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Variants of Product Replacement

C. R. Leedham-Green and Scott H. Murray

Abstract. We present new variations on the product replacement method for
generating random elements in a black box group, together with some basic
analysis and conjectures.

1. Introduction

The product replacement algorithm is widely used to construct random ele-
ments in finite groups. In particular, the computational algebra systems GAP and
Magma both used this method until recently (GAP4 now uses the variant rattle
described below). Given a generating set X for a black box group G (ie. a fi-
nite group with a bound on the encoding size of a element), we wish to construct
random elements of G, starting with X and using only multiplication and divi-
sion. The original product replacement algorithm does not produce independent
uniformly distributed elements [CLGM+95, BP99], though it is hard to find prac-
tical examples where this failure can be detected. We are primarily interested in
the practical use of these methods in computational group theory—for an excellent
introduction to the theoretical considerations see [Pak01].

The basic idea behind product replacement is to construct an array of genera-
tors for G, then at each stage multiply a randomly chosen entry in the array by an-
other randomly chosen entry. In particular, this ensures that the random elements
grow exponentially as words in the original generating set. Product replacement
has two defects. Firstly, the limiting distribution of the elements returned is not
uniform (ie. some elements are more likely to be returned than others)—we call
this the global problem. The second weakness is that the elements returned are not
independent—we call this the local problem.

In this paper we describe variants of product replacement which solve the global
problem. This involves an overhead; in the simplest version, described in Section 4,
two multiplications (or divisions) are required to produce each random element
rather than one. In Section 5, we produce a variant that should have a faster
mixing time than rattle when X is large. In Section 6, we describe a variant
of product replacement to generate random elements of a normal subgroup in a
black box group. This variant was used in [LGO97]. A slight modification of this
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gives a method for generating random elements in finite G-modules, as described
in Section 7. We consider the problem of finding random elements of the derived
subgroup or other verbal subgroups in Section 8.

It is intuitively clear that rattle has a mixing time that is no worse than the
original product replacement algorithm, but we have been unable to prove any
results in this direction. Instead we discuss why these algorithms behave so well in
practice, and offer some conjectures that would explain this behaviour in Section 9.

2. Markov chains

The algorithms presented in this paper can be described as Markov chains.
In this section we give some standard terminology and results from the theory of
Markov chains. We consider only finite, homogeneous, discrete time chains. For
more details see, for example, [GS97].

A Markov chain consists of a sequence S(0), S(1), S(2), . . . of random variables
which take values in a finite state space Σ. These variables have the Markov prop-
erty that the probability of S(t + 1) having a given state depends on the state of
S(t) but not on the state of S(u) for u < t. We only consider homogeneous Markov
chains, in which these probabilities are also independent of the time t. The proba-
bility that S(t+ 1) = τ given that S(t) = σ is called a transition probability and is
denoted by pστ . We frequently arrange these probabilities in a transition matrix

P = (pστ )σ,τ∈Σ.

The probability that S(t+ n) = τ given that S(t) = σ is denoted by p(n)
στ , and it is

easily seen that the matrix of these values is just Pn.
Given an initial state σ(0), the probability that S(t) = σ is denoted by πσ(t).

The vector π(t) = (πσ(t))σ∈Σ is called the distribution of the chain at time t.
Clearly π(t+ 1) = π(t)P . We say there is a path from the state σ to the state τ if
there is a chain of states σ = τ(0), τ(1), . . . , τ(n) = τ with pτ(k)τ(k+1) > 0 for all k;
we write σ  τ in this case.

A finite homogeneous Markov chain is ergodic if it satisfies the following prop-
erties

• Irreducibility : for every pair of states σ and τ , there is a path σ  τ .
• Aperiodicity : for every state σ, the lowest common denominator of the

lengths of the paths σ  σ is 1. In other words, starting at σ, there is
no m > 1 such that the chain can only return to σ at times which are
multiples of m.

If a chain is ergodic then it has a unique long-term distribution

π = lim
t→∞

π(t) = lim
t→∞

π(0)Pn

which is independent of the initial state σ(0). In fact, π is the unique vector
with πP = π. If the column sums

∑
τ pστ are all equal to 1, then the uniform

distribution, given by πσ = 1/|Σ|, for all σ ∈ Σ satisfies πP = π and the long-term
distribution is uniform on the state space.

Finally we mention that a chain is called reversible if τ  σ whenever σ  τ .
If a chain is reversible, then we can make it irreducible simply by restricting the
state space to the component of σ(0), i.e. the set Σ0 of states which are connected
to σ(0) by some path.
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3. Product replacement

In this section we review the Markov chain of the product replacement algo-
rithm described in [CLGM+95]. This is the basis of our analysis for the new
algorithms. Let X = {x1, . . . , xs} be a generating set for the finite group G. Let
n > 1 be a fixed integer which is at least as large as s. The state space Σ consists
of all sequences σ = (σ1, . . . , σn) of group elements such that 〈σ1, . . . , σn〉 = G. We
call these the generating arrays of length n. The initial state contains the elements
of X, filled out if necessary with the identity, i.e. σ(0) = (x1, . . . , xs, 1, . . . , 1).

Given distinct integers i and j between 1 and n, we define an operator Tij
which takes σ to the same array except that σi is replaced by σiσj . Clearly Tijσ

is a generating array whenever σ is. It has an inverse Tij−1 which replaces σi by
σiσ
−1
j . The transitions in our Markov chain are as follows: for each of the pairs (i, j)

with i 6= j, we apply Tij with equal probability. Hence the transition probabilities
are

pστ =
#{(i, j) : Tijσ = τ}

n(n− 1)
,

and the column sums are∑
τ∈Σ

pστ =
∑
τ∈Σ

#{(i, j) : Tijσ = τ}
n(n− 1)

=
#{(i, j) : Tijσ ∈ Σ}

n(n− 1)
= 1

The product replacement method works as follows: We start with the initial
state σ(0) and do some preprocessing, which basically means ignoring a certain
number of steps in the chain. Then, for each random element, we take one step in
the chain and return the most recently changed entry in the generating array.

This chain is reversible since Tij−1 = Tij
a−1, where a is the order of σj . Hence

it is irreducible on the set Σ0 of states connected to σ(0). Let m be the smallest
size of a generating set for G and let M be the largest size of a minimal generating
set for G. In [CLGM+95], it was shown that Σ0 = Σ whenever n ≥ m+M . This
bound has been improved in certain cases by [DSC98], [BP99].

We now show that the chain is aperiodic provided n ≥ s + 1. Let σ be any
state in Σ0. Then there is a path σ  σ(0) of length `, say. By reversibility we get
a loop σ  σ(0) σ of length 2`. But σ(0)n = 1, so T1nσ(0) = σ(0) and there is
also a loop σ  σ(0) T1n σ(0)  σ of length 2` + 1. Since gcd(2`, 2` + 1) = 1, we
are done.

Hence this Markov chain converges to the uniform distribution on the con-
nected component Σ0 containing our initial state. However, we are primarily inter-
ested in the distribution of a random element returned by the product replacement
algorithm, which is σi for the appropriate value of i. Hence, in the long-term
distribution, an element g ∈ G is returned with probability

#{(σ, i) : σ ∈ Σ0 and σi = g}
n|Σ0|

.

In [CLGM+95], it was shown that when n ≥ m+M this becomes

#{σ ∈ Σ : σ1 = g}
|Σ|

.
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This distribution can often be shown to be close to uniform—this is proved for large
simple groups in [LS95]. However, [Pak99] has shown that for certain groups it is
very far from uniform. In addition, it is generally difficult to compute m and M ,
even for well known groups.

Note that, in many published versions of this algorithm, one allows multiplica-
tion by σ−1

j as well as σj , or premultiplication as well as postmultiplication. This
does not effect the long term distribution when n ≥ m + M , but its effect on the
rate of convergence is unknown.

4. Rattle

In this section we describe rattle, the most important variant of product replace-
ment. This new method solves the global problem, since the long term distribution
of the elements returned is uniform. Experimental evidence seems to suggest that
it converges at least as quickly as ordinary product replacement.

We use the same notation as in the previous section. Let the state space
Σ′ be the set of all sequences σ = (σ0 |σ1, . . . , σn) of group elements such that
〈σ1, . . . , σn〉 = G. There is no restriction on σ0. The initial state is as in the
previous section with σ0 = 1. We call the subsequence (σ1, . . . .σn) the generating
array, and σ0 the accumulator.

Given integers 1 ≤ i, j, k ≤ n with i 6= j, we define the operator T ′ijk which
replaces σi by σiσj and then replaces σ0 by σ0σk. At each step in the Markov chain,
one of these operators is applied with equal probability. We return the accumulator
as our random element.

Since T ′ijk has the same effect on the generating array as Tij from the previous
section, all the results of that section apply to the generating array. Let Σ′0 be the
component of the initial state, so clearly the limiting distribution is uniform on Σ′0.
In order to show that the random elements returned have a uniform limiting distri-
bution, it suffices to prove that if (g | g1, . . . , gn) is in Σ′0 then so is (h | g1, . . . , gn)
for every h in G. Now (g | g1, . . . , gn) ∈ Σ′0 means precisely that

σ0 = (1 |x1, . . . , xs, 1, . . . , 1) (g | g1, . . . , gn).

It is easily seen that the same series of operators gives us

(hg−1 |x1, . . . , xs, 1, . . . , 1) (h | g1, . . . , gn).

And finally σ0 is connected to (hg−1 |x1, . . . , xs, 1, . . . , 1) by using operators of the
form Tinj , which preserve everything to the left of the bar. Note that we do not
require that Σ′ be connected for this argument, so we no longer need the assumption
that n ≥ m+M .

5. Accelerators

Suppose we are doing product replacement with generating arrays of size n. Igor
Pak (personal communication) has shown that the rate of convergence is polynomial
in log |G| and n. In this section we describe a modification of the basic product
replacement algorithm which may improve the rate of convergence when n is large.

We take the same state space, and the same initial state, as in product re-
placement. The operations Sij for i, j > 1 are defined by Sij = Ti1T1j , where T
is as defined for product replacement. Note that we operate on the 1st entry of
the array at every step. This entry is called the accelerator. In order to avoid the
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global problem, we should also have an accumulator. In either case it is easy to see
that this defines a reversible ergodic Markov chain with column sums equal to 1.

A crude analysis suggests that if we carry out product replacement in a group
that is freely generated by the initial entries of Σ then the average length of the
words in the array grows exponentially, the basis of the exponent being 1 + 1/n.
If we suppose that mixing time in a finite group is approximately proportional to
the time taken for the average length of the elements as words in X to reach a
certain size (depending on G), then this gives a convergence rate that is O(n) for
a fixed G. This bound could become inconveniently large in practice. A similar
analysis suggests that the use of an accelerator reduces the mixing time to O(

√
n).

This would be useful in the case where we are unable to find a small generating
set for our group, a situation that is particularly common for abelian and nilpotent
groups.

6. Normal Subgroups

We now show how to adapt rattle to find random elements of normal subgroups.
That is to say, the input now consists of a generating set X for the group G,
and a subset Y of G that generates N as a normal subgroup of G. The ideas
in this section were used in [LGO97]. The state space is now the set of arrays
(σ0 |σ1, . . . , σm |σ′1, . . . , σ′n), where σi ∈ N and σ′a ∈ G for all 0 ≤ i ≤ m, 1 ≤ a ≤ n.
Initially σ0 = 1, the N -generating array (σ1, . . . , σm) consists of the elements of Y
followed by a sequence of 1’s, and the G-generating array (σ′1, . . . , σ

′
n) consists of

the elements of X followed by a sequence of 1’s. The basic operation Tijkabc, where
1 ≤ i, j, k ≤ m and 1 ≤ a, b, c ≤ n and i 6= j and a 6= b, is defined by

σ′i := σ′iσ
′
j , σa := σaσ

σ′k
b , σ0 := σ0σc.

The arguments of Sections 3 and 4 can be modified to show that the chain
is ergodic on the connected component of the initial state and also reversible. So
to prove that the limiting distribution of σ0 is uniform on N it suffices to show
that, for every u ∈ N , a sequence of operations can be found that starts with the
initial state, and replaces σ0 = 1 by u while leaving the N - and G-generating arrays
unchanged. In ordert to acheive this we assume that m ≥ #Y +2 and n ≥ #X+1,
so initially σm−1 = σm = 1 and σ′n = 1. Now let u = uv1

1 . . . uvkk , where each ui ∈ Y
and each vi ∈ X. We will only consider moves Tijkabc in which j = n, so that the
G-generating array is not changed. Now a sequence of operations with a = m − 1
and c = m can be found that replaces σm by u, but changes nothing else. Taking
b = m and c = m− 1 then replaces σ0 by u and changes nothing else. Now chosing
a = m − 1 and c = m, again a sequence of operations can be found that returns
σ′m−1 to its original value of 1 while changing nothing else.

7. Group modules

A trivial modification of the algorithm of Section 6 returns random elements of
a finite dimensional FG-module V , where F is a finite field. Here V plays the role
of N in the previous section, so the basic move now becomes Tijkabcγ , defined by

σ′i := σ′iσ
′
j , σa := σa + γσbσ

′
k, σ0 := σ0 + σc,

where γ is a random element of F .
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8. Derived and other verbal subgroups

IfG is given as 〈X〉, for a small setX, then there is no problem constructing ran-
dom elements of the derived group G′ of G by applying the algorithm of Section 6,
since G′ is generated as a normal subgroup by the commutators of pairs of elements
of X. However, if X is large, this might be inefficient. Thus one might get much
faster convergence by constructing the elements gn = [a1, a2][a3, a4] . . . [a2n−1, a2n],
where the ai are successive elements returned bu product replacement, or by rat-
tle. Of course there are countless variations that might be tried. For example, one
might get faster convergence by defining gn = [a1, a2]a3 . . . [a3n−2, a3n−1]a3n . Simi-
lar issues arise more acutely with the verbal subgroups arising from more complex
laws; a search for random elements of verbal subgroups in a practical setting is
discussed in [LGO97].

9. Conjectures

The conjectures in this section are motivated by a desire to understand the
good behaviour of rattle.

Rattle can be regarded as defining a random walk on the set Σ of (n+1)-tuples
in G, the first component of which is the accumulator. We take G and n to be
given.

Conjecture 1. Let S ⊆ G be any subset of G. Let

c = max(|G|/|S|, |G|/|G \ S|).

Let V be the set of vertices in Σ that lie within a distance of 10 + logn(c) of v.
Then for most v in Σ the proportion p of vertices in V whose accumulators lie in
S satisfies

1
2
− |S|

2|G|
> p >

|S|
2|G|

.

The truth of this conjecture would imply that searching for elements of S,
starting from a random initial configuration, would be about as successful as one
would expect from a random search with an independent uniformly distributed
sample. The appearance of 10 is simply to avoid edge effects when c is small.
The contribution of logn(c) is to ensure that one would expect, with a uniform
distribution, that there should be a reasonably large number of elements of V
whose accumulators lie in S, and similarly for G \ S.

This conjecture on its own is not sufficient to justify the use of rattle, as we do
not start from a random configuration. This is not a purely theoretical observation:
the need to carry out a number of preprocessing steps is clearly needed in many
practical situations.

Let us call a vertex v that satisfies conjecture 1 virtuous; a property that
depends on S. To justify rattle one needs to prove a conjecture along the following
lines.

Conjecture 2. Let d > n log n log |G|. Then every vertex v in Σ has the
property that most random walks on Σ of length d starting at v end in a virtuous
vertex.

This conjecture is marred by the appearance of the word ‘most’. Clearly the
proportion of random walks of length d starting at v and ending at a virtuous vertex
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cannot tend to 0 as d tends to infinity, unless all vertices are virtuous, so it is hard
to make a convincing guess at what should replace ‘most’.

The factor of n log n is inserted into the bound for d to allow every member of
the generating array to be changed an appropriate number of times. The factor of
log |G| arises from more interesting considerations. Define the diameter of a finite
group G to be the largest integer d such that G has a generating set X, and, for
some g ∈ G, it is possible to construct g from X in d multiplications, but not in
fewer. Thus if G is cyclic then the diameter of G is approximately 2 log2 |G|. The
factor log |G| in the above conjecture is an estimate of the diameter of G.

This brings us to the next conjecture.
Conjecture 3. Every finite group G has diameter at most 2 log2 |G|.
It is easy enough to provide evidence for this conjecture. Thus an explicit

recognition algorithm for a group G enables one to write an arbitrary element g
of G as a straight line program on an arbitrary generating set X for G; that is
to say, g will be constructed from X by a given sequence of multiplications and
divisions. Allowing divisions as well as multiplications is, in the absence of better
evidence than we can provide, a mere bagatelle. These straight line programs are
generally expected to have length around log |G|. Although such algorithms pro-
duce evidence, and may well prove specific instances of the conjecture when X and
g as well as G are specified, they do not provide much help with constructing a
proof, since they need product replacement or rattle to provide random elements of
G. The strategy used in these algorithms consists of two steps. First one finds, by
probabilistic means, a canonical generating set for G in terms of X, and then con-
structs g deterministically from the canonical generating set. Thus the crucial part
of proving the above conjecture, at least for a given G, is to bound the probabilistic
part of the algorithm. By way of an example, suppose that G is the symmetric
group Su for some u. Then one could find, by random search, an element g that is
a product of disjoint cycles, one a transposition, the others of odd length. Power-
ing g gives rise to a transposition t. An n-cycle h can also be found by a random
search. Replacing g or t by suitable conjugates, and replacing g by a suitable power
of itself, one soon reduces to the case where we may assume that g = (1, 2, . . . , u),
and t = (1, 2). Now one can deterministically construct any element of G from g
and t in O(u log u) multiplications. The main remaining problem is to bound the
number of multiplications needed to find g and h.

Simplifying this problem, we ask: find a good bound (in terms of u) to the
number of multiplications that may be required to obtain an element of Su of even
order from an arbitrary generating set X of G.

It is possible that there is a universal bound to this number, independent of u.
However, by estimating the number of conjugacy classes of generating pairs for Su,
the number of elements of Su that can be constructed from a given generating pair
in a small number of multiplications, and the proportion of elements of Su of even
order, one arrives at the following conjecture.

Conjecture 4. Let e(u) be the largest integer such that Su has a generating set
X with the property that e(u) multiplications are required to construct an element
of even order from X. Then e(u) = O(log u).

If this conjecture is approximately correct then, if G = Su for big enough u,
there are points in Σ that are not virtuous with respect to being of even order.
Note that log(u) = O(log log |G|).
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Note that the proportion of elements of Su of odd order is known exactly; see
for example [Cam94], p72, Exercise 20. The above heuristics in fact suggest that
e(u)! ∼ 2

√
u.

10. Conclusion

It appears that the good behaviour of product replacement and its variants
may be connected to a number of elementary and plausible conjectures which may
be very hard to prove. It is instructive to compare the use of these algorithms to
find elements of the finite group G as straight line programs in a given generating
set X with the methods used in the matrix recognition project [LG01] to express a
given element of G in this form. The method used in matrix recognition is to find a
composition series for G, and use specialist algorithms for the simple components.
While [Pak99] has shown that product replacement behaves badly when G is, for
example, the direct product of a large number of copies of the alternating group
A5, this objection does not apply to rattle; and it seems quite plausible to suppose
that the performance of rattle is to some extent determined by its performance on
the composition factors of G.
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