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QCMAP: An Interactive Web-Tool for Performance Diagnosis
and Prediction of LC-MS Systems
Taiyun Kim, Irene Rui Chen, Benjamin L. Parker, Sean J. Humphrey, Ben Crossett,
Stuart J. Cordwell, Pengyi Yang,* and Jean Yee Hwa Yang*

The increasing role played by liquid chromatography-mass spectrometry
(LC-MS)-based proteomics in biological discovery has led to a growing need
for quality control (QC) on the LC-MS systems. While numerous quality
control tools have been developed to track the performance of LC-MS systems
based on a pre-defined set of performance factors (e.g., mass error, retention
time), the precise influence and contribution of the performance factors and
their generalization property to different biological samples are not as well
characterized. Here, a web-based application (QCMAP) is developed for
interactive diagnosis and prediction of the performance of LC-MS systems
across different biological sample types. Leveraging on a standardized HeLa
cell sample run as QC within a multi-user facility, predictive models are
trained on a panel of commonly used performance factors to pinpoint the
precise conditions to a (un)satisfactory performance in three LC-MS systems.
It is demonstrated that the learned model can be applied to predict LC-MS
system performance for brain samples generated from an independent study.
By compiling these predictive models into our web-application, QCMAP
allows users to benchmark the performance of their LC-MS systems using
their own samples and identify key factors for instrument optimization.
QCMAP is freely available from: http://shiny.maths.usyd.edu.au/QCMAP/.

Liquid chromatography-mass spectrometry (LC-MS) is a ma-
turing technology for high-throughput proteomics. Given the
increasing role of LC-MS in biological discovery and clinical ap-
plications, quality control (QC) of LC-MS systems has become a
prerequisite for MS-based proteomics experiments.[1] Numerous
publicly available LC-MS QC tools have been developed[2] and
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many multi-user, core facilities also
implement QC measures as part of
their routine workflows.[3] Examples
of popular public QC tools include
MSQC,[4] QuaMeter,[5] SIMPATIQCO,[6]

SPROCoP,[7] qcML for openMS,[8] and
PTXQC.[9] While these tools excel in
assessment of overall performance of
a LC-MS system, few of them offer
an interactive and diagnostic view of
individual performance factors such
as mass error, percentage of MS/MS
identified, and retention time. To
optimize the instrument for best per-
formance, it is particularly useful to
analyze the performance factors leading
to (un)satisfactory performance of the
LC-MS system. Indeed, several recent
LC-MS QC pipelines have taken into
account the analysis and visualization
of individual performance factors.[10,11]

However, these tools often restrict the
analysis to a set of control samples such
as those from clinical proteomic tumor
analysis consortium (CPTAC).[12] The
precise characterization of factors that
influence the performance of multiple

LC-MS systems and their generalization properties across
different biological sample types and organisms is still lacking.
Here, we developed an interactive web-based application for

quality control of mass spectrometry-based proteomics systems
(QCMAP). In particular, we trained predictive models on a
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Figure 1. Schematic illustration of QCMAP web-application workflow.

standardized HeLa cell protein sample to characterize a panel of
commonly utilized performance factors and their contribution
to the performance of LC-MS systems. We demonstrated that
the model trained on the HeLa sample can be applied to pre-
dict LC-MS system performance in analyzing brain samples ob-
tained from mice in an independent study. Taken together, the
proposed web-application provides i) overall performance bench-
mark, ii) interactive analysis of performance factors for multiple
LC-MS systems, and also iii) predictivemodels that are generaliz-
able across different species and can be applied to assess LC-MS
systems using diverse biological sample types.
The workflow of QCMAP is shown in Figure 1. Key compo-

nents in QCMAP are described in detail below.
First, to train a set of models for performance assessment of

multiple LC-MS systems, we compiled a total of 223 datasets
generated from a standardized sample (1 μg HeLa cell protein
followed by tryptic digestion) by Sydney Mass Spectrometry
core facility using three state-of-the-art LC-MS instruments—Q
Exactive HF (QEHF), QEplus, and QEClassic (QECl) (Table S2,
Supporting Information). Raw LC-MS data (Figure 1A) were first
processed by the MaxQuant software[13] (Figure 1B) and the text
outputs (13 plain text files) for each dataset were collected to form
a performance benchmark database (Figure 1C). To pinpoint the
performance of LC-MS systems, 11 commonly utilized perfor-
mance factors[14] were extracted from each dataset in the database
(Figure S1, Supporting Information). The 11 performance factors
are listed in Table S1, Supporting Information, and their values
were standardized as described in the model building section
of the supplementary file. Next, by using the number of unique
peptides identified in the standardized HeLa sample as a surro-
gate of performance of each LC-MS system, a set of multivariate
linear models (ridge regression) were trained to learn the relative
importance of these 11 performance factors in contribution to
the overall performance of the three LC-MS systems (Figure 1D;
Figure S2 and S3A, Supporting Information). Note that high pep-

tide identification rates require optimal performance across the
entire platform including chromatography, ionization, ion
transfer, precursor detection and selection, fragmentation and
MS/MS detection etc. Hence, a simplistic measure of unique
peptides is beneficial for rapid assessment of the entire platform
by all users. Ridge regression is a highly interpretable statistical
model and an ideal choice for assessing the importance of the
11 performance factors provided they are scaled to a similar
numeric range.
Second, for an interactive diagnosis of instrument and LC-MS

systems, QCMAP allows users to simultaneously visualize and
interpret data by providing an overall historic view and a set of
boxplots for individual performance factors (Figure 1E). While
the overall historic view enables multiscale to summarize instru-
mentation performance over time, boxplots of performance fac-
tors illustrate how changes of other factors could affect a LC-
MS system. We have also generated a ridge regression model for
each instrument for accurate diagnostics of the instrument and
assessed the contribution of each feature. The contributing fea-
tures for each model were assessed and showed high correlation
between instruments (Figure S3B, Supporting Information).
To utilize the predictivemodels for performance assessment, a

user can upload the MaxQuant output files (either as a zip file or
individual files) and a newly input dataset will instantly appear as
a red bar compared to the existing database in the histogram plots
(Figure 1E). The top panel of Figure 1E shows the historical plot
from weekly, monthly to yearly. This provides a quick summary
view of the number of "Peptide Sequences Identified." The hor-
izontal line in the bar plot indicates the different thresholds for
different instruments. The selected bar in the plot is highlighted
green when the red bar is clicked. The user can observe the value
of features in the boxplot for the corresponding file selected from
the bar plot (as shown in the middle panel of Figure 1E).
On the 11 boxplots, the five latest datasets by date are shown

in color gradient (yellow to brown) to help the user to identify
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Figure 2. Prediction analysis of the ten mouse brain samples generated from LC-MS using QECl instrument. A) Rigid regression prediction scores of
mouse brain samples (x-axis) and the number of peptides identified from each sample (y-axis). Correlation and p-value are calculated from a linear fit of
the Rigid regression prediction scores and the actual number of peptides identified. B) Scatter plot of percentage of MS/MS identified against FWHM.

the reason for any failure if a particular dot is outside the nor-
mal range of the boxplot. For example, if “Mass precision [ppm]”
shows a decreasing value along with the color gradient for the
last five readings, then that indicates a suboptimal performance
of the instrument on mass detection. The bottom panel of Fig-
ure 1E is the comparison of different instruments for each
parameter.
Thirdly, the predictivemodels trained fromQCMAP are gener-

alizable to different biological samples. To demonstrate this, we
generated ten datasets on a QECl instrument from mouse brain
samples with different levels of quality (PRIDE: PXD010307).
Four datasets were acquired directly after the instrument was
cleaned and are high-quality while six datasets were acquired on
a dirty instrument producing different degrees of lower quality
data. By applying our model that we trained for the QECl using
HeLa samples, we accurately predicted the performance of the in-
strument with the four datasets acquired on a clean instrument
having higher predicted scores using only the 11 performance
factors in each brain sample (Figure 2A). Furthermore, the lower
quality data correspond to lower percentage of MS/MS identi-
fied while the FWHM remains largely unchanged for all datasets
(Figure 2B), indicating the drop of performance is due to poorer
mass spectral quality and not reduced chromatography perfor-
mance. These results demonstrate that the trained models from
QCMAP are predictive to diverse biological samples and is not
locked or limited to standard quality control sample such as the
HeLa samples. As such, this enables users to provide their own
data generated from different biological samples to assess the
performance of their LC-MS system. The generalization property
of the trained predictivemodels greatly increases the applicability
of QCMAP.
Current models in QCMAP were trained for datasets from

data-dependent acquisition (DDA) method. However, additional
models can be trained and included for datasets acquired from
other methods (e.g., data-independent acquisition (DIA)) on
any instrument platform supported by MaxQuant. Peptide
load is an important consideration when assessing instrument
performance on proteome depth. Although QCMAP does not
restrict the peptide load used for LC-MS system performance
assessment, a consistent peptide load is required to assess

instrument performance over longer periods. We also note that
QCMAP is dedicated to rapid QC and monitoring of instrument
performance and not the sample. Hence, the identical sample
needs to be acquired over time. Last, while we have demonstrated
that power of QCMAP in isolating performance factors on the
LC and the MS system using the mouse brain dataset in this
study, in our future work, we aim to generate additional synthetic
datasets that capture unique performance factors associated
with LC and MS systems; and generalizing the tool for samples
obtained from affinity-purification (AP)-MS.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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