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Reflection Groups
• Roots:  

• Reflections:  

• Co-roots: 

• Weights:  
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Translation by longest root2

Figure 3. hexagons
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Discrete Dynamics III

• Translation as reflection + diagram automorphism
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Discrete Dynamics IV

Define

Noting that
T1(a0) = a0 + 1, T1(a1) = a1 � 1, T1(a2) = a2

)
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(
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un



Discrete Dynamics IV

Define

Noting that
T1(a0) = a0 + 1, T1(a1) = a1 � 1, T1(a2) = a2

)

These are discrete Painlevé equations.
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What does this have to do with applied 
mathematics? 



Dynamical Systems
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Another View

f(t) = eiu(t)
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The trajectories all go through the origin.       



Two Problems

• The trajectories are indistinguishable as they 
pass through the origin.     

• The phase space is no longer compact; 
Liouville’s theorem* does not necessarily hold. 

• These properties are shared by many nonlinear 
mathematical models.

* Liouville’s thm gives the solution by quadratures. 



Elliptic Functions

• Doubly-periodic, meromorphic functions

dlmf.nist.gov



ẅ = 6w2 � g2
2

)

w(t) = }
�
t� t0; g2, g3

�
)

ẇ2

2
= 2w3 � g2

2
w � g3

2

The phase space coordinatised by             
is not compact, due to poles.

Elliptic Functions in phase space

(w, ẇ)



• In phase space,                      the conserved 
quantity becomes

Elliptic Functions        
parametrize curves

• Initial values determine 

• Each value of      defines a level curve of

ẇ = y, w = x,

y

2 = 4x3 � g2 x� g3

g3

f(x, y) = y

2 � 4x3 + g2 x

g3



Cubic Pencil
A Weierstrass cubic pencil:
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The first Painlevé equation



Applications
• Electrical structures of 

interfaces in steady 
electrolysis L. Bass, Trans Faraday 
Soc 60 (1964)1656–1663 

• Spin-spin correlation functions 
for the 2D Ising model TT Wu, 
BM McCoy, CA Tracy, E Barouch Phys 
Rev B13 (1976) 316–374 

• Spherical electric probe in a 
continuum gas PCT de Boer, GSS 
Ludford, Plasma Phys 17 (1975) 29–41 

• Cylindrical Waves in General 
Relativity S Chandrashekar,  Proc. R. 
Soc. Lond. A  408  (1986)  209–232   

• Non-perturbative 2D quantum 
gravity Gross & Migdal PRL 64(1990) 
127-130 

• Orthogonal polynomials with 
non-classical weight function  
AP Magnus J. Comput Appl. Anal. 57 
(1995) 215–237 

• Level spacing distributions 
and the Airy kernel CA Tracy, H 
Widom CMP 159 (1994) 151–174 

• Spatially dependent 
ecological models: J & Morrison 
Anal Appl 6 (2008) 371-381  

• Gradient catastrophe in fluids: 
Dubrovin, Grava & Klein J. Nonlin. Sci 
19 (2009) 57-94 



What do we know about the 
solutions of these 

equations?



Real Solutions
Consider PI                          for

Real Solutions of PI : y ⇥⇥ = 6y2 � x

I �± = {(x , y)
�� x > 0, y = ±

⇥
x/6} are inflection curves.

0.5 1 1.5 2 2.5 3 3.5

-1

-0.5

0.5

1

wtt = 6w2 � t w(t), t 2 R



Complex 
Solutions

• Movable poles
• Transcendentality of 

general solutions
• Special solutions
• Asymptotic behaviours

F"#. 4.7. Pole locations displayed over the region [-50,50]x[-50,50] for six different choices of
initial conditions at z = 0. For the tritronquée case (subplot f ), see (4.1) for the values of u(0) and
u′(0).

15

PI

Fornberg & Weideman 2009



General Solutions
• PI:  

• in system form 

• has t-dependent Hamiltonian

d

dt

✓
w1

w2

◆
=

✓
w2

6w2
1 � t

◆

H =
w2

2

2
� 2w3

1 + t w1

wtt = 6w2 � t



Perturbed Form
• Or, in Boutroux’s coordinates:

• a perturbation of an elliptic curve as |z| ! 1

E =
u2
2

2
� 2u3

1 + u1 ) dE

dz
=

1

5z
(6E + 4u1)

w1 = t1/2 u1(z), w2 = t3/4u2(z), z =
4

5
t5/4

✓
u̇1

u̇2

◆
=

✓
u2

6u2
1 � 1

◆
� 1

5z

✓
2u1

3u2

◆
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Similarly

• PII: 

• PIV: 

have system forms that are perturbations 
of autonomous systems in the limit  

wtt = 2w3 + tw + ↵

wtt =
wt

2

2w
+

3w3

2
+ 4tw2

+ 2(t2 � 1 + ↵1 + 2↵2)w � 2↵2
1

w

|t| ! 1



• Use projective geometry: 

Projective Space

• What if x, y become unbounded?

x =
u

w

, y =
v

w

[x, y, 1] = [u, v, w] 2 CP2

• The level curves of       are now 

  all intersecting at the base point [0, 1, 0]. 

To describe solutions, resolve the flow through this point

PI

FI = wv2 � 4u3 + g2uw
2 + g3w

3

)



Resolving a base pt
Blowing up at a base point

Figure 4.2.1: Real blowing up: a Möbius strip

106 Copyright Springer-Verlag 2009. No distribution is allowed. Any violation will be prosecuted.

From JJ Duistermaat QRT Maps and Elliptic Surfaces, Springer Verlag, 2010.

From JJ Duistermaat, QRT Maps and Elliptic Surfaces, Springer Verlag, 2010



Resolution
• “Blow up” the singularity or base point:

f(x, y) = y

2 � x

3

(x, y) = (x1, x1 y1)

)x

2
1 y

2
1 � x

3
1 = 0

,x

2
1 (y

2
1 � x1) = 0

x1 = x, y1 = y/x

• Note that 



Methody

2 = x

3

y

2
1 = x1

(x, y) = (x1, x1 y1)

f(x, y) = y

2 � x

3

f(x1, x1 y1) = x

2
1(y

2
1 � x1)

f1(x1, y1) = y

2
1 � x1

�1L1 :



y2 = x2

y3 = 1

(x1, y1) = (x2 y2, y2)

(x2, y2) = (x3, x3 y3)

f1(x2 y2, y2) = y2(y2 � x2)

f2(x2, y2) = y2 � x2

f2(x3, x3 y3) = x3(y3 � 1)

�1

�2

�2

�2

L2 :

L(1)
1 :

L(2)
1 :

L(1)
2 :

�1L3 :



Initial-Value Space

L1 : x1 = 0

L2 : y2 = 0

L3 : x3 = 0

L1
(3)

L2
(2)

L3

Now the space is compactified and regularised. 

�2

�2

�1



Initial-Value Space

L1 : x1 = 0

L2 : y2 = 0

L3 : x3 = 0

L1
(3)

L2
(2)

L3

A1
(1)

Now the space is compactified and regularised. 

The Mackay correspondence
�2

�2

�1



Good Resolution

• When all curves intersect each other 
transversally at distinct points, the result is 
called a “good resolution”. 

• Hironaka’s theorem guarantees this in 
complex projective space. 

• Note: each transformation had the form

x1 = x, y1 = y/x



Unifying 
Property 

The space of initial values of 
a Painlevé system is 

resolved by “blowing up” 9 
points in CP2  

(or 8 points in P1xP1)
Okamoto 1979
Sakai 2001



Initial-Value Space of PI

• There are nine base points:

• Only the last one differs from the elliptic case.

b0 : u031 = 0, u032 = 0

b1 : u111 = 0, u112 = 0

b2 : u211 = 0, u212 = 0

b3 : u311 = 4, u312 = 0

b4 : u411 = 4, u412 = 0

b5 : u511 = 0, u512 = 0

b6 : u611 = 0, u612 = 0

b7 : u711 = 32, u712 = 0

b8 : u811 = � 28

(5 z)
, u812 = 0
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PII28 Constr Approx (2014) 39:11–41

Fig. 1 The 9-point blow up of P2(C) showing the configuration of the exceptional curves. The numbers
represent the self intersection of the lines they are adjacent to. The configuration of the irreducible divisors
(the infinity set) is that of the root lattice E

(1)
7 (see Fig. 2). The dashed lines indicating L

(3)
6 and L9 are

the pole lines, where the vector field is transversal to the line and a crossing indicates a pole of residue ±1
for u

Fig. 2 The Dynkin diagram for E
(1)
7 ; the numbers i indicate the line Li which gives rise to the node. The

nodes j and k are connected when L
(9−j)
j intersects L

(9−k)
k

The resolution of the Boutroux-Painlevé system can be seen in Fig. 1, and can be
summarized by the following diagram, where we omit the coordinate charts which
are free from base points:

(u02, v02) = (u/v,1/v)
(0,0)←−− (u12, v12)

(0,0)←−− (u21, v21)

(1/2,0)←−−−− (u31, v31)
(0,0)←−− (u41, v41)

(−1/4,0)←−−−−− (u51, v51)

( 1−2α
12z ,0)

←−−−−− (u61, v61),

(u01, v01) = (1/u, v/u)
(0,0)←−− (u72, v72)

(0,0)←−− (u82, v82)
(0, 1+2α

3z )
←−−−−− (u91, v91).

Here the label above each arrow represents the base point that is blown up in the
preceding coordinate chart.

Remark A.1 The following blow up calculations are provided in explicit detail for
completeness. The essential information for proofs in the body of the paper can be
found in Eqs. (5.1) and Table 1.

Author's personal copy

Howes & Joshi, 2014
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(1)
7 ; the numbers i indicate the line Li which gives rise to the node. The

nodes j and k are connected when L
(9−j)
j intersects L

(9−k)
k

The resolution of the Boutroux-Painlevé system can be seen in Fig. 1, and can be
summarized by the following diagram, where we omit the coordinate charts which
are free from base points:

(u02, v02) = (u/v,1/v)
(0,0)←−− (u12, v12)

(0,0)←−− (u21, v21)

(1/2,0)←−−−− (u31, v31)
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3z )
←−−−−− (u91, v91).

Here the label above each arrow represents the base point that is blown up in the
preceding coordinate chart.

Remark A.1 The following blow up calculations are provided in explicit detail for
completeness. The essential information for proofs in the body of the paper can be
found in Eqs. (5.1) and Table 1.
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PIV

ASYMPTOTIC BEHAVIOUR OF THE FOURTH PAINLEVÉ TRANSCENDENTS 3

For each z ̸= 0, and each (u0, v0) ∈ C2, there is a unique solution of (2.2) with
the initial conditions u(z0) = u0, v(z0) = v0. Since the solutions will have poles as
well, it is natural to consider the solutions as maps C → CP2. However, in this
setting, points in CP2 where infinitely many solutions pass for any given z0 ̸= 0
appear. Such points are called base points.

For our consideration, we need to construct the space of initial conditions [Gér1975],
where graph of each solutions will represent a separate leaf of the foliation. The
spaces of initial conditions for all six Painlevé equations are constructed by Okamoto
in [Oka1979]. The solutions are separated by blowing up the singular points.

In this paper, we apply the same construction to (2.2). The calculation details
can be found in Appendix A, and now we describe the main steps in that resolution
process.

Resolution of singularities. System (2.2) has no singularities in the affine part
of CP2. However, at the line L0 at the infinity, as it is calculated in Appendix A.1,
the system has three base points: b0, b1, b2, whose coordinates do not depend on z.

In the next step, we construct blow ups at points b0, b1, b2. In the resulting space,
we obtain three exceptional lines which we denote by L1, L2, L3 respectively. The
induced flow will have one base point on each of these lines, denote them by b3,
b4, b5 respectively. Their coordinated so not depend on z. See Appendix A.2 for
details.

Next, blow ups at points b3, b4, b5 are constructed. The corresponding excep-
tional lines are L4, L5, L6. On each of these three lines, there is a base point of
the flow. We denote them by b6, b7, b8. The coordinates of these points depend
on z and they approach to the base points of the autonomous flow as z → ∞. See
Appendix A.3 for details.

Finally, blow ups at b6, b7, b8 leave the flow without the base points. The
exceptional lines are denoted by L7(z), L8(z), L9(z).

By this procedure, we constructed the fibers F(z), z ∈ C ∪ {∞} \ {0} of the
Okamoto space O for the system (2.2), see Figure 1. We denote by L∗

i the proper
preimages of the lines Li, 0 ≤ i ≤ 6.

L∗
0

L∗
1 L∗

2 L∗
3

L∗
4

L7(z)

L∗
5

L8(z)

L∗
6

L9(z)

Figure 1. Fiber F(z) of the Okamoto space.

The set where the vector field associated to (2.1) is infinite is I = L∗
0 ∪ · · ·∪L∗

6.

The autonomous system. The fiber F(∞) of the Okamoto space will correspond
to the system obtained by omitting the z-dependent terms in (2.2):

(2.3)
u′ = −u(u+ 2v + 2),

v′ = v(2u+ v + 2),

Joshi & Radnovic, 2015
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(11.17) eq:dp2-1

where � = a
0

+ a
1

, with s being a constant. Equation (11.17) arises from Bäcklund
transformations of PII as a recurrence relation.

The list above is not exhaustive. There are more q-discrete and d-discrete equations in
Sakai’s classification, which have not been included due to space constraints. Figure 11.1
provides a summary of the classification, with solid lines denoting inclusion in the group
at the end of each respective line and dashed lines indicating different parametrisations of
translations. The master equation at the top of the classification corresponds to the rational
surface A(1)

0

and is reproduced in §11.8.
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Figure 11.1 Sakai’s Diagram of Rational Surfaces of Discrete Painlevé Equations. Note that the ab-
breviations Ell, Mul, Add refer to the three different types of discrete Painlevé equations as explained
at the beginning of the chapter. F:sakai’s diagram

The continuum limits of many systems such as the system given by Equations (11.77) are
not known and, therefore, the corresponding system is not labelled as a discrete version of a
specific Painlevé equation. Nevertheless they are members of in the collection of equations
known as “discrete Painlevé equations” because of their common geometric properties.

In Sections 11.6.3, 11.7 and 11.8, we will see explicit ways of constructing special solu-
tions of several discrete Painlevé equations. It has been proved that the general solutions of
the A(1)

7

q-discrete first Painlevé equation (11.19) (see
nishioka2010transcendence
[270]) cannot be expressed in terms

of finite combinations of earlier known functions (including through solutions of linear
difference equations with such functions as coefficients). Although such a proof is not yet
available for other discrete Painlevé equations, their general solutions are believed to pro-
vide new transcendental functions, like the solutions of the continuous Painlevé equations.

Their transcendentality makes it difficult to provide explicit formulas that describe gen-
eral solutions of discrete Painlevé equations, except in asymptotic limits. Asymptotic be-
haviours have been studied for two cases when the independent variable approaches infin-
ity, i.e., for solutions of Equations (11.1) and (11.21). For the additive-type equation (11.1),
it is known that the scaled solutions wn =

p

nun
joshi1997local,vereschagin1996asymptotics,joshi2015stokes
[179, 361, 181] are either asymptotic to

Sakai’s Description I

Initial-value spaces of all continuous and 
discrete Painlevé equations

Sakai 2001



Global results for PI , PII , PIV

• The union of exceptional lines is a repeller for the flow. 

• There exists a complex limit set, which is non-empty, 
connected and compact. 

• Every solution of PI , every solution of PII whose limit 
set is not {0}, and every non-rational solution of PIV 
intersects the last exceptional line(s) infinitely many 
times => infinite number of movable poles and 
movable zeroes.

Duistermaat & J (2011); Howes & J (2014); J & Radnovic (2014)
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Algebraic geometry of Painlevé equations 2.3. Picard group
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FIGURE 2.1. The blow up of (2.7), displaying the 4 charts

of P1⇥P1 and the proper transforms of some relevant curves

on the rational surface X .

(u, 1/v) = (0, 0)1  (uv, 1/v) = (2↵n + � + c, 0)2 (2.48)

(1/u, 1/u) = (0, 0)3  (u/v, 1/v) = (�1, 0)4  (v(u + v)/u, 1/v) = (��, 0)6

(2.49)

 (v(�u + uv + v2)/v, 1/v) = (��2 � ↵ + 2c, 0)8

(2.50)

(1/u, v) = (0, 0)5  (1/uv, v) = (1/(2↵n� ↵ + � � c), 0)8 , (2.51)

Where the subscripts of the brackets indicate the number of the base point. The

blow up is summarised in Figure 2.1.

We now consider the induced map on the basis elements of the Picard group.

The advantage of considering the induced mapping on the Picard group is that it

becomes a linear mapping. We must determine how each e
i

, as well as h
u

and h
v

,

are mapped. The most direct way is to work with the each e
i

and a representative

of each h
u

and h
v

. We can take the images of these curves and compute the degree

of the resulting image (thus finding the coefficients of h
u

and h
v

of the image) and

35
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(u, 1/v) = (0, 0)1  (uv, 1/v) = (2↵n + � + c, 0)2 (2.48)

(1/u, 1/u) = (0, 0)3  (u/v, 1/v) = (�1, 0)4  (v(u + v)/u, 1/v) = (��, 0)6

(2.49)

 (v(�u + uv + v2)/v, 1/v) = (��2 � ↵ + 2c, 0)8

(2.50)

(1/u, v) = (0, 0)5  (1/uv, v) = (1/(2↵n� ↵ + � � c), 0)8 , (2.51)

Where the subscripts of the brackets indicate the number of the base point. The

blow up is summarised in Figure 2.1.

We now consider the induced map on the basis elements of the Picard group.

The advantage of considering the induced mapping on the Picard group is that it

becomes a linear mapping. We must determine how each e
i

, as well as h
u

and h
v

,

are mapped. The most direct way is to work with the each e
i

and a representative

of each h
u

and h
v

. We can take the images of these curves and compute the degree

of the resulting image (thus finding the coefficients of h
u

and h
v

of the image) and
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Summary

• New mathematical models of physics pose new 
questions for applied mathematics 

• Global dynamics of solutions of non-linear 
equations, whether they are differential or discrete, 
can be found through geometry. 

• Geometry provides the only analytic approach 
available in      for discrete equations.  

• Tantalising questions about finite properties of 
solutions remain open.

C



The mathematician's pattern's, like those of the painter's or the poet's, must be 
beautiful, the ideas, like the colours or the words, must fit together in a 
harmonious way. GH Hardy, A Mathematician’s Apology, 1940


