Lesson 20
Riemann–Hilbert problems
• In the last lecture, we saw that we could solve Laplace’s equation by phrasing it as a complex boundary value problem – This worked exceptionally well on the unit circle, or domains that can be conformally mapped to the unit circle
• We now look at Riemann–Hilbert problems
• We first discuss the direct scattering transform to motivate the use of Riemann–Hilbert problems
• This will lead to a linear technique for solving the nonlinear KdV equation

\[u_t + 6uu_x + u_{xxx} = 0 \]
\[u(0, x) = u_0(x) \]
KdV (Pure solitons)
A more generic solution to KdV
Reflection Coefficients
• The **direct scattering transform** is a map from an initial condition to KdV $q_0(x)$ to the scattering data

$$q_0(x) \rightarrow (\rho(k), \{C_1, \ldots, C_N\}, \{\kappa_1, \ldots, \kappa_N\})$$

where C_1, \ldots, C_N and $\kappa_1, \ldots, \kappa_N$ are constants and $\rho(k)$ is a function defined on the real line
The direct scattering transform is a map from an initial condition to KdV $q_0(x)$ to the scattering data

$$q_0(x) \rightarrow (\rho(k), \{C_1, \ldots, C_N\}, \{\kappa_1, \ldots, \kappa_N\})$$

where C_1, \ldots, C_N and $\kappa_1, \ldots, \kappa_N$ are constants and $\rho(k)$ is a function defined on the real line

- This is similar to the Fourier transform

$$q_0(x) \rightarrow \hat{q}_0(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} q_0(x)e^{-ikx} \, dx$$
• The direct scattering transform is a map from an initial condition to KdV $q_0(x)$ to the scattering data

$$q_0(x) \rightarrow (\rho(k), \{C_1, \ldots, C_N\}, \{\kappa_1, \ldots, \kappa_N\})$$

where C_1, \ldots, C_N and $\kappa_1, \ldots, \kappa_N$ are constants and $\rho(k)$ is a function defined on the real line

— This is similar to the Fourier transform

$$q_0(x) \rightarrow \hat{q}_0(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} q_0(x) e^{-ikx} \, dx$$

• We have shown how to calculate $\{\kappa_1, \ldots, \kappa_N\}$ numerical via discrete spectrum of the Schrödinger equation

• Now, we will see how to calculate $\rho(k)$, which is associated with the continuous spectrum of the Schrödinger equation
• We saw that

\[u'' + q_0(x)u \]

had continuous spectrum along \((-\infty, 0]\), i.e., in a vague sense, for all \(k \in \mathbb{R} \) we have "eigenfunctions" for

\[u'' + q_0(x)u = -k^2 u \]
• We saw that

\[u'' + q_0(x)u \]

had continuous spectrum along \((-\infty, 0]\), i.e., in a vague sense, for all \(k \in \mathbb{R} \) we have "eigenfunctions" for

\[u'' + q_0(x)u = -k^2u \]

• Assuming \(q_0(x) \) decays rapidly at \(\pm \infty \), we know that these eigenfunction must satisfy

\[u'' = -k^2u \]

as \(x \to \pm \infty \)
• We saw that

\[u'' + q_0(x)u \]

had continuous spectrum along \((-\infty, 0]\), i.e., in a vague sense, for all \(k \in \mathbb{R}\) we have "eigenfunctions" for

\[u'' + q_0(x)u = -k^2 u \]

• Assuming \(q_0(x)\) decays rapidly at \(\pm \infty\), we know that these eigenfunction must satisfy

\[u'' = -k^2 u \]

as \(x \to \pm \infty\)

 – In other words,

\[u(x) \sim e^{\pm ikx} \text{ as } x \to \pm \infty \]
• We saw that

\[u'' + q_0(x)u \]

had continuous spectrum along \((-\infty, 0]\), i.e., in a vague sense, for all \(k \in \mathbb{R}\) we have "eigenfunctions" for

\[u'' + q_0(x)u = -k^2 u \]

• Assuming \(q_0(x)\) decays rapidly at \(\pm \infty\), we know that these eigenfunction must satisfy

\[u'' = -k^2 u \]

as \(x \to \pm \infty\)

 – In other words,

\[u(x) \sim e^{\pm ikx} \text{ as } x \to \pm \infty \]

• We define the solutions \(\phi_{\pm}(x)\) by

\[\phi_{\pm}(x) \sim e^{\pm ikx} \text{ as } x \to -\infty \]
• We saw that

\[u'' + q_0(x)u \]

had continuous spectrum along (−∞, 0], i.e., in a vague sense, for all \(k \in \mathbb{R} \) we have "eigenfunctions" for

\[u'' + q_0(x)u = -k^2 u \]

• Assuming \(q_0(x) \) decays rapidly at ±∞, we know that these eigenfunction must satisfy

\[u'' = -k^2 u \]

as \(x \to \pm \infty \)

— In other words,

\[u(x) \sim e^{\pm ikx} \text{ as } x \to \pm \infty \]

• We define the solutions \(\phi_\pm(x) \) by

\[\phi_\pm(x) \sim e^{\pm ikx} \text{ as } x \to -\infty \]

and \(\psi_\pm(x) \) by

\[\psi_\pm(x) \sim e^{\pm ikx} \text{ as } x \to +\infty \]
Now \(\phi_-, \psi_+ \) and \(\psi_- \) all solve

\[
\ddot{u} + q_0(x)u = -k^2 u
\]
• Now $\phi_-, \psi_+ \text{ and } \psi_- \text{ all solve}

\[u'' + q_0(x)u = -k^2 u \]

• This is a second order equation, and we know that ψ_\pm are linearly independent
• Now ϕ_-, ψ_+ and ψ_- all solve

$$u'' + q_0(x)u = -k^2 u$$

• This is a second order equation, and we know that ψ_\pm are linearly independent

• Thus there exists a and b such that

$$\phi_-(x) = a\psi_-(x) + b\psi_+(x)$$
Now ϕ_-, ψ_+ and ψ_- all solve

$$u'' + q_0(x)u = -k^2u$$

This is a second order equation, and we know that ψ_\pm are linearly independent.

Thus there exists a and b such that

$$\phi_-(x) = a\psi_-(x) + b\psi_+(x)$$

We define the reflection coefficient by

$$\rho(k) = \frac{b}{a}$$
Now \(\phi_- \), \(\psi_+ \) and \(\psi_- \) all solve

\[
u'' + q_0(x)u = -k^2 u
\]

This is a second order equation, and we know that \(\psi_\pm \) are linearly independent.

Thus there exists \(a \) and \(b \) such that

\[
\phi_-(x) = a\psi_-(x) + b\psi_+(x)
\]

We define the reflection coefficient by

\[
\rho(k) = \frac{b}{a}
\]

Similarly, we have

\[
\phi_+(x) = \tilde{b}\psi_-(x) + \tilde{a}\psi_+(x)
\]

giving

\[
\tilde{\rho}(k) = \frac{\tilde{b}}{\tilde{a}}
\]
• Now \(\phi_-, \psi_+ \) and \(\psi_- \) all solve

\[
u'' + q_0(x)u = -k^2 u
\]

• This is a second order equation, and we know that \(\psi_\pm \) are linearly independent

• Thus there exists \(a \) and \(b \) such that

\[
\phi_-(x) = a\psi_-(x) + b\psi_+(x)
\]

• We define the reflection coefficient by

\[
\rho(k) = \frac{b}{a}
\]

• Similarly, we have

\[
\phi_+(x) = \tilde{b}\psi_-(x) + \tilde{a}\psi_+(x)
\]

giving

\[
\tilde{\rho}(k) = \frac{\tilde{b}}{\tilde{a}}
\]

- (Due to symmetries we have \(\tilde{\rho}(k) = \rho(-k) \))
Numerical direct scattering
• We want to calculate $\rho(k)$
• We want to calculate $\rho(k)$

• We do so by calculating:

$$ - \phi_-(x) \text{ on } (-\infty, 0]$$
• We want to calculate $\rho(k)$

• We do so by calculating:

 $- \phi_-(x)$ on $(-\infty, 0]$

 $- \psi_\pm(x)$ on $[0, \infty)$
• We want to calculate $\rho(k)$

• We do so by calculating:

 – $\phi_-(x)$ on $(-\infty, 0]$
 – $\psi_\pm(x)$ on $[0, \infty)$
 – Choosing a and b so that

\[
\begin{pmatrix}
\psi_-(0) & \psi_+(0) \\
\psi'_-(0) & \psi'_+(0)
\end{pmatrix}
\begin{pmatrix}
a \\
b
\end{pmatrix}
=
\begin{pmatrix}
\phi_-(0) \\
\phi'_-(0)
\end{pmatrix}
We first calculate ϕ_- on $(-\infty, 0]$, which satisfies

$$\phi''_- + (q_0 + k^2) \phi_- = 0 \quad \text{and} \quad \phi_-(x) \sim e^{-ikx}$$
• We first calculate \(\phi_- \) on \((-\infty, 0]\), which satisfies

\[
\phi'''_- + (q_0 + k^2)\phi_- = 0 \quad \text{and} \quad \phi_-(x) \sim e^{-ikx}
\]

• We remove the oscillations and let \(\phi_- e^{ikx} = m_+(x) \), giving us \(m_+(-\infty) = 1 \) and \(m'_+(-\infty) = 0 \)
• We first calculate ϕ_- on $(-\infty, 0]$, which satisfies

$$\phi''_(- (q_0 + k^2)\phi_- = 0 \quad \text{and} \quad \phi_-(x) \sim e^{-ikx}$$

• We remove the oscillations and let $\phi_- e^{ikx} = m_+(x)$, giving us $m_+(\infty) = 1$ and $m'_+(\infty) = 0$

• Then we obtain

$$m'_+ = (\phi'_- + ik\phi_-) e^{ikx}$$
We first calculate ϕ_- on $(-\infty, 0]$, which satisfies

$$\phi'''' + (q_0 + k^2)\phi_0 = 0$$

and

$$\phi_-(x) \sim e^{-ikx}$$

We remove the oscillations and let $\phi_- e^{ikx} = m_+(x)$, giving us $m_+(-\infty) = 1$ and $m'_+(-\infty) = 0$

Then we obtain

$$m'_+ = (\phi'_- + ik\phi_-)e^{ikx}$$

$$m''_+ = (\phi''_- + 2ik\phi'_- - k^2\phi_-)e^{ikx}$$
• We first calculate ϕ_- on $(-\infty, 0]$, which satisfies

$$\phi''_- + (q_0 + k^2)\phi_- = 0 \quad \text{and} \quad \phi_-(x) \sim e^{-ikx}$$

• We remove the oscillations and let $\phi_- e^{ikx} = m_+(x)$, giving us $m_+(-\infty) = 1$ and $m'_+(-\infty) = 0$

• Then we obtain

$$m'_+ = (\phi'_- + ik\phi_-)e^{ikx}$$

$$m''_+ = (\phi''_- + 2ik\phi'_- - k^2\phi_-)e^{ikx}$$

$$= \phi''_- e^{ikx} + 2ikm'_+ + k^2m_+$$
• We first calculate Φ_- on $(-\infty, 0]$, which satisfies

$$\Phi''_- + (q_0 + k^2)\Phi_- = 0 \quad \text{and} \quad \Phi_-(x) \sim e^{-ikx}$$

• We remove the oscillations and let $\Phi_-e^{ikx} = m_+(x)$, giving us $m_+(-\infty) = 1$ and $m'_+(-\infty) = 0$

• Then we obtain

$$m'_+ = (\Phi'_- + ik\Phi_-)e^{ikx}$$

$$m''_+ = (\Phi''_- + 2ik\Phi'_- - k^2\Phi_-)e^{ikx}$$

$$= \Phi''_- e^{ikx} + 2ikm'_+ + k^2m_+$$

• In other words,

$$0 = \Phi''_- e^{ikx} + (q_0 + k^2)\Phi_+ e^{ikx}$$
• We first calculate ϕ_- on $(-\infty, 0]$, which satisfies

$$\phi''_- + (q_0 + k^2)\phi_- = 0 \quad \text{and} \quad \phi_-(x) \sim e^{-ikx}$$

• We remove the oscillations and let $\phi_-e^{ikx} = m_+(x)$, giving us $m_+(-\infty) = 1$ and $m'_+(-\infty) = 0$

• Then we obtain

$$m'_+ = (\phi'_- + ik\phi_-)e^{ikx}$$

$$m''_+ = (\phi''_- + 2ik\phi'_- - k^2\phi_-)e^{ikx}$$

$$= \phi''_- e^{ikx} + 2ikm'_+ + k^2m_+$$

• In other words,

$$0 = \phi''_- e^{ikx} + (q_0 + k^2)\phi_+ e^{ikx}$$

$$= m''_+ - 2ikm'_+ - k^2m_+ + (q_0 + k^2)m_+$$
• We first calculate ϕ_- on $(-\infty, 0]$, which satisfies

$$\phi''_- + (q_0 + k^2)\phi_- = 0 \quad \text{and} \quad \phi_-(x) \sim e^{-ikx}$$

• We remove the oscillations and let $\phi_- e^{ikx} = m_+(x)$, giving us $m_+(-\infty) = 1$ and $m'_+(\infty) = 0$

• Then we obtain

$$m'_+ = (\phi'_- + ik\phi_-) e^{ikx}$$

$$m''_+ = (\phi''_- + 2ik\phi'_- - k^2\phi_-) e^{ikx}$$

$$= \phi''_- e^{ikx} + 2ikm'_+ + k^2m_+$$

• In other words,

$$0 = \phi''_- e^{ikx} + (q_0 + k^2)\phi_+ e^{ikx}$$

$$= m''_+ - 2ikm'_+ - k^2m_+ + (q_0 + k^2)m_+$$

$$= m''_+ - 2ikm'_+ + q_0m_+$$
• We first calculate ϕ_- on $(-\infty, 0]$, which satisfies

$$\phi'' + (q_0 + k^2)\phi_ - = 0 \quad \text{and} \quad \phi_-(x) \sim e^{-ikx}$$

• We remove the oscillations and let $\phi_- e^{ikx} = m_+(x)$, giving us $m_+(-\infty) = 1$ and $m'_+(-\infty) = 0$

• Then we obtain

$$m'_+ = (\phi'_- + ik\phi_-)e^{ikx}$$
$$m''_+ = (\phi''_- + 2ik\phi'_- - k^2\phi_-)e^{ikx}$$
$$= \phi''_- e^{ikx} + 2ikm'_+ + k^2m_+$$

• In other words,

$$0 = \phi''_- e^{ikx} + (q_0 + k^2)\phi_+ e^{ikx}$$
$$= m''_+ - 2ikm'_+ - k^2m_+ + (q_0 + k^2)m_+$$
$$= m''_+ - 2ikm'_+ + q_0m_+$$
• We first calculate \(\phi_- \) on \((-\infty, 0]\), which satisfies

\[
\phi''_- + (q_0 + k^2)\phi_- = 0 \quad \text{and} \quad \phi_-(x) \sim e^{-ikx}
\]

• We remove the oscillations and let \(\phi_-e^{ikx} = m_+(x) \), giving us \(m_+(-\infty) = 1 \) and \(m'_+(-\infty) = 0 \)

• Then we obtain

\[
m'_+ = (\phi'_- + ik\phi_-)e^{ikx}
\]
\[
m''_+ = (\phi''_- + 2ik\phi'_- - k^2\phi_-)e^{ikx}
\]
\[
= \phi''_-e^{ikx} + 2ikm'_+ + k^2m_+
\]

• In other words,

\[
0 = \phi''_-e^{ikx} + (q_0 + k^2)\phi_+e^{ikx}
\]
\[
= m''_+ - 2ikm'_+ - k^2m_+ + (q_0 + k^2)m_+
\]
\[
= m''_+ - 2ikm'_+ + q_0m_+
\]

• This equation is amenable to numerics via mapping or truncation
Initial condition

Reflection coefficient
Initial condition

Reflection coefficient
Initial condition

Reflection coefficient
Initial condition

Reflection coefficient

Graphs showing the change from initial condition to reflection coefficient.
Inverse Scattering
• Now we fix x and look at $\phi_{\pm}(k; x)$ and $\psi_{\pm}(k; x)$ as functions of k.
• Now we fix x and look at $\phi_\pm(k; x)$ and $\psi_\pm(k; x)$ as functions of k

• We first remove the oscillations:

$$m_-(k) = \phi_+(k; x)e^{-ikx}, \quad m_+(k) = \phi_-(k; x)e^{ikx}$$

$$n_+(k) = \psi_+(k; x)e^{-ikx}, \quad n_-(k) = \psi_-(k; x)e^{ikx}$$
• Now we fix x and look at $\phi_\pm(k; x)$ and $\psi_\pm(k; x)$ as functions of k

• We first remove the oscillations:

$$m_-(k) = \phi_+(k; x)e^{-ikx}, \quad m_+(k) = \phi_-(k; x)e^{ikx}$$

$$n_+(k) = \psi_+(k; x)e^{-ikx}, \quad n_-(k) = \psi_-(k; x)e^{ikx}$$

• When there are no solitons (i.e., no discrete spectra), we assert that

$$\Phi^+(k) = \left[\frac{m_+(k)}{a(k)}, n_+(k) \right]$$

is analytic in the upper half plane
• Now we fix x and look at $\phi_{\pm}(k; x)$ and $\psi_{\pm}(k; x)$ as functions of k

• We first remove the oscillations:

$$m_{-}(k) = \phi_{+}(k; x)e^{-ikx}, \quad m_{+}(k) = \phi_{-}(k; x)e^{ikx}$$

$$n_{+}(k) = \psi_{+}(k; x)e^{-ikx}, \quad n_{-}(k) = \psi_{-}(k; x)e^{ikx}$$

• When there are no solitons (i.e., no discrete spectra), we assert that

$$\Phi^{+}(k) = \left[\frac{m_{+}(k)}{a(k)}, n_{+}(k) \right]$$

is analytic in the upper half plane

• Similarly,

$$\Phi^{-}(k) = \left[n_{-}(k), \frac{m_{-}(k)}{\tilde{a}(k)} \right]$$

is analytic in the lower half plane
• We want to derive a relationship between Φ_+ and Φ_- for real k.
We want to derive a relationship between Φ_+ and Φ_- for real k.

We obtain by direct calculation:

$$\Phi_+(k) = \left[\frac{m_+}{a}, n_+ \right] = \left[\frac{\phi_- e^{ikx}}{a}, \psi_+ e^{-ikx} \right]$$
• We want to derive a relationship between Φ_+ and Φ_- for real k.

• We obtain by direct calculation:

$$\Phi_+(k) = \left[\frac{m_+}{a}, n_+ \right] = \left[\frac{\phi_- e^{ikx}}{a}, \psi_+ e^{-ikx} \right]$$

$$= \left[\frac{(a\psi_- + b\psi_+)}{a} e^{ikx}, \psi_+ e^{-ikx} \right]$$
• We want to derive a relationship between \(\Phi_+ \) and \(\Phi_- \) for real \(k \).

• We obtain by direct calculation:

\[
\Phi_+(k) = \left[\frac{m_+}{a}, n_+ \right] = \left[\frac{\phi_- e^{ikx}}{a}, \psi_+ e^{-ikx} \right] \\
= \left[\frac{(a\psi_- + b\psi_+) e^{ikx}}{a}, \psi_+ e^{-ikx} \right] \\
= [n_-, 0] + [\rho e^{ikx}, e^{-ikx}] \psi_+ \\
= [n_-, 0] + [\rho e^{ikx}, e^{-ikx}] \left(\frac{\phi_+}{\tilde{a}} - \tilde{\rho}_- \psi_- \right)
\]
• We want to derive a relationship between Φ_+ and Φ_- for real k.

• We obtain by direct calculation:

$$
\Phi_+(k) = \left[\frac{m+}{a}, n_+ \right] = \left[\frac{\phi_- e^{ikx}}{a}, \psi_+ e^{-ikx} \right]
$$

$$
= \left[\frac{(a\psi_- + b\psi_+) e^{ikx}}{a}, \psi_+ e^{-ikx} \right]
$$

$$
= [n_-, 0] + [\rho e^{ikx}, e^{-ikx}] \psi_+
$$

$$
= [n_-, 0] + [\rho e^{ikx}, e^{-ikx}] \left(\frac{\phi_+}{\tilde{a}} - \tilde{\rho}_- \psi_- \right)
$$

$$
= [n_-, 0] + [\rho e^{ikx}, e^{-ikx}] \left(\frac{m_- e^{ikx}}{\tilde{a}} - \tilde{\rho}_- n_- e^{-ikx} \right)
$$
• We want to derive a relationship between Φ_+ and Φ_- for real k

• We obtain by direct calculation:

$$\Phi_+(k) = \left[\frac{m_+}{a}, n_+ \right] = \left[\frac{\phi_- e^{ikx}}{a}, \psi_+ e^{-ikx} \right]$$

$$= \left[\frac{(a\psi_- + b\psi_+) e^{ikx}}{a}, \psi_+ e^{-ikx} \right]$$

$$= [n_-, 0] + \left[\rho e^{ikx}, e^{-ikx} \right] \psi_+$$

$$= [n_-, 0] + \left[\rho e^{ikx}, e^{-ikx} \right] \left(\frac{\phi_+}{\tilde{a}} - \tilde{\rho} \psi_- \right)$$

$$= [n_-, 0] + \left[\rho e^{ikx}, e^{-ikx} \right] \left(\frac{m_- e^{ikx}}{\tilde{a}} - \tilde{\rho} n_- e^{-ikx} \right)$$

$$= \left(n_-, \frac{m_-}{\tilde{a}} \right) \left(\begin{pmatrix} 1 & \rho e^{2ikx} & -\rho \tilde{\rho} \\ \rho e^{2ikx} & 1 & -\tilde{\rho} e^{-2ikx} \end{pmatrix} \right)$$
• We want to derive a relationship between Φ_+ and Φ_- for real k

• We obtain by direct calculation:

$$
\Phi_+(k) = \left[\frac{m_+}{a}, n_+ \right] = \left[\frac{\phi_- e^{ikx}}{a}, \psi_+ e^{-ikx} \right] = \left[\frac{(a\psi_- + b\psi_+) e^{ikx}}{a}, \psi_+ e^{-ikx} \right] = [n_-, 0] + [\rho e^{ikx}, e^{-ikx}] \psi_+ = [n_-, 0] + [\rho e^{ikx}, e^{-ikx}] \left(\frac{\phi_+}{\tilde{a}} - \tilde{\rho} \psi_- \right) = [n_-, 0] + [\rho e^{ikx}, e^{-ikx}] \left(\frac{m_- e^{ikx}}{\tilde{a}} - \tilde{\rho} n_- e^{-ikx} \right) = \left(n_-, \frac{m_-}{\tilde{a}} \right) \left(\begin{pmatrix} 1 & \rho e^{2ikx} & -\rho \tilde{\rho} \\ \rho e^{-2ikx} & 1 & -\tilde{\rho} e^{-2ikx} \end{pmatrix} \right) = \Phi_-(k) \left(\begin{pmatrix} 1 - \rho \tilde{\rho} & -\tilde{\rho} e^{2ikx} \\ \rho e^{-2ikx} & 1 \end{pmatrix} \right)
$$
• In short, we have a Riemann–Hilbert problem:

• Given $\rho(k)$ and x, find $\Phi_{\pm}(k)$ such that
• In short, we have a Riemann–Hilbert problem:

• Given $\rho(k)$ and x, find $\Phi_{\pm}(k)$ such that

 – $\Phi_{+}(k)$ is analytic in the upper half plane and $\Phi_{-}(k)$ is analytic in the lower half plane
• In short, we have a Riemann–Hilbert problem:

• Given $\rho(k)$ and x, find $\Phi_{\pm}(k)$ such that

 – $\Phi_{+}(k)$ is analytic in the upper half plane and $\Phi_{-}(k)$ is analytic in the lower half plane

 – For all real k, they satisfy the jump condition

 \[
 \Phi_{+}(k) = \Phi_{-}(k) \begin{pmatrix}
 1 - \rho(k)\rho(-k) & -\rho(-k)e^{-2ikx} \\
 \rho(k)e^{2ikx} & 1
 \end{pmatrix}
 \]
• In short, we have a Riemann–Hilbert problem:

• Given $\rho(k)$ and x, find $\Phi_{\pm}(k)$ such that

 – $\Phi_{+}(k)$ is analytic in the upper half plane and $\Phi_{-}(k)$ is analytic in the lower half plane
 – For all real k, they satisfy the jump condition

$$
\Phi_{+}(k) = \Phi_{-}(k) \begin{pmatrix}
1 - \rho(k)\rho(-k) & -\rho(-k)e^{-2ikx} \\
\rho(k)e^{2ikx} & 1
\end{pmatrix}
$$

 – They satisfy the asymptotic condition

$$
\Phi_{\pm}(k) \sim (1, 1) \quad \text{as} \quad k \to \infty
$$
• How do we recover q_0 from Φ_\pm?
• How do we recover q_0 from Φ_{\pm}?

• The key: we use the (numerically useful) expression

\[
0 = \partial_x^2 m_+ - 2ik \partial_x m_+ + q_0(x)m_+
\]
• How do we recover q_0 from Φ_{\pm}?

• The key: we use the (numerically useful) expression

$$0 = \partial_x^2 m_+ - 2ik \partial_x m_+ + q_0(x)m_+$$

• By matched asymptotics we derive

$$m_+(k; x) = 1 + \frac{q'_0(x)}{ik} + \mathcal{O}\left(\frac{1}{k^2}\right)$$
• How do we recover q_0 from Φ_\pm?

• The key: we use the (numerically useful) expression

\[0 = \partial_x^2 m_+ - 2ik \partial_x m_+ + q_0(x)m_+ \]

• By matched asymptotics we derive

\[m_+(k; x) = 1 + \frac{q_0'(x)}{ik} + \mathcal{O}\left(\frac{1}{k^2}\right) \]

- Thus as $k \to \infty$, $m_+ \to 1$ and $m_+'' \to 0$
• How do we recover \(q_0 \) from \(\Phi \)?

• The key: we use the (numerically useful) expression

\[
0 = \partial_x^2 m_+ - 2ik \partial_x m_+ + q_0(x) m_+
\]

• By matched asymptotics we derive

\[
m_+(k; x) = 1 + \frac{q_0'(x)}{ik} + \mathcal{O}\left(\frac{1}{k^2}\right)
\]

 – Thus as \(k \to \infty \), \(m_+ \to 1 \) and \(m_+'' \to 0 \)

• Thus we get

\[
q_0(x) = 2i \lim_{k \to \infty} km_+'(k; x) = 2i \frac{\partial}{\partial x} \lim_{k \to \infty} k\Phi_+(k)
\]
Time evolution
• Why bother moving from initial conditions to reflection coefficients?
• Why bother moving from initial conditions to reflection coefficients?
• Because time-evolution is trivial!
• Why bother moving from initial conditions to reflection coefficients?

• Because time-evolution is trivial!

• Suppose \(q \) satisfies

\[
qt + 6qq_x + q_{xxx} = 0 \quad \text{and} \quad q(0, x) = q_0(x)
\]
• Why bother moving from initial conditions to reflection coefficients?
• Because time-evolution is trivial!
• Suppose \(q \) satisfies

\[
q_t + 6qq_x + q_{xxx} = 0 \quad \text{and} \quad q(0, x) = q_0(x)
\]

• If \(q(0, x) = q_0(x) \) has reflection coefficient \(\rho(k) \)
• Then \(q(t, x) \) has reflection coefficient \(\rho(k) e^{8ik^3 t} \)
Inverse scattering for KdV

$q_0(x)$
Inverse scattering for KdV

$q_0(x)$ \hspace{3cm} \text{Direct transform} \hspace{3cm} \rho(k)$
Inverse scattering for KdV

\[q_0(x) \quad \text{Direct transform} \quad \rho(k) \]

\[\rho(k) e^{8i k^3 t} \]

Time evolution
Inverse scattering for KdV

$q_0(x)$ \quad \rightarrow \quad \rho(k)$

$q(t, x)$ \quad \leftarrow \quad \rho(k)e^{8ik^3t}$

Direct transform

Inverse transform

Time evolution
Inverse scattering for KdV

$q_0(x)$ \rightarrow \rho(k)$

$q(t, x) \leftrightarrow \rho(k)e^{8ik^3t}$

Direct transform

Inverse transform

Time evolution
In short, we have a Riemann–Hilbert problem that we want to solve numerically:

- **Given** \(\rho(k) \) and \(x \) and \(t \), find \(\Phi_\pm(k) \) such that
 - \(\Phi_+(k) \) is analytic in the upper half plane and \(\Phi_-(k) \) is analytic in the lower half plane
 - For all real \(k \), the satisfy the jump condition
 \[
 \Phi_+(k) = \Phi_-(k) \begin{pmatrix}
 1 - \rho(k) \rho(-k) & -\rho(-k) e^{-2ikx - 8ik^3t} \\
 \rho(k) e^{2ikx + 8ik^3t} & 1
 \end{pmatrix}
 \]
 - The satisfy the asymptotic condition
 \[
 \Phi_\pm(k) \sim (1, 1) \text{ as } k \to \infty
 \]
- Calculate
 \[
 q(t, x) = 2i \lim_{k \to \infty} k \Phi_+(k)
 \]
Scalar Riemann–Hilbert problems
• We have reduced calculating KdV to a Riemann–Hilbert problem on the real axis
• Just like Laplace's equation, we will map the problem to the unit circle
• Thus, we investigate numerical solution of the following scalar Riemann–Hilbert problem on the unit circle:
• We have reduced calculating KdV to a Riemann–Hilbert problem on the real axis
• Just like Laplace's equation, we will map the problem to the unit circle
• Thus, we investigate numerical solution of the following scalar Riemann–Hilbert problem on the unit circle:
 – Given a "nice" function $G(w)$ on the unit circle
 – Find a function Φ_+ analytic inside the disk and Φ_- analytic outside a disk
 – That satisfy the jump condition on the unit circle

\[
\Phi_+(w) = \Phi_-(w) G(w)
\]

 – and the asymptotic condition

\[
\Phi(\infty) = 1
\]
Input: a “nice” function G defined on the unit circle
Input: a “nice” function G defined on the unit circle

Output: two analytic functions, inside and outside the disk

$G(w)$

$\Phi^+(z)$

$\Phi^-(z)$
Input: a “nice” function G defined on the unit circle

Output: two analytic functions, inside and outside the disk

Equation: the relationship we want on the unit circle is

$$\Phi^+(w) = \Phi^-(w) G(w), \quad \Phi^-(\infty) = 1$$
Input: a “nice” function G defined on the unit circle

Output: two analytic functions, inside and outside the disk

Equation: the relationship we want on the unit circle is

$\Phi^+(w) = \Phi^-(w) G(w)$, $\Phi^-(\infty) = 1$

(For practical applications, G and Φ are matrix-valued)
Idea: express the unknown in coefficient space

\[\Phi^+(z) \]

\[\Phi^-(z) \]
Idea: express the unknown in coefficient space

\[\Phi^+(z) \quad \leftrightarrow \quad \Phi^-(z) \]

\[1 + \sum_{k=0}^{\infty} u_k z^k \]

\[1 - \sum_{k=-\infty}^{-1} u_k z^k \]
(In other words: Φ is $1 +$ the **Cauchy transform** of an unknown function u)
(In other words: Φ is $1 +$ the Cauchy transform of an unknown function u)

\[
\Phi(z) = 1 + \frac{1}{2\pi i} \oint \frac{u(w)}{w - z} \, dw \quad \text{for}
\]

\[
u(w) = \sum_{k=-\infty}^{\infty} u_k w^k
\]
• We now reformulate

\[\Phi^+(w) = \Phi^-(w)G(w) \]

in coefficient space:
• We now reformulate

\[\Phi^+(w) = \Phi^-(w) G(w) \]

in coefficient space:

\[1 + \sum_{k=0}^{\infty} u_k w^k = \left(1 - \sum_{k=-\infty}^{-1} u_k w^k \right) G(w) \]
We now reformulate

\[\Phi^+(w) = \Phi^-(w)G(w) \]

in coefficient space:

\[
1 + \sum_{k=0}^{\infty} u_k w^k = \left(1 - \sum_{k=-\infty}^{-1} u_k w^k \right) G(w) \Rightarrow
\]

\[
\sum_{k=0}^{\infty} u_k w^k + G(w) \sum_{k=-\infty}^{-1} u_k w^k = G(w) - 1
\]
We define the operator that selects the negative coefficients:

\[
I_\neg = \begin{pmatrix} I \\ 0 \end{pmatrix} = \begin{pmatrix} \cdots & 1 & 1 \\ 0 & 0 & \ddots \end{pmatrix}
\]
So that

- We define the operator that selects the negative coefficients:

\[
I_- = \begin{pmatrix} I & 0 \\ 0 & \end{pmatrix} = \begin{pmatrix} \vdots & 1 & 0 & 0 & \cdots \\ 1 & 0 & 0 & \cdots & \end{pmatrix}
\]

\[
I_- \begin{pmatrix} \vdots \\ u_{-2} \\ u_{-1} \\ u_0 \\ u_1 \\ u_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ u_{-2} \\ u_{-1} \\ 0 \\ 0 \\ 0 \\ \vdots \end{pmatrix}
\]
• We define the operator that selects the negative coefficients:

\[I_- = \begin{pmatrix} I & 0 \\ \end{pmatrix} = \begin{pmatrix} \vdots & 1 & 1 & 0 & 0 & \cdots \\ \end{pmatrix} \]

\[I_- = \begin{pmatrix} u_{-2} \\ u_{-1} \\ u_0 \\ u_1 \\ u_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ u_{-2} \\ u_{-1} \\ u_0 \\ u_1 \\ u_2 \\ \vdots \end{pmatrix} \]

• Similarly,

\[I_+ = \begin{pmatrix} 0 & I \\ \end{pmatrix} = \begin{pmatrix} \vdots & 0 & 0 & 1 & 1 & \cdots \\ \end{pmatrix} \]

\[I_+ = \begin{pmatrix} \vdots \\ u_{-2} \\ u_{-1} \\ u_0 \\ u_1 \\ u_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ 0 \\ 0 \\ u_0 \\ u_1 \\ u_2 \\ \vdots \end{pmatrix} \]
• Recall that multiplication by G in coefficient space is the Laurent operator

$$
\mathcal{L}[G] = \begin{pmatrix}
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \hat{G}_0 & \hat{G}_{-1} & \hat{G}_{-2} & \cdots \\
\cdots & \hat{G}_1 & \hat{G}_0 & \hat{G}_{-1} & \cdots \\
\cdots & \hat{G}_2 & \hat{G}_1 & \hat{G}_0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{pmatrix}
$$
• Thus our equation

\[
\sum_{k=0}^{\infty} u_k w^k + G(w) \sum_{k=-\infty}^{-1} u_k w^k = G(w) - 1
\]
• Thus our equation

$$\sum_{k=0}^{\infty} u_k w^k + G(w) \sum_{k=-\infty}^{-1} u_k w^k = G(w) - 1$$

Becomes

$$(I_+ + \mathcal{L}[G]I_-) \mathbf{u} = \mathbf{F}$$
• Thus our equation

\[
\sum_{k=0}^{\infty} u_k w^k + G(w) \sum_{k=-\infty}^{-1} u_k w^k = G(w) - 1
\]

Becomes

\[
(I_+ + \mathcal{L}[G]I_-) \mathbf{u} = \mathbf{F}
\]

where

\[
\mathbf{u} = \begin{pmatrix}
\vdots \\
\hat{G}_2 \\
\hat{G}_1 \\
\hat{G}_0 - 1 \\
u_0 \\
u_1 \\
u_2 \\
\vdots
\end{pmatrix}
\quad \text{and} \quad
\mathbf{F} = \begin{pmatrix}
\vdots \\
\hat{G}_2 \\
\hat{G}_1 \\
\hat{G}_0 - 1 \\
\vdots
\end{pmatrix}
\]
• Or in matrix form, the operator

\[I_+ + \mathcal{L}[G]I_- \]

becomes:
• Or in matrix form, the operator

\[I_+ + \mathcal{L}[G]I_- \]

becomes:

\[
\begin{pmatrix}
\ddots \\
0 & 0 \\
0 & 1 \\
1 & 1 \\
\ddots \\
\end{pmatrix} +
\]
• Or in matrix form, the operator

\[I_+ + \mathcal{L}[G]I_- \]

becomes:

\[
\begin{pmatrix}
\vdots \\
0 \\
0 \\
1 \\
1 \\
\vdots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\hat{G}_0 \\
\hat{G}_{-1} \\
\hat{G}_{-2} \\
\vdots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\hat{G}_1 \\
\hat{G}_0 \\
\hat{G}_{-1} \\
\vdots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\hat{G}_2 \\
\hat{G}_1 \\
\hat{G}_0 \\
\vdots
\end{pmatrix}
\]
• Or in matrix form, the operator

\[I_+ + \mathcal{L}[G]I_- \]

becomes:

\[
\begin{pmatrix}
\cdots & 0 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
\hat{G}_0 & \hat{G}_1 & \hat{G}_2 \\
\hat{G}_1 & \hat{G}_0 & \hat{G}_1 \\
\hat{G}_2 & \hat{G}_1 & \hat{G}_0 \\
\end{pmatrix}
\begin{pmatrix}
\cdots & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}
\]
• Or in matrix form, the operator

\[I_+ + \mathcal{L}[G]I_- \]

becomes:

\[
\begin{pmatrix}
\vdots & 0 & 0 & \hat{G}_0 & \hat{G}_{-1} & \hat{G}_{-2} \\
0 & \hat{G}_1 & \hat{G}_0 & \hat{G}_{-1} \\
1 & \hat{G}_2 & \hat{G}_1 & \hat{G}_0 & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
1 \\
1 \\
0 \\
0 \\
\vdots
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\hat{G}_1 & \hat{G}_0 & \hat{G}_{-1} & \ddots & \ddots & \ddots \\
\hat{G}_2 & \hat{G}_1 & \hat{G}_0 & \ddots & \ddots & \ddots \\
\hat{G}_3 & \hat{G}_2 & \hat{G}_1 & 1 & \ddots & \ddots \\
\hat{G}_4 & \hat{G}_3 & \hat{G}_2 & 1 & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots
\end{pmatrix}
\]
• In practice, we approximate G by a finite Laurent series:

$$G(w) \approx \sum_{k=\alpha}^{\beta} \hat{G}_k w^k$$
In practice, we approximate G by a finite Laurent series:

$$G(w) \approx \sum_{k=\alpha}^{\beta} \hat{G}_k w^k$$

Thus

$$I_+ + \mathcal{L}[G]I_-$$

becomes a banded operator:

$$
\begin{pmatrix}
\vdots & \vdots & \vdots & \vdots \\
\vdots & \hat{G}_1 & \hat{G}_0 & \hat{G}_{-1} \\
\hat{G}_2 & \hat{G}_1 & \hat{G}_0 & \vdots \\
\hat{G}_2 & \hat{G}_1 & 1 & \hat{G}_2 \\
\hat{G}_2 & \hat{G}_1 & 1 & \ddots \\
\end{pmatrix}
$$
• The operator is bounded (by the assignment) and stable:

\[\| [P_n (I_+ + L[G] I_-) P_n^T]^{-1} \| \]

is bounded as \(n \to \infty \)

- **Excercise:** Show that the operator is bounded, and use stability to prove convergence when the operator is invertible

- Proving stability is beyond the scope of the course, but follows from the Toeplitz structure of the operator