Solution week 11

1. A study was constructed to determine whether a linear relationship exists between the age \(x \) and the diameter \(y \) in inches at 1.5 meters level of chestnut trees. Ten randomly selected chestnut trees were examined and the data were recorded as follows:

<table>
<thead>
<tr>
<th>Age ((x))</th>
<th>Diameter ((y)) at 1.5 meters level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
</tr>
<tr>
<td>8</td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>2.3</td>
</tr>
<tr>
<td>10</td>
<td>3.2</td>
</tr>
<tr>
<td>12</td>
<td>4.9</td>
</tr>
<tr>
<td>13</td>
<td>3.7</td>
</tr>
<tr>
<td>14</td>
<td>4.5</td>
</tr>
<tr>
<td>17</td>
<td>5.6</td>
</tr>
<tr>
<td>19</td>
<td>6.5</td>
</tr>
</tbody>
</table>

\[
\sum_i x_i^2 = 1428, \quad \sum_i y_i^2 = 149.37, \quad \sum_i x_i y_i = 454.2.
\]

(a) Find a regression line fitted to the data.
(b) Test whether or not a linear relationship between the age and the diameter at 1.5 meters level of chestnut trees is significant (using t-test or F-test).
(c) Find an estimate of average diameter corresponding to age 30 and give a 95% prediction interval of this estimate.
(d) Find an estimate of the diameter for some special chestnut tree at age 30 and give a 95% prediction interval of this estimate.

Solution:

(a) We have that \(n = 10 \) and

\[
\bar{x} = 11, \quad \bar{y} = 3.33
\]

\[
S_{xx} = 1428 - 10 \times 11^2 = 218
\]

\[
S_{yy} = 149.37 - 10 \times 3.33^2 = 38.481
\]

\[
S_{xy} = 454.2 - 10 \times 11 \times 3.33 = 87.9.
\]
This implies that
\[\hat{\beta} = \frac{S_{xy}}{S_{xx}} = 0.403211, \quad \hat{\alpha} = \bar{y} - \hat{\beta} \bar{x} = -1.105321. \]

Hence the least squares line is
\[\hat{y} = \hat{\alpha} + \hat{\beta} x = -1.105321 + 0.403211 x. \]

(b) The hypothesis to be tested is
\[H : \beta = 0 \quad \text{vs} \quad H_A : \beta \neq 0. \]

Use the t-test. A observed value of the t-test with \(n = 8 \) is given by
\[t_0 = \frac{\sqrt{8} S_{xy}}{\sqrt{S_{xx} S_{yy} - S_{xy}^2}} = 9.66. \]

The corresponding \(p \)-value is
\[p = 2P(t_8 \geq 9.66) = 1.098279e - 05. \]

Conclusion: There are very strong evidence against the null hypothesis, that is, there is very strong evidence to support the claim that there is a relationship between the age and the diameter at 1.5 meters level of chestnut trees.

Instead, we may get the Regression ANOVA table
\[
\begin{array}{l|ccc}
\text{Source} & \text{df} & \text{SS} & \text{MS} & \text{F} \\
\hline
\text{Regression} & 1 & 35.44 & 35.44 & 93.23 \\
\text{Residuals} & 8 & 3.041 & 0.38 & \\
\text{Total} & 9 & 38.481 & & \\
\end{array}
\]

The corresponding \(p \)-value is
\[p = P(F_{1,8} \geq 93.23) = 1.101921e - 05. \]

Conclusion: There are very strong evidence against the null hypothesis, that is, there is very strong evidence to support the claim that there is a relationship between the age and the diameter at 1.5 meters level of chestnut trees.

(c) Recall that the regression line is
\[\hat{y} = \hat{\alpha} + \hat{\beta} x = -1.105321 + 0.403211 x. \]

Hence an estimator of average diameter corresponding to age 30 is given by
\[\hat{y} = -1.105321 + 0.403211 \times 30 = 10.991. \]
A 95% prediction interval for the average diameter (at \(x_0 = 30 \)) is given by

\[
\left[\hat{y} - t_{0.025} s \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}, \ \hat{y} + t_{0.025} s \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}} \right],
\]

where \(t_{0.025} \) satisfies that \(P(t_{n-2} \geq t_{0.025}) = 0.025 \).

Note that \(t_{0.025} = 2.306 \) (with \(n = 10 \)) and recall that \(\bar{x} = 11, \ S_{xx} = 218 \) and \(s^2 = 0.38 \) (see the Regression ANOVA table). We obtain \(s = 0.6165 \),

\[
\hat{y} - t_{0.025} s \sqrt{\frac{1}{10} + \frac{(x_0 - \bar{x})^2}{S_{xx}}} = 9.1077
\]

\[
\hat{y} + t_{0.025} s \sqrt{\frac{1}{10} + \frac{(x_0 - \bar{x})^2}{S_{xx}}} = 12.875
\]

This gives the 95% prediction interval of the average diameter

\[[9.1077, \ 12.875]. \]

(d) According to the fitted line, the expected diameter of some special chestnut tree at age 30 still is

\[\hat{y} = -1.105321 + 0.403211 \times 30 = 10.991. \]

With \(x_0 = 30 \),

\[
\hat{y} - t_{0.025} s \sqrt{1 + \frac{1}{10} + \frac{(x_0 - \bar{x})^2}{S_{xx}}} = 8.631
\]

\[
\hat{y} + t_{0.025} s \sqrt{1 + \frac{1}{10} + \frac{(x_0 - \bar{x})^2}{S_{xx}}} = 13.351
\]

This gives the 95% prediction interval of the some special chestnut tree at age 30:

\[[8.631, \ 13.351]. \]

2. Let \(\hat{\alpha} \) and \(\hat{\beta} \) be the least-squares estimates in simple linear regression model:

\[Y_i = \alpha + \beta x_i + \epsilon_i, \ \ i = 1, 2, \ldots, n \]

where \(\epsilon_i \) are iid random variables with zero mean and finite variance \(\sigma^2 \).

Show that

\[\mathbf{E} \hat{\alpha} = \alpha, \ \ \mathbf{E} \hat{\beta} = \beta \ \ \text{and} \ \ Var(\hat{\beta}) = \sigma^2/S_{xx}. \]

Hint: \(S_{xx} = \sum_i (x_i - \bar{x})x_i \) and

\[Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) \]

provided \(X \) and \(Y \) are independent.
Solution: Under the given model, we have that

\[EY_i = \alpha + \beta x_i, \quad Y_i - EY_i = \epsilon_i, \quad i = 1, 2, \ldots, n. \]

\[\hat{\beta} = \sum_i (x_i - \bar{x})Y_i/S_{xx}, \quad \hat{\alpha} = \bar{Y} - \hat{\beta} \bar{x}. \]

These, together with the properties of expectations, imply that

\[\mathbb{E}\hat{\beta} = \sum_i (x_i - \bar{x})EY_i/S_{xx} \]

\[= \frac{1}{S_{xx}} \sum_i (x_i - \bar{x})(\alpha + \beta x_i) \]

\[= \frac{\alpha}{S_{xx}} \sum_i (x_i - \bar{x}) + \frac{\beta}{S_{xx}} \sum_i (x_i - \bar{x})x_i \]

\[= 0 + \frac{\beta}{S_{xx}} S_{xx} = \beta, \]

\[E\bar{Y} = \frac{1}{n} \sum_i EY_i = \frac{1}{n} \sum_i (\alpha + \beta x_i) = \alpha + \beta \bar{x}, \]

\[\mathbb{E}\hat{\alpha} = \mathbb{E}\bar{Y} - \bar{x} \mathbb{E}\hat{\beta} = \alpha + \beta \bar{x} - \beta \bar{x} = \alpha, \]

\[\text{Var}(\hat{\beta}) = \mathbb{E}\left(\hat{\beta} - \mathbb{E}\hat{\beta}\right)^2 \]

\[= \mathbb{E}\left(\frac{1}{S_{xx}} \sum_i (x_i - \bar{x})(Y_i - EY_i) \right)^2 \]

\[= \frac{1}{S_{xx}^2} \mathbb{E}\left(\sum_i (x_i - \bar{x})\epsilon_i \right)^2 \]

\[= \frac{1}{S_{xx}^2} \mathbb{E}\left(\sum_{i \neq j} (x_i - \bar{x})(x_j - \bar{x})\epsilon_i\epsilon_j + \sum_i (x_i - \bar{x})^2 \epsilon_i^2 \right) \]

\[= \frac{1}{S_{xx}^2} \left(\sum_{i \neq j} (x_i - \bar{x})(x_j - \bar{x})\mathbb{E}\epsilon_i\epsilon_j + \sum_i (x_i - \bar{x})^2 \mathbb{E}\epsilon_i^2 \right) \]

\[= \frac{1}{S_{xx}^2} \left(0 + \sigma^2 S_{xx} \right) = \frac{\sigma^2}{S_{xx}}, \]

where we have used the results: \(\mathbb{E}\epsilon_i\epsilon_j = 0 \) for \(i \neq j \) (because of independence) and \(\text{var}(\epsilon_j) = \mathbb{E}\epsilon_j^2 = \sigma^2 \).
1. Consider the data frame `fuel.frame`, which has information on makes of cars taken from the April 1990 issue of Consumer Reports.

(a) Set a 2 by 2 graphic window and prepare your data for analysis by typing `attach(fuel.frame)`.

(b) Create two vectors \(x \) and \(y \) whose elements correspond to Weight (in pounds) and Fuel (in gallons per 100 miles) on the data `fuel.frame` respectively.

(c) Plot the Fuel against Weight with Weight on the \(x \)-axis and comment on the plot.

(d) Find the regression line for Fuel on Weight using `lm` and draw this line on the first plot (Hint: use `abline`).

(e) Test whether the weight has an influence on the fuel in terms of \(p \)-value.

(f) Plot the residuals against the fitted values of fuel and draw in the line \(y = 0 \).

(g) Obtain a boxplot of residuals and a qq-plot of the residuals.

(h) Comment on the plots in (f) and (g), and explain whether the assumptions required in (e) are probably satisfied.

Solution:

```r
# (a)
par(mfrow=c(2,2))
attach(fuel.frame)

# (b)
x<- fuel.frame[,1]  # give the Weight
y<- fuel.frame[,4]  # give the Fuel

# (c)
plot(x,y, xlab="Weight", ylab="Fuel")

# The scatterplot shows clearly that fuel used in gallons per 100 miles
# increases as weight of a car increases, and a linear model might be
# suitable to describe the
# relationship between fuel and weight.

# (d)
```
Call:
 lm(formula = y ~ x)

Coefficients:
 (Intercept) x
 0.3914324 0.00131638

The regression line is given by
y = 0.3914324 + 0.00131638 x

abline(lm(y~x))

(e)

The hypothesis to be test is
\beta=0 vs \beta\not= 0

first calculate Sxx, Syy and Sxy

> c(mean(x),mean(y))
 [1] 2900.833333 4.210033

> Sxx<-sum((x-mean(x))*(x-mean(x)))
> Sxy<-sum((x-mean(x))*(y-mean(y)))
> Syy<-sum((y-mean(y))*(y-mean(y)))

> c(Sxx, Sxy, Syy)
 [1] 1.450711e+07 1.909687e+04 3.385687e+01

> n<-length(x)
> t0<-sqrt(n-2)*Sxy/sqrt(Sxx*Syy-Sxy^2)
 # give a observed value of t-statistic

> p<-2*(1-pt(t0,n-2)) # give p-value of the test
> p
 [1] 0

Conclusion: There are very strong evidence that
the weight of a car has an influence on the fuel.
(f)

fitted<-y- lsfit(x,y)$res
give the fitted value
plot(fitted, lsfit(x,y)$res)
give the plot: residual against the fitted value

abline(0)
combine the line y=0 into the plot

(g)

boxplot(lsfit(x,y)$res)
qqnorm(lsfit(x,y)$res)
qqline(lsfit(x,y)$res)

(h)

The plot of the residuals against the fitted value has no apparent pattern,
which implies that a linear regression model is appropriate to describe
the relationship between the weight and the fuel.

The boxplot of the residuals looks symmetric and the qq-normal plot
of the residuals looks quite linear
Hence it is reasonable to believe the data satisfies the assumptions
required for the test in (e). The assumptions required for the test are
that the errors are iid normal random variables with zero mean and finite variance.