When Applied Mathematics Collided with Algebra
 Nalini Joshi

A Reflection

A Reflection

A Reflection

A Reflection

$$
\begin{aligned}
& \alpha_{2} \\
& \begin{aligned}
w_{1}\left(\alpha_{2}\right) & =\alpha_{2}-2 \frac{\left(\alpha_{1}, \alpha_{2}\right)}{\left(\alpha_{1}, \alpha_{1}\right)} \alpha_{1} \\
& =(-1, \sqrt{3})+(2,0) \\
& =(1, \sqrt{3})
\end{aligned}
\end{aligned}
$$

Root System

α_{1} and α_{2} are "simple" roots

Root System

α_{1} and α_{2} are "simple" roots

Root System

α_{1} and α_{2} are "simple" roots

Root System

α_{1} and α_{2} are "simple" roots

Root System

α_{1} and α_{2} are "simple" roots

Root System

α_{1} and α_{2} are "simple" roots

Root System

α_{1} and α_{2} are "simple" roots

Root System

α_{1} and α_{2} are "simple" roots

Reflection Groups

- Roots:

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}
$$

-Reflections: $w_{i}\left(\alpha_{j}\right)=\alpha_{j}-2 \frac{\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)} \alpha_{i}$

- Co-roots: $\quad \check{\alpha}_{i}=2 \frac{\alpha_{i}}{\left(\alpha_{i}, \alpha_{i}\right)}$
- Weights: $h_{1}, h_{2}, \ldots, h_{n}$

$$
\left(h_{i}, \check{\alpha}_{i}\right)=\delta_{i j}
$$

A_{2}

A_{2}

A_{2}

A_{2}

longest root

A_{2}
longest root

Translation by longest root

$\mathrm{A}_{2}{ }^{(1)}$

On the Lattice

$$
\begin{gathered}
\widetilde{\mathcal{W}}\left(A_{2}^{(1)}\right)=\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle \\
s_{j}^{2}=1,\left(s_{j} s_{j+1}\right)^{3}=1, \quad(j=0,1,2) \\
\pi^{3}=1, \pi s_{j}=s_{j+1} \pi
\end{gathered}
$$

$$
s_{0}\left(a_{0}, a_{1}, a_{2}\right)=\left(-a_{0}, a_{1}+a_{0}, a_{2}+a_{0}\right)
$$

On the Lattice

$$
\begin{gathered}
\widetilde{\mathcal{W}}\left(A_{2}^{(1)}\right)=\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle \\
s_{j}^{2}=1,\left(s_{j} s_{j+1}\right)^{3}=1, \quad(j=0,1,2) \\
\pi^{3}=1, \pi s_{j}=s_{j+1} \pi
\end{gathered}
$$

$$
a_{2}=0
$$

$$
s_{0}\left(a_{0}, a_{1}, a_{2}\right)=\left(-a_{0}, a_{1}+a_{0}, a_{2}+a_{0}\right)
$$

On the Lattice

$$
\begin{gathered}
\widetilde{\mathcal{W}}\left(A_{2}^{(1)}\right)=\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle \\
s_{j}^{2}=1,\left(s_{j} s_{j+1}\right)^{3}=1, \quad(j=0,1,2) \\
\pi^{3}=1, \pi s_{j}=s_{j+1} \pi
\end{gathered}
$$

$$
a_{2}=0
$$

$$
s_{0}\left(a_{0}, a_{1}, a_{2}\right)=\left(-a_{0}, a_{1}+a_{0}, a_{2}+a_{0}\right)
$$

On the Lattice

$$
\begin{aligned}
& \widetilde{\mathcal{W}}\left(A_{2}^{(1)}\right)=\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle \\
& s_{j}^{2}=1, \quad\left(s_{j} s_{j+1}\right)^{3}=1, \quad(j=0,1,2) \\
& \pi^{3}=1, \pi s_{j}=s_{j+1} \pi
\end{aligned}
$$

$$
a_{2}=0
$$

$$
s_{0}\left(a_{0}, a_{1}, a_{2}\right)=\left(-a_{0}, a_{1}+a_{0}, a_{2}+a_{0}\right)
$$

On the Lattice

$$
\begin{gathered}
\widetilde{\mathcal{W}}\left(A_{2}^{(1)}\right)=\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle \\
s_{j}^{2}=1, \quad\left(s_{j} s_{j+1}\right)^{3}=1, \quad(j=0,1,2) \\
\pi^{3}=1, \pi s_{j}=s_{j+1} \pi
\end{gathered}
$$

$$
s_{0}\left(a_{0}, a_{1}, a_{2}\right)=\left(-a_{0}, a_{1}+a_{0}, a_{2}+a_{0}\right)
$$

On the Lattice

$$
\begin{gathered}
\widetilde{\mathcal{W}}\left(A_{2}^{(1)}\right)=\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle \\
s_{j}^{2}=1, \quad\left(s_{j} s_{j+1}\right)^{3}=1, \quad(j=0,1,2) \\
\pi^{3}=1, \pi s_{j}=s_{j+1} \pi
\end{gathered}
$$

$$
s_{0}\left(a_{0}, a_{1}, a_{2}\right)=\left(-a_{0}, a_{1}+a_{0}, a_{2}+a_{0}\right)
$$

Cremona Isometries

	a_{0}	a_{1}	a_{2}	f_{0}	f_{1}	f_{2}
s_{0}	$-a_{0}$	$a_{1}+a_{0}$	$a_{2}+a_{0}$	f_{0}	$f_{1}+\frac{a_{0}}{f_{0}}$	$f_{2}-\frac{a_{0}}{f_{0}}$
s_{1}	$a_{0}+a_{1}$	$-a_{1}$	$a_{2}+a_{1}$	$f_{0}-\frac{a_{1}}{f_{1}}$	f_{1}	$f_{2}-\frac{a_{1}}{f_{1}}$
s_{2}	$a_{0}+a_{2}$	$a_{1}+a_{2}$	$-a_{2}$	$f_{0}+\frac{a_{2}}{f_{2}}$	$f_{1}-\frac{a_{2}}{f_{1}}$	f_{2}

Cremona Isometries

s_{0}	$-a_{0}$	a_{1}	$a_{2}+a_{0}$	$a_{2}+a_{0}$	f_{0}	f_{1}

Discrete Dynamics I

- Translation

Discrete Dynamics II

- Translation as reflections ?

Discrete Dynamics II

- Translation as reflections ?

Discrete Dynamics II

- Translation as reflections ?

Discrete Dynamics III

- Translation as reflection + diagram automorphism

$$
I=\pi^{-1} s_{2} s_{0} T_{1} \text { where } \pi^{3}=1 \Rightarrow T_{1}=\pi s_{2} s_{1}
$$

Discrete Dynamics III

- Translation as reflection + diagram automorphism

$$
I=\pi^{-1} s_{2} s_{0} T_{1} \text { where } \pi^{3}=1 \Rightarrow T_{1}=\pi s_{2} s_{1}
$$

Discrete Dynamics III

- Translation as reflection + diagram automorphism

$$
I=\pi^{-1} s_{2} s_{0} T_{1} \text { where } \pi^{3}=1 \Rightarrow T_{1}=\pi s_{2} s_{1}
$$

Discrete Dynamics IV

Noting that

$$
T_{1}\left(a_{0}\right)=a_{0}+1, T_{1}\left(a_{1}\right)=a_{1}-1, T_{1}\left(a_{2}\right)=a_{2}
$$

Define

$$
\begin{aligned}
& u_{n}=T_{1}^{n}\left(f_{1}\right), v_{n}=T_{1}^{n}\left(f_{0}\right) \\
\Rightarrow \quad & \begin{cases}u_{n}+u_{n+1} & =t-v_{n}-\frac{a_{0}+n}{v_{n}} \\
v_{n}+v_{n-1} & =t-u_{n}+\frac{a_{1}-n}{u_{n}}\end{cases}
\end{aligned}
$$

Discrete Dynamics IV

Noting that

$$
T_{1}\left(a_{0}\right)=a_{0}+1, T_{1}\left(a_{1}\right)=a_{1}-1, T_{1}\left(a_{2}\right)=a_{2}
$$

Define

$$
\begin{gathered}
u_{n}=T_{1}^{n}\left(f_{1}\right), v_{n}=T_{1}^{n}\left(f_{0}\right) \\
\Rightarrow \quad \begin{cases}u_{n}+u_{n+1} & =t-v_{n}-\frac{a_{0}+n}{u_{n}} \\
v_{n}+v_{n-1} & =t-u_{n}+\frac{a_{-n}}{u_{n}}\end{cases}
\end{gathered}
$$

These are discrete Painlevé equations.

What does this have to do with applied mathematics?

Dynamical Systems

$$
\left\{\begin{array}{l}
\dot{u}(t)=v(t) \\
\dot{v}(t)=-\sin (u(t))
\end{array}\right.
$$

Phase Space

Another View

$$
\begin{aligned}
& f(t)=e^{i u(t)} \\
& \Rightarrow\left\{\begin{array}{l}
\ddot{f}=\frac{f^{2}}{f}-\frac{1}{2}\left(f^{2}-1\right) \\
E=\frac{f}{2 f} f^{2}+\frac{1}{2}\left(f+\frac{1}{f}\right)
\end{array}\right. \\
& \Rightarrow f^{2}=-f^{3}-2 E f^{2}-1
\end{aligned}
$$

Phase Curves Again

$$
\begin{aligned}
y^{2} & =-x\left(x-E_{+}\right)\left(x-E_{-}\right) \\
E_{ \pm} & =E \pm \sqrt{E^{2}-1}
\end{aligned}
$$

Phase Curves Again

$$
\begin{aligned}
y^{2} & =-x\left(x-E_{+}\right)\left(x-E_{-}\right) \\
E_{ \pm} & =E \pm \sqrt{E^{2}-1}
\end{aligned}
$$

The trajectories all go through the origin.

Two Problems

- The trajectories are indistinguishable as they pass through the origin.
- The phase space is no longer compact; Liouville's theorem* does not necessarily hold.
- These properties are shared by many nonlinear mathematical models.
* Liouville's thm gives the solution by quadratures.

Elliptic Functions

- Doubly-periodic, meromorphic functions

dlmf.nist.gov

Elliptic Functions in phase space

$$
\begin{aligned}
& \ddot{w} & =6 w^{2}-\frac{g_{2}}{2} \\
\Rightarrow & \frac{\dot{w}^{2}}{2} & =2 w^{3}-\frac{g_{2}}{2} w-\frac{g_{3}}{2} \\
\Rightarrow & w(t) & =\wp\left(t-t_{0} ; g_{2}, g_{3}\right)
\end{aligned}
$$

The phase space coordinatised by (w, \dot{w}) is not compact, due to poles.

Elliptic Functions parametrize curves

- In phase space, $\dot{w}=y, w=x$, the conserved quantity becomes

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

- Initial values determine g_{3}
- Each value of g_{3} defines a level curve of

$$
f(x, y)=y^{2}-4 x^{3}+g_{2} x
$$

Cubic Pencil

A Weierstrass cubic pencil:
 $$
y^{2}-4 x^{3}+g_{2} x+g_{3}=0, \quad g_{2}=2, g_{3}=-E
$$

Motivation

- Korteweg-de Vries equation

$$
\begin{gathered}
w_{\tau}+6 w w_{\xi}+w_{\xi \xi \xi}=0 \\
\left\{\begin{array}{l}
w=-2 y(x)-2 \tau \\
x=\xi+6 \tau^{2}
\end{array}\right. \\
\Rightarrow \begin{cases}w_{\tau}=-24 \tau y_{x}-2 \\
w_{\xi} & =-2 y_{x} \\
w_{\xi \xi \xi} & =-2 y_{x x x}\end{cases}
\end{gathered}
$$

Motivation

- Korteweg-de Vries equation

$$
\begin{gathered}
w_{\tau}+6 w w_{\xi}+w_{\xi \xi \xi}=0 \\
\left\{\begin{array}{l}
w=-2 y(x)-2 \tau \\
x=\xi+6 \tau^{2}
\end{array}\right. \\
\Rightarrow \begin{cases}w_{\tau}=-24 \tau y_{x}-2 \\
w_{\xi} & =-2 y_{x} \\
w_{\xi \xi \xi} & =-2 y_{x x x}\end{cases}
\end{gathered}
$$

The first Painlevé equation

$$
y^{\prime \prime}=6 y^{2}-x
$$

Applications

- Electrical structures of interfaces in steady electrolysis L. Bass, Trans Faraday Soc 60 (1964)1656-1663
- Spin-spin correlation functions for the 2D Ising model πT Wu, BM McCoy, CA Tracy, E Barouch Phys Rev B13 (1976) 316-374
- Spherical electric probe in a continuum gas PCT de Boer, GSS Ludford, Plasma Phys 17 (1975) 29-41
- Cylindrical Waves in General Relativity S Chandrashekar, Proc. R. Soc. Lond. A 408 (1986) 209-232
- Non-perturbative 2D quantum gravity Gross \& Migdal PRL 64(1990) 127-130
- Orthogonal polynomials with non-classical weight function AP Magnus J. Comput Appl. Anal. 57 (1995) 215-237
- Level spacing distributions and the Airy kernel CA Tracy, H Widom CMP 159 (1994) 151-174
- Spatially dependent ecological models: J \& Morrison Anal Appl 6 (2008) 371-381
- Gradient catastrophe in fluids: Dubrovin, Grava \& Klein J. Nonlin. Sci 19 (2009) 57-94

What do we know about the solutions of these equations?

Real Solutions

Consider $\mathrm{P} \mid \quad w_{t t}=6 w^{2}-t$ for $w(t), t \in \mathbb{R}$

$$
u(0)=0, \quad u^{\prime}(0)=0
$$

Complex Solutions

- Movable poles
- Transcendentality of general solutions
- Special solutions
- Asymptotic behaviours

General Solutions

- $\mathrm{P}_{\mathrm{I}}: w_{t t}=6 w^{2}-t$
- in system form

$$
\frac{d}{d t}\binom{w_{1}}{w_{2}}=\binom{w_{2}}{6 w_{1}^{2}-t}
$$

- has t-dependent Hamiltonian

$$
H=\frac{w_{2}^{2}}{2}-2 w_{1}^{3}+t w_{1}
$$

Perturbed Form

- Or, in Boutroux's coordinates:

$$
\begin{aligned}
& w_{1}=t^{1 / 2} u_{1}(z), w_{2}=t^{3 / 4} u_{2}(z), z=\frac{4}{5} t^{5 / 4} \\
& \binom{\dot{u}_{1}}{\dot{u}_{2}}=\binom{u_{2}}{6 u_{1}^{2}-1}-\frac{1}{5 z}\binom{2 u_{1}}{3 u_{2}}
\end{aligned}
$$

- a perturbation of an elliptic curve as $|z| \rightarrow \infty$

$$
E=\frac{u_{2}^{2}}{2}-2 u_{1}^{3}+u_{1} \Rightarrow \frac{d E}{d z}=\frac{1}{5 z}\left(6 E+4 u_{1}\right)
$$

Perturbed Form

- Or, in Boutroux's coordinates:

$$
\begin{aligned}
& w_{1}=t^{1 / 2} u_{1}(z), w_{2}=t^{3 / 4} u_{2}(z), z=\frac{4}{5} t^{5 / 4} \\
& \binom{\dot{u}_{1}}{\dot{u}_{2}}=\binom{u_{2}}{6 u_{1}^{2}-1}-\frac{1}{5 z}\binom{2 u_{1}}{3 u_{2}}
\end{aligned}
$$

- a perturbation of an elliptic curve as $|z| \rightarrow \infty$

$$
E=\frac{u_{2}^{2}}{2}-2 u_{1}^{3}+u_{1} \Rightarrow \frac{d E}{d z}=\frac{1}{5 z}\left(6 E+4 u_{1}\right)
$$

Similarly

- $\mathrm{P}_{\|}: w_{t t}=2 w^{3}+t w+\alpha$
- Piv: $w_{t t}=\frac{w_{t}{ }^{2}}{2 w}+\frac{3 w^{3}}{2}+4 t w^{2}$

$$
+2\left(t^{2}-1+\alpha_{1}+2 \alpha_{2}\right) w-\frac{2 \alpha_{1}^{2}}{w}
$$

have system forms that are perturbations of autonomous systems in the limit $|t| \rightarrow \infty$

Projective Space

- What if x, y become unbounded?
- Use projective geometry: $x=\frac{u}{w}, y=\frac{v}{w}$

$$
[x, y, 1]=[u, v, w] \in \mathbb{C P}^{2}
$$

- The level curves of P_{I} are now

$$
F_{\mathrm{I}}=w v^{2}-4 u^{3}+g_{2} u w^{2}+g_{3} w^{3}
$$

all intersecting at the base point $[0,1,0]$.
\Rightarrow To describe solutions, resolve the flow through this point

Resolving a base pt

From JJ Duistermaat, QRT Maps and Elliptic Surfaces, Springer Verlag, 2010

Resolution

- "Blow up" the singularity or base point:

$$
\begin{aligned}
& f(x, y)=y^{2}-x^{3} \\
& (x, y)=\left(x_{1}, x_{1} y_{1}\right) \\
\Rightarrow & x_{1}^{2} y_{1}^{2}-x_{1}^{3}=0 \\
\Leftrightarrow & x_{1}^{2}\left(y_{1}^{2}-x_{1}\right)=0
\end{aligned}
$$

- Note that

$$
x_{1}=x, y_{1}=y / x
$$

$y^{2}=x^{3}$
Method

$$
f(x, y)=y^{2}-x^{3}
$$

$$
(x, y)=\left(x_{1}, x_{1} y_{1}\right)
$$

$$
f\left(x_{1}, x_{1} y_{1}\right)=x_{1}^{2}\left(y_{1}^{2}-x_{1}\right)
$$

$$
\begin{array}{l|l}
L_{1}:(-1) & y_{1}^{2}=x_{1}
\end{array}
$$

$$
f_{1}\left(x_{1}, y_{1}\right)=y_{1}^{2}-x_{1}
$$

$$
\begin{aligned}
& f_{1}\left(x_{2} y_{2}, y_{2}\right)=y_{2}\left(y_{2}-x_{2}\right) \\
& \left(x_{1}, y_{1}\right)=\left(x_{2} y_{2}, y_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=x_{2} \\
& L_{2}: \because(-1) \quad\left(x_{0}, y_{9}\right)=\left(x_{2} .\right.
\end{aligned}
$$

$$
\begin{aligned}
f_{2}\left(x_{2}, y_{2}\right) & =y_{2}-x_{2} \\
f_{2}\left(x_{3}, x_{3} y_{3}\right) & =x_{3}\left(y_{3}-1\right)
\end{aligned}
$$

Initial-Value Space

Now the space is compactified and regularised.

Initial-Value Space

Now the space is compactified and regularised.

Good Resolution

- When all curves intersect each other transversally at distinct points, the result is called a "good resolution".
- Hironaka's theorem guarantees this in complex projective space.
- Note: each transformation had the form

$$
x_{1}=x, y_{1}=y / x
$$

Unifying Property

The space of initial values of a Painlevé system is resolved by "blowing up" 9 points in CP^{2}
(or 8 points in $\mathrm{P}^{1} \times \mathrm{P}^{1}$)

Initial-Value Space of P_{I}

- There are nine base points:

$$
\begin{aligned}
& b_{0}: u_{031}=0, u_{032}=0 \\
& b_{1}: u_{111}=0, u_{112}=0 \\
& b_{2}: u_{211}=0, u_{212}=0 \\
& b_{3}: u_{311}=4, u_{312}=0 \\
& b_{4}: u_{411}=4, u_{412}=0 \\
& b_{5}: u_{511}=0, u_{512}=0 \\
& b_{6}: u_{611}=0, u_{612}=0 \\
& b_{7}: u_{711}=32, u_{712}=0 \\
& b_{8}: u_{811}=-\frac{2^{8}}{(5 z)}, u_{812}=0
\end{aligned}
$$

- Only the last one differs from the elliptic case.

Ls
Pl

P॥

P॥

PIV

Joshi \& Radnovic, 2015

PIV

Joshi \& Radnovic, 2015

PIV

$E_{6}{ }^{(I)}$

Joshi \& Radnovic, 2015

Piv

$E_{6}{ }^{(1)}$

autonomous eqn
Joshi \& Radnovic, 2015

Sakai's Description I

Initial-value spaces of all continuous and discrete Painlevé equations

Sakai 2001

Global results for $\mathrm{P}_{\mathrm{I}}, \mathrm{P}_{\mathrm{II}}, \mathrm{P}_{\mathrm{IV}}$

- The union of exceptional lines is a repeller for the flow.
- There exists a complex limit set, which is non-empty, connected and compact.
- Every solution of P_{I}, every solution of $P_{\|}$whose limit set is not $\{0\}$, and every non-rational solution of Piv intersects the last exceptional line(s) infinitely many times => infinite number of movable poles and movable zeroes.

Inside PI

Affine extended E_{8}

At the heart

At the heart

Symmetry groups

- Affine Weyl groups:
- Natural lattice translations
- Cremona isometries
\Leftrightarrow Painlevé equations

Sakai's Description II

Symmetry groups of Painlevé equations

Sakai 2001
dP

dP

dP

degenerate autonomous limit
dP

Solutions

Solution orbits of scalar dP1 on the Riemann sphere (where the north pole is infinity).

Summary

- New mathematical models of physics pose new questions for applied mathematics
- Global dynamics of solutions of non-linear equations, whether they are differential or discrete, can be found through geometry.
- Geometry provides the only analytic approach available in \mathbb{C} for discrete equations.
- Tantalising questions about finite properties of solutions remain open.

The mathematician's pattern's, like those of the painter's or the poet's, must be beautiful, the ideas, like the colours or the words, must fit together in a harmonious way. GH Hardy, A Mathematician's Apology, 1940

