Short Assignment 1

1. (a) What do the following quantities represent?
 (i) \[1 - \exp \left(- \int_0^a \mu(s) \, ds \right) \]
 (ii) (harder) \[\int_{t-a}^t b(s - (t - a)) n(s - (t - a), s) \, ds \]

(b) Let \(b(a, t) \) be the time-dependent fecundity function for the human population of Australia where \(t \) and \(a \) are in years. Sketch a possible graph of \(b(25, t) \) for the last hundred years. Explain any special features of your graph.

2. Consider an age-structured population, governed by the McKendrick-von Foerster equation. The death rate for this population is constant; that is \(\mu(a) = m \) where \(m \) is a constant. The birth rate is constant during the reproductive life of each individual:
 \[
 b(a) = \begin{cases}
 B & \text{for } \beta \leq a \leq 2\beta \\
 0 & \text{otherwise}
 \end{cases}
 \]
 where \(B \) is constant, \(\beta \) is the age that an individual first reproduces and \(2\beta \) is the age that it ceases to reproduce.

 Individuals of age \(a = 0 \) are continuously introduced into a closed environment at a rate of \(\eta \) individuals per unit time, from \(t = 0 \) until \(t = \beta \).

 (i) Show that the cohort function \(w(t) \) for a cohort introduced at \(t = t_0 \) where \(0 < t_0 < \beta \) is \(w(t) = \eta e^{-m(t-t_0)} \).

 (ii) Hence or otherwise find an expression for \(n(a, t) \) when \(t - a = t_0 < \beta \). Note that this expression is valid for all \(t \geq 0 \) provided \(t - a < \beta \).

 (iii) Show that the number of individuals born at time \(t_1 \) where \(\beta < t_1 < 2\beta \) is given by \(n(0, t_1) = B\eta(e^{-m\beta} - e^{-mt_1})/m \).

 (iv) Consider a cohort born at time \(t_1 \) where \(\beta < t_1 < 2\beta \). Find the cohort function for this cohort. Hence, or otherwise, find an expression for \(n(a, t) \) where \(\beta < t - a = t_1 < 2\beta \). Write \(n(a, t) \) in terms of \(a \) and \(t \) only. Do not use \(t_1 \) in your final answer.

 (v) Find the total number of offspring born to parents who were introduced to the population in the period \(t \leq \beta \). Write down the average number of offspring born to each individual introduced when \(t \geq \beta \).

 (vi) Let \(N(t) = \int_0^\infty n(a, t) \, da \) be the total number of individuals in the population at time \(t \). Find \(N(\beta) \) and \(N(2\beta) \). Suggest one way that parameters can be chosen to ensure that \(N(2\beta) > N(\beta) \).