2
− µ

)
q +

(
∂2z +

cos(Û)

c2 − 1

)
q = 0. (26)

We can use the substitution v(ζ, µ) = ζ2

(c2−1)2 − µ to calculate the partial derivatives of ESG:

∂

∂ζ
ESG(ζ;µ) =

∂v

∂ζ

∂

∂v
tr(H(T ; ζ, µ)) +

2cT

c2 − 1
sin

(
cζT

c2 − 1
+ θ

)
=

2ζ

(c2 − 1)2
∂

∂v
tr(H(T ; ζ, µ)) +

2cT

c2 − 1
sin

(
cζT

c2 − 1
+ θ

)
∂

∂µ
ESG(ζ;µ) =

∂v

∂µ

∂

∂v
tr(H(T ; ζ, µ))

= − ∂

∂v
tr(H(T ; ζ, µ)).

6
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(a) Subluminal rotational.
E = −0.5, c = 0.5.

(b) Subluminal librational.
E = 0.5, c = 0.5.

(c) Upper halfplane. Superluminal
rotational. E = 6, c = 1.45.

(d) Superluminal librational.
E = 1.5, c = 2.

Figure 1: Numerical plots of the spectra σ of various periodic travelling wave solutions to the sine-Gordon equation (1),
calculated by finding solutions to the Evans function D2(ζ; θ) with ζ ∈ C and for all θ ∈ [0, 2π). Recall that λ = iζ.

Using these results with equation (24) we have:

µ′(ζ0) =
2ζ0

(c2 − 1)2
+

2cT
c2−1 sin

(
cζ0T
c2−1 + θ

)
∂
∂v tr(H(T ; ζ0, 0))

. (27)

We have from [MW2013, Corollary 2.1, Theorem 2.2] that

DHill(ζ) := tr(H(T ; ζ0))− 2

is an Evans function for characteristic values of periodic solutions to Hill’s equation (14). So we have:

D′Hill(ζ0) =
∂v

∂ζ

∂

∂v
tr(H(T ; ζ0, 0))

=⇒ ∂

∂v
tr(H(T ; ζ0, 0)) =

(c2 − 1)2

2ζ0
D′Hill(ζ0).

7
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We make this substitution in equation (27) because it is easier numerically to compute D′Hill(ζ0). Hence we have:

µ′(ζ0) =
2ζ0

(c2 − 1)2
+

4cζ0T

(c2 − 1)3

sin
(
cζ0T
c2−1 + θ

)
D′Hill(ζ0)

. (28)

Finally, using equation (8), we compute the Krein signature of simple characteristic values for quasi-periodic solutions
of the linearised sine-Gordon equation (5):

κ(ζ0) = sign

 2ζ0
(c2 − 1)2

+
4cζ0T

(c2 − 1)3

sin
(
cζ0T
c2−1 + θ

)
D′Hill(ζ0)

 . (29)

We pause to note that the situations where ζ0 = 0 or D′Hill(ζ0) = 0 pose problems with the above derivation. Firstly,
ζ0 = 0 is never a simple characteristic value of the linearised sine-Gordon equation. We observe that:

LSG(0)Û ′(z) = Ûzzz +
cos(Û)

c2 − 1
Ûz

= 0,

where the last step follows by differentiating equation (3):

(c2 − 1)Ûzz + sin(Û) = 0.

The function Û ′(z) is T -periodic, and so it has Floquet exponent θ = 0. Noting that tr(H(T ; ζ)) is analytic (by
[MW2013, Theorem 2.2]) and even in ζ (since Hill’s equation (14) is only dependent on ζ2), then

D2(ζ; 0) = tr(H(T ; ζ))− 2 cos

(
cζT

c2 − 1

)
is analytic and even in ζ. Hence D′2(0; 0) = 0, and so the multiplicity of ζ0 = 0 is at least 2. Moreover, θ = 0 is the
unique Floquet exponent of ζ0 = 0, since D2(0; 0) = 0 implies that tr(H(T ; 0)) = 2, and hence

D2(0; θ) = 2− 2 cos (θ) = 0 ⇐⇒ θ = 0

with θ ∈ [0, 2π). An alternative proof that ζ0 = 0 is a characteristic value with even multiplicity for the more general
linearised nonlinear Klein-Gordon equation is in [JMMP2014, Lemma 6.2]. As for the values x0 when

D′Hill(x0) =
∂

∂ζ
(tr(H(T ; ζ)))

∣∣
ζ=x0

= 0,

we refer to Magnus and Winkler’s oscillation theorem [MW2013, Theorem 2.1], which states that

D′Hill(x0) = 0 ⇐⇒ |tr(H(T ;x0))| ≥ 2.

If |tr(H(T ;x0))| > 2, then |D2(x0; θ)| > 0, so x0 is not a characteristic value. If:

tr(H(T ;x0)) = (−1)j2
for j = 0, 1, then there exists

θ0 = jπ − cx0T

c2 − 1
(mod 2π)

such that D2(x0; θ0) = D′2(x0; θ0) = 0, meaning that x0 has multiplicty greater than 1. Concretely, our formula in
equation (29) is able to calculate the Krein signature of all simple characteristic values of the linearised sine-Gordon
equation (5). These results are immediately generalisable to the Klein-Gordon case, where cos(Û) is replaced with
V ′′(Û), and we will use these results freely in section 3.

The advantage of using D2(ζ; θ) over D1(ζ; θ) when computing Krein signatures is that we do not have to explicitly
compute a partial derivative of an Evans-Krein function with respect to µ. Our subsitution of v(ζ, µ) = ζ2

(c2−1)2 −µ took

advantage of the dependence of equation (26) on ζ2

(c2−1)2 − µ. This is not possible when computing Krein signatures
using D1(ζ; θ), since this function is written in terms of the fundamental solutions to the linearised sine-Gordon
equation (5). For the sake of exposition, we can adapt D1(ζ; θ) into an Evans-Krein function E1(ζ;µ, θ):

E1(ζ;µ, θ) = det(F(T ; ζ, µ)− e−iθI)

= exp

(
2icT ζ

c2 − 1

)
− e−iθ(tr(F(T ; ζ, µ))) + e−2iθ,

8
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(a) θ = 4.36. (b) θ = 4.525.

(c) θ = 4.88. (d) θ = 5.27.

Figure 2: Numerical plots of D2(ζ; θ) showing the Krein signatures of isolated characteristic values of the linearised
sine-Gordon equation (5), linearised around the superluminal rotational wave in figure 1c with E = 6, c = 1.45. A
collision of opposite Krein signatures results in a Hamiltonian-Hopf bifurcation. Krein signatures with κ = 1 are shown
online with red dots, while Krein signatures with κ = −1 are denoted by blue dots. Figure 2b shows the bifurcation
point which corresponds to a Krein signature of κ = 0, denoted by a black dot.

where we have expanded E1(ζ;µ, θ) as in equation (20). The monodromy matrix F(T ; ζ, µ) is made up of fundamental
solutions to the related linearised sine-Gordon equation:(

− ζ2

c2 − 1
− µ

)
p− 2icζ

c2 − 1
∂zp+

(
∂2z +

cos(Û)

c2 − 1

)
p = 0. (30)

Since a substition for ζ and µ is not possible in equation (30), we rely on direct computation of the derivatives of
E1(ζ;µ, θ):

∂

∂ζ
E1(ζ;µ, θ) =

2icT

c2 − 1
exp

(
2icT ζ

c2 − 1

)
− e−iθ ∂

∂ζ
(tr (F(T ; ζ, µ)))

∂

∂µ
E1(ζ;µ, θ) = −e−iθ

∂

∂µ
(tr (F(T ; ζ, µ))) .

Using equation (24), we now have:

µ′(ζ0) = −
2icT
c2−1 exp

(
2icTζ0
c2−1 + iθ

)
∂
∂µ (tr (F(T ; ζ0, 0)))

+

∂
∂ζ (tr (F(T ; ζ0, 0)))
∂
∂µ (tr (F(T ; ζ0, 0)))

.

Using E1(ζ;µ, θ) to compute µ′(ζ0), we must numerically differentiate

tr (F(T ; ζ, µ)) = p1(T ; ζ, µ) + p′2(T ; ζ, µ)

at (ζ, µ) = (ζ0, 0) with respect to both ζ and µ. However, in equation (28) we were able to find µ′(ζ0) in terms of only
a ζ-derivative of DHill(ζ) = q1(T ; ζ) + q2(T ; ζ)− 2 at ζ = ζ0. Hence, using our new Evans function D2(ζ; θ) rather
than D1(ζ; θ) results in a more elegant calculation of Krein signatures.

In figure 2 we use equation (29) to numerically calculate the Krein signatures of isolated characteristic values in the
case of the superluminal rotational wave in figure 1c. As the bifurcation parameter θ is varied, we observe a collision

9
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between two characteristic values of opposite Krein signature, resulting in a Hamiltonian-Hopf bifurcation at θ ≈ 4.53
where these two characteristic values enter the complex plane. The two characteristic values then bifurcate back onto
the imaginary axis at θ ≈ 5.16.

3 The nonlinear Klein-Gordon equation

We now consider the more general nonlinear Klein-Gordon equation:

utt − uxx + V ′(u) = 0, (31)

where u(x, t) :R × [0,+∞)−→R and V (u) :R−→R is a C2 potential. It is possible to recover the sine-Gordon
equation (1) by setting V (u) = 1− cos(u). Similar to our derivation of the linearised sine-Gordon equation, we have
the linearised nonlinear Klein-Gordon equation:

p′′ − 2icζ

c2 − 1
p′ +

(
− ζ2

c2 − 1
+
V ′′(Û)

c2 − 1

)
p = 0, (32)

where Û(z) satisfies

(c2 − 1)Ûzz + V ′(Û) = 0, (33)

and has period T . The case when V (u) is a periodic function of u has been studied extensively and we point the reader
to [JMMP2014] for a thorough analysis. Provided that Û(z) is periodic, then V (Û) is also periodic, making available
the theory of [JMMP2014] with the caveat that rotational waves will not be observed when V is not periodic. In fact, all
the results of section 2 are immediately generalisable to any V ∈ C2, with the related Hill’s equation (14) becoming:

q′′ +

(
ζ2

(c2 − 1)2
+
V ′′(Û)

c2 − 1

)
q = 0, (34)

and the Evans functions D2(ζ; θ) and D3(ζ; θ) remaining unchanged. The spectrum of the nonlinear Klein-Gordon
equation exhibits Hamiltonian symmetry [JMMP2014, Proposition 3.9]. In particular, if p(z) satisfies equation (32) for
ζ ∈ σ, then taking complex conjugates implies that p∗(z) satisfies equation (32) for ζ∗, and making the transformation

p(z) = e
−2icζ

c2−1
z
r(z)

implies that r(z) satisfies equation (32) for −ζ.

As a point of contrast to the sine-Gordon potential V (u) = 1− cos(u), we have chosen to consider the non-periodic
potential V (u) = 1

4u
4 − 1

2u
2. As before, we integrate equation (33) once which introduces the energy parameter E:

1

2
(c2 − 1)Û2

z +
1

4
Û4 − 1

2
Û2 = E.

Figure 3 shows the phase portraits for subluminal and superluminal travelling wave solutions to equation (33). In the
subluminal case in figure 3a, we note that the separatrix corresponds to E = − 1

4 , and we have that − 1
4 < E < 0.

For superluminal waves in figure 3b, E > 0 corresponds to waves outside the homoclinic orbit, while − 1
4 < E < 0

corresponds to waves within one branch of the homoclinic orbit. Given the symmetry of the phase portraits due to
the potential V (u) = 1

4u
4 − 1

2u
2 being even in u, there is no difference in the spectra of waves chosen within the left

or right branch of the homoclinic orbit for equal values of E. Without loss of generality we chose to consider waves
within the right branch of the homoclinic orbit. In figure 4, we numerically compute the spectra of several waves using
the Evans function D2(ζ; θ). We chose the waves which produced qualitatively different spectra, however we have
not proved that this list is exhaustive. Figure 5 shows the corresponding phase portraits of the waves whose spectra
are included in figure 4. In figure 6, we capture two bifurcations on the imaginary axis as θ is varied for the wave
corresponding to figure 5b. We observe a phenomenon discussed in [KM2014, §6] where characteristic values of
opposite Krein signature pass through each other instead of undergoing a Hamiltonian-Hopf bifurcation. A simple
characteristic value of Krein signature κ = −1 (denoted by a blue dot) bifurcates onto the real axis in the 2nd plot from
the right in the bottom row of figure 6. It passes through the simple characteristic values of Krein signature κ = 1
until it collides with a characteristic value with κ = 1 at ζ ≈ 0.8, bifurcating off the ζ-axis. The ζ values where the
bifurcations take place correspond to the values of λ where the spectrum leaves the imaginary axis, as denoted by the
grey arrows. We observed the same phenomenon for the wave whose spectrum is plotted in figure 4d.
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(a) Subluminal c2 < 1. (b) Superluminal c2 > 1.

Figure 3: Phase portraits for equation (33) with V (Û) = 1
4 Û

4 − 1
2 Û

2. In the subluminal case, the librational periodic
solutions Û are within the separatrix (drawn in red). For superluminal waves, all periodic waves are librational, and
these exist both outside the homoclinic orbit (drawn in red) and inside.

(a) E = −0.216, c = 0.8. (b) E = −0.082875, c = 0.95. (c) E = −0.07, c = 0.45.

(d) E = 0.01, c = 1.1. (e) E = 0.5, c = 1.1. (f) E = −0.05, c = 1.1.

Figure 4: Numerical plots of the spectra σ of various periodic travelling wave solutions to the nonlinear Klein-Gordon
equation (31) with potential V (u) = u4

4 −
u2

2 . Row 1 depicts the spectra for subluminal waves, while row 2 corresponds
to superluminal waves.
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(a) E = −0.216, c = 0.8. (b) E = −0.082875, c = 0.95. (c) E = −0.07, c = 0.45.

(d) E = 0.01, c = 1.1. (e) E = 0.5, c = 1.1. (f) E = −0.05, c = 1.1.

Figure 5: Phase portraits corresponding to the periodic travelling waves in figure 4. The chosen waves are shown in
green, while the separatrices are shown in red.

Figure 6: We track the bifurcations in the upper half plane of the spectrum σ in figure 4b as θ is varied. See figure 5b
for the original wave. In the bottom row, we plot the Evans function D2(ζ; θ) for the values from left to right: θ = 3.1,
θ = 3.209, θ = 3.4, θ = 4.48874. The black dots correspond to Hamiltonian-Hopf bifurcations, and we have labelled
these on the spectral diagram in the top row with black dots as well.
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4 Discussion and conclusion

In this paper, we apply Floquet theory to results for Hill’s equation in [JMMP2013] to construct a new Evans function
for quasi-periodic solutions of the linearised sine-Gordon equation. As opposed to the Evans function in [JMMP2014],
this new Evans function is readily adaptable to an Evans-Krein function from which we calculate the Krein signatures
of simple characteristic values of the linearised sine-Gordon equation. These Krein signatures allow us to track
Hamiltonian-Hopf bifurcations in the spectrum of the sine-Gordon equation in terms of the Floquet exponent, which
distinguishes our method from [JMMP2013, MM2015]. As a check on the correctness of our methods, we use this
new Evans function to numerically compute spectra for different periodic travelling wave solutions of the sine-Gordon
equation, replicating the results of [JMMP2013, JMMP2014, MM2015]. Finally, as an example of how to extend our
Evans function, we use it to compute the spectrum in a general nonlinear Klein-Gordon equation, producing spectral
diagrams and calculating Krein signatures for the potential V (u) = 1

4u
4 − 1

2u
2.
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