PELVE: Probability Equivalent Level of VaR and ES

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science
University of Waterloo

One World Actuarial Research Seminar
June 3, 2020 (Online)
Based on joint work with Hengxin Li (UC Berkeley)
VaR and ES

Value-at-Risk (VaR), $p \in (0, 1)$

$$\text{VaR}_p : L^0 \rightarrow \mathbb{R},$$

$$\text{VaR}_p(X) = F_X^{-1}(p)$$

$$= \inf \{ x \in \mathbb{R} : \mathbb{P}(X \leq x) \geq p \}.$$ (left-quantile)

Expected Shortfall (ES), $p \in (0, 1)$

$$\text{ES}_p : L^1 \rightarrow \mathbb{R},$$

$$\text{ES}_p(X) = \frac{1}{1 - p} \int_0^1 \text{VaR}_q(X) dq$$

(also: TVaR/CVaR/AVaR)
The Basel Committee on Banking Supervision

Fundamental Review of the Trading Book (FRTB), live Jan 2019

- Widely discussed since 2012
- Planned implementation
 - March 2021 (most Europe)
 - Jan 2022 (North America, some of East Asia)
VaR_{0.99} \implies \text{ES}_{0.975}

- VaR_{0.99} is replaced by \text{ES}_{0.975} as the standard risk measure for market risk in the internal model approach
- 10-day portfolio loss forecast
- In a survey in 2015, 2/3 of banks reported higher capital charge under the (back-then) proposed FTRB
- Is there a general relationship between VaR_{0.99} and \text{ES}_{0.975}?
A tiny portion of literature on VaR and ES

ES is coherent and VaR is not
 ▶ Artzner-Delbaen-Eber-Heath'99 MF; Acerbi-Tasche'02 JBF

VaR is elicitable and ES is not
 ▶ Gneiting’11 JASA

Axiomatic characterizations
 ▶ ES: W.-Zitikis’20 MS
 ▶ VaR: Chambers’09 MF; Kou-Peng’16 OR; He-Peng’18 OR; Liu-W.’20 MOR

Optimization properties
 ▶ Rockafellar-Uryasev’00/02 JR/JBF; Gaivoronski-Pflug’05 JR

Statistical inference and time series
 ▶ Scaillet’04 MF; Engle-Manganelli’04 JBES; Chen’08 JFEc

Risk aggregation
 ▶ Embrechts-Puccetti-Rüschendorf’13 JBF; Embrechts-Wang-W.’15 FS
A tiny portion of literature on VaR and ES

Investment and portfolio management

▶ Basak-Shapiro’01 RFS; Krokhmal-Palmquist-Uryasev’02 JR; Natarajan-Pachamanova-Sim’08 MS; Adrian-Shin’14 RFS

Capital allocation

▶ Dhaene-Goovaerts-Kaas’03 IME; Kalkbrener’05 MF; Dhaene-Tsanakas-Valdez-Vanduffel’12 JRI; Asimit-Peng-W.-Yu’19 MF

Insurance, reinsurance, and risk sharing

▶ Cai-Tan’07 ASTIN; Cai-Tan-Weng-Zhang’08 IME; Chi-Tan’11 ASTIN; Embrechts-Liu-W.’18 OR; Weber’18 IME

Systemic risk, CoVaR/CoES

▶ Acharya-Engle-Richardson’12 AER; Adrian-Brunnermeier’16 AER

Forecasting and backtesting

▶ Fissler-Ziegel’16 AoS; Du-Escanciano’17 MS; Kratz-Lok-McNeil’18 JBF
Progress

1. Background
2. PELVE: A tale of two risk measures
3. Theoretical properties
4. Parametric and heavy tailed distributions
5. Non-parametric estimation
6. Empirical analysis
7. Concluding remarks
Definition of PELVE

Given a random loss X, how do we compare $\text{VaR}_{0.99}(X)$ and $\text{ES}_{0.975}(X)$, or generally $\text{VaR}_p(X)$ and $\text{ES}_q(X)$?

> A number $c \in [1, 1/\epsilon]$ such that $\text{ES}_{1-c\epsilon}(X) = \text{VaR}_{1-\epsilon}(X)$

For $\epsilon = 0.01$ \iff $\text{VaR}_{0.99}$ in FRTB:

- $c > 2.5 \Rightarrow \text{ES}_{0.975} > \text{VaR}_{0.99} \Rightarrow$ capital increases
- $c \approx 2.5 \Rightarrow \text{ES}_{0.975} \approx \text{VaR}_{0.99} \Rightarrow$ little or no change in capital
- $c < 2.5 \Rightarrow \text{ES}_{0.975} < \text{VaR}_{0.99} \Rightarrow$ capital decreases
Definition of PELVE

Definition 1

For $\epsilon \in (0, 1)$, the Probability Equivalent Level of VaR-ES (PELVE) is defined as $\Pi_\epsilon : L^1 \rightarrow \mathbb{R}$

$$
\Pi_\epsilon(X) = \inf \{ c \in [1, 1/\epsilon] : ES_{1-c\epsilon}(X) \leq \text{VaR}_{1-\epsilon}(X) \}
$$

with the convention $\inf(\emptyset) = \infty$.

- Always well defined
- Almost always $ES_{1-c\epsilon}(X) = \text{VaR}_{1-\epsilon}(X)$
- $\Pi_\epsilon(X) < \infty$ if ϵ is small
Typical values of PELVE

<table>
<thead>
<tr>
<th>ϵ</th>
<th>Dirac</th>
<th>U</th>
<th>N</th>
<th>Exp</th>
<th>LN(σ^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>0.100</td>
<td>1.00</td>
<td>2.00</td>
<td>2.46</td>
<td>2.51</td>
<td>2.58</td>
</tr>
<tr>
<td>0.050</td>
<td>1.00</td>
<td>2.00</td>
<td>2.51</td>
<td>2.58</td>
<td>2.59</td>
</tr>
<tr>
<td>0.010</td>
<td>1.00</td>
<td>2.00</td>
<td>2.58</td>
<td>2.58</td>
<td>2.59</td>
</tr>
<tr>
<td>0.005</td>
<td>1.00</td>
<td>2.00</td>
<td>2.59</td>
<td>2.59</td>
<td>2.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϵ</th>
<th>$t(\nu)$</th>
<th>Pareto(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>0.100</td>
<td>3.60</td>
<td>2.58</td>
</tr>
<tr>
<td>0.050</td>
<td>3.80</td>
<td>2.65</td>
</tr>
<tr>
<td>0.010</td>
<td>3.96</td>
<td>2.74</td>
</tr>
<tr>
<td>0.005</td>
<td>3.98</td>
<td>2.77</td>
</tr>
</tbody>
</table>
Typical values of PELVE

Quick observations on Π_ϵ:

- Common range $[2, 4]$
- $\Pi_\epsilon(X) = 1 \iff$ point-mass
- $\Pi_\epsilon(X) = 4 \iff$ Pareto(2), infinite variance
- $\Pi_\epsilon(X) \approx 2.5 \iff$ normal
 - $\text{VaR}_{0.99} \approx \text{ES}_{0.975}$ in FRTB for normal X
- Relatively stable across different ϵ for the same distribution
 - Constant in ϵ for degenerate, uniform, exponential and Pareto
- higher value \iff heavy tails
- lower value \iff light tails
- Can be used as a measure of variability
Progress

1. Background
2. PELVE: A tale of two risk measures
3. Theoretical properties
4. Parametric and heavy tailed distributions
5. Non-parametric estimation
6. Empirical analysis
7. Concluding remarks
Existence and uniqueness

Assumption 1 (Existence & uniqueness condition)

\[\mathbb{E}[X] < \text{VaR}_{1-\epsilon}(X) \text{ and } \text{VaR}_p(X) \text{ is not a constant for } p \in [1 - \epsilon, 1). \]

Proposition 1 (Existence & uniqueness of PELVE)

Under Assumption 1, there exists a unique \(c \in [1, 1/\epsilon] \) such that

\[\text{ES}_{1-c\epsilon}(X) = \text{VaR}_{1-\epsilon}(X). \]
Theoretical features of PELVE

Features

▶ Location-scale invariance
 • location-scale free risk assessment (e.g., Sharp ratio)

▶ Monotone in convex transformation
 • $X \sim N(0, 1) \text{ vs } e^X \sim LN(0, 1)$
 • $X \sim \text{Pareto}(4) \text{ vs } X^2 \sim \text{Pareto}(2)$

▶ Betweenness
 • quasi-convexity and quasi-concavity wrt quantile-mixture
 • combining two comonotonic losses does not give a PELVE value beyond the worse one or below the better one
 • quasi-convex programming
Theoretical features of PELVE

Theorem 1

Suppose that $X \in L^1$, $\epsilon \in (0, 1)$ and $\mathbb{E}[X] \leq \text{VaR}_{1-\epsilon}(X)$.

(i) For all $\lambda > 0$ and $a \in \mathbb{R}$, $\Pi_\epsilon(\lambda X + a) = \Pi_\epsilon(X)$.

(ii) $\Pi_\epsilon(f(X)) \leq \Pi_\epsilon(X)$ for all increasing concave functions $f : \mathbb{R} \to \mathbb{R}$ with $f(X) \in L^1$.

(iii) $\Pi_\epsilon(g(X)) \geq \Pi_\epsilon(X)$ for all strictly increasing convex functions $g : \mathbb{R} \to \mathbb{R}$ with $g(X) \in L^1$.

(iv) For all comonotonic $Y, Z \in L^1$, $\Pi_\epsilon(Y + Z)$ is between $\Pi_\epsilon(Y)$ and $\Pi_\epsilon(Z)$.

(i/iv) $\Rightarrow \Pi_\epsilon(Y) \wedge \Pi_\epsilon(Z) \leq \Pi_\epsilon(\lambda Y + (1 - \lambda)Z) \leq \Pi_\epsilon(Y) \vee \Pi_\epsilon(Z)$, $\forall \lambda \in [0, 1]$.
Example 1 (PELVE for time-series models)

Risk measure forecast is usually done via conditional models. Consider an AR-GARCH type of time-series for risk factors

\[X_t = \mu_t + \sigma_t Z_t, \quad t \in \mathbb{Z}, \]

where \(\mu_t \) and \(\sigma_t \) are the conditional mean and standard deviation given a \(\sigma \)-field \(\mathcal{F}_{t-1} \), and \(Z_t \) is independent of \(\mathcal{F}_{t-1} \). Then

\[\Pi_\epsilon(X_t|\mathcal{F}_{t-1}) = \Pi_\epsilon(Z_t). \]
Example 2 (Reducing PELVE with options)

- Losses from an asset and a European call or put (same maturity)

 \[X_A: \text{asset}; \quad X_C: \text{call}; \quad X_{AC}: \text{asset+call}; \quad X_{AP}: \text{asset+put} \]

- Put-call parity: \[X_C + c = X_{AP} \text{ for some } c \in \mathbb{R} \]

- All of \(X_C, X_{AC}, \) and \(X_{AP} \) are increasing concave functions of \(X_A \)

- \(X_{AP} \) is an increasing concave function of \(X_{AC} \)

Theorem 1 (ii) implies:

\[\Pi_\epsilon(X_C) = \Pi_\epsilon(X_{AP}) \leq \Pi_\epsilon(X_{AC}) \leq \Pi_\epsilon(X_A) \]

Consistent with intuition & no model assumption
Example 3 (Comparison of PELVE using quasi-convexity/concavity)

Following the previous example:

- X_A and X_C are comonotonic
- Theorem 1 (iv) betweenness \Rightarrow

\[\Pi_\epsilon(X_C) \wedge \Pi_\epsilon(X_A) \leq \Pi_\epsilon(X_{AC}) \leq \Pi_\epsilon(X_C) \vee \Pi_\epsilon(X_A) \]

- Remains true if the call option in X_C and X_{AC} is replaced by any other payoffs increasing in the asset price
- Use $\Pi_\epsilon(X_C) \leq \Pi_\epsilon(X_A) \Rightarrow$ the result in the previous example
Examples

Example 4 (Linear loss and log-loss)

For an asset with price X_t at time $t = 0, 1, \ldots$ (e.g. daily prices)

- linear return: $R_t = \frac{X_t}{X_{t-1}} - 1$
- log-return: $r_t = \log\left(\frac{X_t}{X_{t-1}}\right)$
- linear loss (negative return): $-R_t = 1 - \frac{X_t}{X_{t-1}}$
- log-loss (negative log-return): $-r_t = -\log\left(\frac{X_t}{X_{t-1}}\right)$
- $y \mapsto -\log(1 - y)$ is strictly increasing and convex
- Theorem 1 (iii) $\Rightarrow \Pi_\epsilon(-r_t) \geq \Pi_\epsilon(-R_t)$
- Using log-loss \Rightarrow a (slightly) higher PELVE than linear loss
Consistency

Assumption 2 (Continuous quantile)

$F_{X}^{-1}(q)$ is continuous at $q = 1 - \epsilon$.

Assumption 3 (Uniform integrability)

$\{X_n\}_{n \in \mathbb{N}}$ is uniformly integrable.

Theorem 2

Suppose that $\{X_n\}_{n \in \mathbb{N}} \subset L^1$, $X \in L^1$ and $\epsilon \in (0, 1)$ satisfy Assumptions 1-3 and $X_n \rightarrow X$ in distribution as $n \rightarrow \infty$. Then $\Pi_\epsilon(X_n) \rightarrow \Pi_\epsilon(X)$ as $n \rightarrow \infty$.
Consistency

Corollary 1

Suppose that $X, X_1, X_2, \ldots \in L^1$ are iid, $\epsilon \in (0, 1)$, and Assumptions 1-2 hold. Then $\hat{\Pi}_\epsilon(n) \to \Pi_\epsilon(X)$ as $n \to \infty$, where $\hat{\Pi}_\epsilon(n)$ is the ϵ-PELVE of the empirical distribution based on sample X_1, \ldots, X_n.
Diversification effect

VaR and ES: which of them rewards diversification more?

- Elliptical family: the same
- Generally: unclear

Consider a general setting

- X_1, \ldots, X_n: individual losses with finite variances
- $S_n = \sum_{i=1}^{n} w_i X_i$ for some weights $w_1, \ldots, w_n \geq 0$
- Allow $n \to \infty$
Diversification effect

- Assume CLT: \(\frac{S_n - a_n}{b_n} \rightarrow N \sim N(0, 1) \) for some \(a_n \in \mathbb{R} \) and \(b_n > 0 \)
- Theorems 1-2:
 \[
 \Pi_\epsilon(S_n) = \Pi_\epsilon \left(\frac{S_n - a_n}{b_n} \right) \rightarrow \Pi_\epsilon(N)
 \]
- most asset PELVE \(\geq \Pi_\epsilon(N) \), e.g., \(\Pi_{0.01}(N) = 2.58 \)
- Aggregate PELVE is likely smaller than individual PELVE
- True even without CLT
Example 5 (Diversification ratio)

- **Diversification ratio:** for a risk measure ρ,

\[
\Delta(\rho) = \frac{\rho(S_n)}{\sum_{i=1}^{n} w_i \rho(X_i)} = \frac{\text{with diversification}}{\text{without diversification}}
\]

- $c \geq 1$: $\sum_{i=1}^{n} w_i \text{VaR}_{1-\epsilon}(X_i) = \sum_{i=1}^{n} w_i \text{ES}_{1-c\epsilon}(X_i)$

- $c' = \Pi_{\epsilon}(S_n)$: $\text{VaR}_{1-\epsilon}(S_n) = \text{ES}_{1-c'\epsilon}(S_n)$

- Assume $c > \Pi_{\epsilon}(N)$ (commonly observed)

- **CLT:** $c' < c$ for n large $\Rightarrow \text{ES}_{1-c\epsilon}(S_n) < \text{VaR}_{1-\epsilon}(S_n)$

- $\Delta(\text{ES}_{1-c\epsilon}) < \Delta(\text{VaR}_{1-\epsilon})$ and $\Delta(\text{ES}_{1-c'\epsilon}) < \Delta(\text{VaR}_{1-\epsilon})$

Remark. The result will be flipped if we assume $c < \Pi_{\epsilon}(N)$, e.g., uniform individual losses (nothing to do with the coherence of ES).
Progress

1. Background
2. PELVE: A tale of two risk measures
3. Theoretical properties
4. Parametric and heavy tailed distributions
5. Non-parametric estimation
6. Empirical analysis
7. Concluding remarks
Example 6 (Uniform/Exponential/Pareto distributions)

- $X \sim \text{uniform}: \Pi_\epsilon(X) = 2$ for $\epsilon \leq 1/2$.
- $X \sim \text{exponential}: \Pi_\epsilon(X) = e$ for $\epsilon \leq 1/e$.
- $X \sim \text{Pareto}(\alpha), \alpha > 1$ (i.e., $\mathbb{P}(X > x) = x^{-\alpha}, \ x \geq 1$):

\[
\Pi_\epsilon(X) = \left(\frac{\alpha}{\alpha - 1}\right)^\alpha \quad \text{for} \quad \epsilon \leq \left(\frac{\alpha}{\alpha - 1}\right)^{-\alpha}.
\]

- For Pareto(α), $\alpha \mapsto \left(\frac{\alpha}{\alpha - 1}\right)^\alpha$ is decreasing in α and

\[
\Pi_\epsilon(X) \geq \lim_{\alpha \to \infty} \left(\frac{\alpha}{\alpha - 1}\right)^\alpha = e \approx 2.718.
\]

- e is a threshold for heavy and light tails.
Example 7 (Normal/t/log-normal distributions)

\(\Pi_\epsilon \) has no explicit formula. VaR and ES have explicit formulas.

- Normal: \(\approx 2.5 \)
- \(t(\nu) \): > 2.72 for \(\epsilon \approx 0 \) and \(\nu \) not too large
- log-normal: various possibilities
PELVE of parametric models ($\epsilon = 0.01$ if unspecified)

(a) Pareto(α), $\alpha \in [1.5, 50]$

(b) $t(\nu)$, $\epsilon \in (0, 0.2]$

(c) LN(σ^2), $\epsilon \in (0, 0.2]$

(d) $N(\mu, \sigma^2)$, $\epsilon \in (0, 0.2]$

(e) $t(\nu)$, $\nu \in [1.5, 50]$

(f) LN(σ^2), $\sigma^2 \in (0, 2]$
PELVE of regularly varying distributions

A survival function \overline{F} is regularly varying (RV) with a tail index $\alpha > 0$, denoted by $f \in \text{RV}_{-\alpha}$, if

$$
\lim_{x \to \infty} \frac{\overline{F}(tx)}{\overline{F}(x)} = t^{-\alpha}, \quad \text{for all } t > 0.
$$

▶ e.g., Pareto(α), t(α).

Theorem 3

Suppose that the function $\overline{F}(x) = \mathbb{P}(X > x)$ is RV$_{-\alpha}$, $\alpha > 1$. Then

$$
\lim_{\epsilon \downarrow 0} \prod_{\epsilon} \mathbb{P}(X) = \left(\frac{\alpha}{\alpha - 1}\right)^\alpha.
$$
Comparing PELVE and the tail index:

- **Both** location-scale invariant

- **Assumptions**
 - The tail index requires regular variation *(difficult to check!)*
 - PELVE only requires **finite mean**, well defined for bounded rvs

- **Estimation**
 - The tail index needs an **ad-hoc threshold** (e.g., Hill estimator)
 - PELVE needs only ϵ which has a physical meaning

- **Interpretation**
 - The tail index **remains the same** for the average of iid risks
 - PELVE can **reflect diversification** (e.g., CLT)
 - $\Pi_{0.01}$ has a meaning for **banking regulation** ($\text{VaR} \Rightarrow \text{ES}$)
PELVE vs tail index

Proposition 2

Suppose that the function \(F(x) = \mathbb{P}(X > x) \) is \(\text{RV}_{-\alpha} \), \(\alpha > 1 \).

Then, for \(c > 1 \),

\[
\lim_{\epsilon \downarrow 0} \frac{\text{ES}_{1-c\epsilon}(X)}{\text{VaR}_{1-c\epsilon}(X)} = \frac{\alpha}{\alpha - 1} c^{-1/\alpha} = \lim_{\epsilon \downarrow 0} \left(\frac{\Pi_{\epsilon}(X)}{c} \right)^{1/\alpha}.
\]

- In FRTB, \(c = 2.5 \) leads to

\[
R(\alpha) := \frac{\alpha}{\alpha - 1} 2.5^{-1/\alpha} = \lim_{\epsilon \downarrow 0} \left(\frac{\Pi_{\epsilon}(X)}{2.5} \right)^{1/\alpha} > 1
\]

- \(R(\alpha) \approx \text{ES}_{0.975}/\text{VaR}_{0.99} \)

- \(R(8) = 1.02; \ R(4) = 1.06; \ R(2) = 1.26 \)
Progress

1. Background
2. PELVE: A tale of two risk measures
3. Theoretical properties
4. Parametric and heavy tailed distributions
5. Non-parametric estimation
6. Empirical analysis
7. Concluding remarks
Empirical PELVE estimators

Empirical PELVE estimator $\hat{\Pi}_\epsilon(n)$: solve

$$\hat{\text{ES}}_{1-c\epsilon} = \hat{\text{VaR}}_{1-\epsilon} \quad \text{for} \; c \in [1, 1/\epsilon],$$

where $\hat{\text{ES}}$ and $\hat{\text{VaR}}$ are the empirical ES and VaR, respectively

- Let $X[1] \leq \cdots \leq X[n]$ be the order statistics of X_1, \ldots, X_n.

 $\hat{\text{VaR}}_p = X[i] \quad \text{for} \; p \in \left(\frac{i - 1}{n}, \frac{i}{n} \right], \; i = 1, \ldots, n,$

 $$\hat{\text{ES}}_p = \frac{1}{1 - p} \int_p^1 \hat{\text{VaR}}_q \, dq, \quad p \in (0, 1).$$

- Safely assume that c above is unique
Empirical PELVE estimators

Smoothed empirical PELVE estimator $\tilde{\Pi}_\epsilon(n)$:

- $\hat{\ES}_p$ is continuous in p
- $\hat{\VaR}_p$ has jumps
- Quick fix: use $\tilde{\VaR}_p$, the standard linearly interpolated quantile (McNeil-Frey-Embrechts’15, Section 9.2.6)
- Calculate $\tilde{\ES}_p$ based on $\tilde{\VaR}_p$

Assumption 4 (Regularity)

$X \sim F$ has a density function f which is positive and continuous at $F^{-1}(1 - \epsilon)$, and $\mathbb{E}[|X|^{2+\delta}] < \infty$ for some $\delta > 0$.

Ruodu Wang (wang@uwaterloo.ca)
Asymptotic normality

Theorem 4 (Asymptotic normality)

Suppose that \(X, X_1, X_2, \cdots \in L^1 \) are iid, \(\epsilon \in (0, 1) \), and Assumptions 1 and 4 hold. Let \(c = \prod_\epsilon(X) \) and \(\hat{c}_n = \hat{\Pi}(n) \) or \(\tilde{c}_n = \tilde{\Pi}(n) \). Then

\[
\sqrt{n}(\hat{c}_n - c) \xrightarrow{p} \frac{1}{b} \left(\int_q^1 \frac{W(1-t)}{\epsilon f(F^{-1}(t))} \, dt - aW(\epsilon) \right) \sim N(0, \sigma^2),
\]

where \(W \) is a standard Brownian bridge on \([0, 1]\), \(p = 1 - \epsilon \), \(q = 1 - c\epsilon \), \(a = c/f(F^{-1}(p)) \), \(b = F^{-1}(p) - F^{-1}(q) \), and \(\sigma^2 \) can be computed as

\[
\sigma^2 = \frac{1}{b^2} \left(a^2(\epsilon - \epsilon^2) + \frac{2}{\epsilon^2} \int_{F^{-1}(q)}^\infty E_{F(x)}F(x) \, dx - \frac{2a}{\epsilon} E_p + 2a(E_q - b) \right),
\]

where \(E_t = \mathbb{E}[(X - F^{-1}(t))_+] \) for \(t \in (0, 1) \).
Asymptotic normality

Remarks.

- $\sigma^2 \approx O(\epsilon^{-1})$ as $\epsilon \downarrow 0$
 - $\hat{ES}_{1-\epsilon}$ and $\hat{VaR}_{1-\epsilon}$ effectively use $O(n\epsilon)$ data points
- Very small value of $\epsilon \Rightarrow$ large estimation error of Π_ϵ
- Π_ϵ typically stable in $\epsilon \Rightarrow$ no need ϵ too small
- $\tilde{\Pi}_\epsilon(n)$ seems to have a negative bias whereas $\hat{\Pi}_\epsilon(n)$ does not
- Similar results on α-mixing data
 - proof is based on Asimit-Peng-W.-Yu’19 MF
Simulation of PELVE estimators for Pareto(4), $\epsilon = 0.05$

(a) $\hat{\Pi}_\epsilon(n), n = 1000$

(b) $\tilde{\Pi}_\epsilon(n), n = 1000$

(c) $\hat{\Pi}_\epsilon(n), n = 5000$

(d) $\tilde{\Pi}_\epsilon(n), n = 5000$
Data description

- Price data of S&P 500 constituents
- Daily log-losses (log-transform is negligible)
- 01/04/1999 to 05/30/2020 (≈ 21.4 years)
- Empirical estimators based on a moving window of 500 days
- We report sector averages of S&P 500
5% PELVE of log-loss vs linear loss, S&P 500, Jan 01 - May 20
Empirical PELVE, VaR and ES for S&P Sectors

(a) 5% PELVE of S&P 500 Financials

(b) 5% PELVE of S&P 500 IT

(c) VaR and ES of S&P 500 Financials

(d) VaR and ES of S&P 500 IT

Ruodu Wang (wang@uwaterloo.ca)
Empirical PELVE, VaR and ES for S&P Sectors

(a) 5% PELVE of S&P 500 Energy
(b) 5% PELVE of S&P 500 Real Estate
(c) 5% PELVE of S&P 500 Utilities

(d) VaR & ES of S&P 500 Energy
(e) VaR & ES of S&P 500 Real Estate
(f) VaR & ES of S&P 500 Utilities
Empirical PELVE for other S&P Sectors

(a) S&P 500 Consumer Discretionary
(b) S&P 500 Consumer Staples
(c) S&P 500 Communication Services
(d) S&P 500 Materials
(e) S&P 500 Healthy Care
(f) S&P 500 Industrials
Summary of findings

Findings:

▷ Most PELVE are between 2.8 and 3.4 prior to COVID-19 and usually above $e \approx 2.72$ (average $= 2.98$) \Rightarrow Heavy tails
 - Tail index between 3 and 5 (Jansen-De Vries’91 RES, Cont’01 QF) \Rightarrow PELVE between 3.05 and 3.38 for small ϵ

▷ Overall PELVE values are quite stable during the past 20 years except for peaks around the two crises

▷ VaR/ES:
 - IT: dot-com bubble \gg subprime crisis/covid crisis
 - Financials/Real Estate: subprime crisis \gg covid crisis (so far)

▷ PELVE strongly disagrees with VaR/ES
Well-diversified portfolios

1/\(N\) portfolio (DeMiguel-Garlappi-Uppal’09 RFS):

- \(N = 500\) constituents of S&P 500
- Monthly rebalanced
- The constituents of S&P 500 change over time \(\Rightarrow\) two types
 - (a) with replacement, \(N = 500\)
 - (b) without replacement, \(N \downarrow 186\) (May 2020)
- S&P 500 index is a diversified portfolio (with survival bias)
- Jan 1999 to May 2020
5% PELVE of $1/N$ portfolios

(g) $1/N$ portfolio with replacement

(h) $1/N$ portfolio without replacement
Summary of findings

<table>
<thead>
<tr>
<th></th>
<th>average PELVE</th>
<th>average log-return</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P 500</td>
<td>2.75</td>
<td>3.94%</td>
</tr>
<tr>
<td>1/N with repl.</td>
<td>2.72</td>
<td>8.15%</td>
</tr>
<tr>
<td>1/N without repl.</td>
<td>2.74</td>
<td>9.02%</td>
</tr>
</tbody>
</table>

- All curves fluctuate around $e \approx 2.72$
- Well-diversified portfolios have a smaller PELVE, close to e.
- A rough explanation: a well-diversified portfolio is more “Gaussian-like” \Rightarrow its PELVE is closer to Gaussian (≈ 2.5)
- High return and low PELVE of the $1/N$ portfolios
Implications for risk management

Switching from 99% VaR to 97.5% ES
- diversified portfolio ⇒ somewhat fine
- non-diversified portfolio ⇒ significant capital increase

For a well-diversified portfolio X and a non-diversified one Y:
- $\text{VaR}_{0.99}(X) = \text{VaR}_{0.99}(Y) \Rightarrow \text{ES}_{0.975}(X) < \text{ES}_{0.975}(Y)$.

ES rewards portfolio diversification more than the VaR
- Hidden feature: not mentioned by FRTB or previous research
- Subadditivity (coherence) does not imply this
 - elliptical risk factor models
 - time-series models with Gaussian white noise
Progress

1. Background
2. PELVE: A tale of two risk measures
3. Theoretical properties
4. Parametric and heavy tailed distributions
5. Non-parametric estimation
6. Empirical analysis
7. Concluding remarks
Concluding remarks

PELVE in banking regulation

- Motivated by 2019 Basel FRTB
- \(\text{VaR}_{0.99} \Rightarrow \text{ES}_{0.975} \) increases capital for heavy-tailed losses
- Loss distributions in the US equity market are heavy-tailed
- Well-diversified portfolios have lower PELVE

Theory

- Location-scale invariant and quasi-convex/concave
- Monotone in convex transform and in tail index (asymptotically)
- Well defined for all commonly used distributions
- Empirical estimation is standard and simple
Thank you for your kind attention

The manuscript is available at SSRN: 3489566
Comments are welcome
PELVE vs volatility measures

- The average PELVE of S&P 500 constituents
- Left Tail Volatility index (LTV) during the period Jan 2001 to Dec 2017 (Andersen-Todorov-Ubukata’20 JoE)
- CBOE Volatility index (VIX) during the period Jan 2001 to Dec 2018
Appendix

PELVE of average S&P 500 constituents vs LTV and VIX

(i) 5% PELVE vs LTV (Jan 01 - Dec 17)

(j) 5% PELVE vs VIX (Jan 01 - Dec 18)