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Abstract—Class labels are required for supervised learning but
may be corrupted or missing in various applications. In binary
classification, for example, when only a subset of positive in-
stances is labeled whereas the remaining are unlabeled, positive-
unlabeled learning is required to model from both positive and
unlabeled data. Similarly, when class labels are corrupted by
mislabeled instances, methods are needed for learning in the
presence of class label noise. Here we propose AdaSampling, a
framework for both positive-unlabeled learning and learning with
class label noise. By iteratively estimating the class mislabeling
probability with an adaptive sampling procedure, the proposed
method progressively reduces the risk of selecting mislabeled
instances for model training and subsequently constructs highly
generalisable models even when a large proportion of mislabeled
instances is present in the data. We demonstrate the utilities
of proposed methods using simulation and benchmark data,
and compare them to alternative approaches that are commonly
used for positive-unlabeled learning and/or learning with label
noise. We then introduce two novel bioinformatics applications
where AdaSampling is used to (1) identify kinase-substrates from
mass spectrometry-based phosphoproteomics data and (2) predict
transcription factor target genes by integrating various next-
generation sequencing data.

Index Terms—Positive-unlabeled learning, Class label noise,
Adaptive sampling, Bioinformatics, Kinase substrate prediction,
Transcription factor target gene prediction.

I. INTRODUCTION

SUPERVISED learning algorithms traditionally assume
perfectly and fully specified class labels to build models

that generalise to unseen data. In various real-world applica-
tions, however, the generalisation of classification models is
often negatively affected by partial and/or mislabeled class
labels [1], [2]. In bioinformatics applications, for example,
defining genes that are unrelated to a genetic disease can
be difficult as there could be unknown association between
genes and the disease [3]. Similarly, characterising target genes
of a transcription factor (TF) by its genome-wide binding
profile is often complicated by false positive/negative binding
sites used as class labels [4]. In binary classification, when
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only positive instances are available but negative instances are
absent due to a lack of domain knowledge and/or definition [5],
[6], positive-unlabeled learning techniques are often employed
to model from positively labeled instances augmented with
unlabeled instances that comprise of both unknown positive
and negative instances [7], [8], [9]. When both positive and
negative instances are available, but corrupted by labelling
errors (i.e., mislabeling occurs), methods that implicitly or
explicitly handle label noise should be utilised [10], [11].

While positive-unlabeled learning and learning with the
presence of label noise are usually formulated and treated
differently, they are nonetheless similar in the sense that both
can be viewed as learning with ambiguity in the observed class
labels [12]. Here, we extend our recently proposed adaptive
sampling (AdaSampling) approach to handle both scenarios
in a unified framework [13]. Akin to wrapper-based feature
selection procedure [14], AdaSampling can be coupled with
any probabilistic classifier to iteratively estimates the proba-
bility that each initial label is mislabeled. At each iteration,
resampling from the initial data set is performed where the
probability of exclusion of an instance into the new data set
is equal to the estimated probability of the instance being
mislabeled. This process continues with AdaSampling “wraps”
around the classification model and prediction uncertainties for
each instance are incorporated for each subsequent iterations
of sampling to gradually reduce the probability of selecting
instances that have a higher chance to be mislabeled for
training the classifier (Figure 1).
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Fig. 1. A schematic illustration of AdaSampling framework for handling both
positive unlabeled learning and learning with noisy class labels.

AdaSampling is noise-robust in that it adheres to a
bootstrap-like sampling procedure. Yet, unlike common robust
methods, AdaSampling explicitly handles unlabeled instances
and/or class label noise but does not require bias estimation,
nor does it impose on a pre-specified threshold for negative
instance identification or noisy instance filtering as are often
required in other approaches.

The rest of the paper is organised as follows. In Section
II, we review related work in positive-unlabeled learning and
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learning in the presence of class label noise. In Section
III, we introduce the AdaSampling framework and formu-
late AdaSampling-based approach with a single model and
an ensemble of models for positive-unlabeled learning and
learning with noisy labels. In Section IV, we describe the
experimental designs and setups for simulation studies and
performance comparison with other generic approaches that
can be applied in conjunction with a wide range of classifica-
tion algorithms using real-world benchmark datasets. Section
V introduces and formulates two bioinformatics problems into
positive-unlabeled learning and learning with class label noise,
respectively. Section VI presents experimental results from
simulation studies, performance comparisons, and applications
in the above two bioinformatics problems. Section VII con-
cludes and outlines future work.

II. RELATED WORK

Positive-unlabeled learning methods can be roughly cate-
gorised into (i) heuristic, (ii) bias-based, (iii) one-class, and
(iv) robust approaches.

Heuristic approaches often rely on partitioning the learn-
ing process into two steps where in the first step negative
instances are identified using heuristics such as information
retrieval techniques [15], Bayesian models [16], Expectation-
Maximization [17], [18], or domain-specific knowledge [3],
and then in the second step a final classification model is
trained using labeled positive instances and unlabeled negative
instances identified by the heuristic step. A key disadvantage
of most heuristic approaches is the requirement of a pre-
defined threshold to determine either to include or exclude
a potential negative instance obtained from unlabeled data for
final model training. The lack of formality and the need to find
an optimal threshold in many heuristic methods for negative
instance selection could greatly affect whether the final model
will generalise to unseen data.

In contrast, bias-based approaches treat all unlabeled data as
negative instances and employ a traditional learning algorithm
but introduce a “bias to weight the classification and/or cost
function towards the positive class [19]. Here, bias-based
models use a reduced penalty for positive predictions made
in unlabeled data. This approach was utilised for biased SVM
[16], logistic model [20], naïve Bayes classification [21], en-
semble learning [22], and have been subsequently formulated
into a general framework that can be applied using a large
selection of classification models [1]. Nevertheless, bias-based
approaches often rely on training data for estimating the “bias"
to be applied for model correction. Hence, part of the training
data needs to be reserved for bias estimation and cannot
be directly used for training the classification model. This
is unattractive especially when the amount of training data
is limited. Furthermore, the “bias estimation” assumes that
a reasonably informative model is trained in the first place
without accounting for unlabeled positive instances. This may
not be the case when large number of unknown positive
instances are present which could significantly affect on the
“bias estimation”, causing under- or over-correction and hence
poor generalisation to unseen data.

Positive-unlabeled learning can also be treated as a one-class
classification problem where only positive labels are used for
training a classification model [23]. This has given rise to a
set of approaches that adhere to the same principle of one-
class classification but tuned for positive-unlabeled learning
[24], [6], [25]. The drawback of adjusting one-class learning
methods for positive-unlabeled learning is that they generally
rely on generative classification models and ignore unlabeled
data, and therefore need more labeled positive instances to
achieve comparable performance in comparison to methods
that effectively utilise both labeled and unlabeled instances.

Recently, methods based on bootstrap sampling were pro-
posed to create robust models for positive-unlabeled learning
[26], [27]. In such settings, unlabeled instances are treated
as negative instances and bootstrap sampling is performed on
unlabeled instances to create random subsets that are subse-
quently concatenated with labeled positive instances to train
base classifiers and form a robust ensemble. These approaches
exploit the property of bagging-like procedures [28] by taking
advantage of instability caused by the random inclusion of
unlabeled positive instances. However, unlabeled instances are
not formally treated, and therefore still carry noise which
propagates and affects the performance of the ensemble model.

Methods for classification with class label noise [29] are
generally categorised into (i) noise-robust methods, (ii) data
cleansing approaches, and (iii) noise modelling approaches [2].

Many noise-robust methods in noisy label learning make
use of modified bagging [30] or boosting procedures [31],
[32] and are conceptually similar to robust methods used for
positive-unlabeled learning. Classification models that utilise
certain loss functions, e.g. least-squares loss, can be robust
to random classification noise (RCN) [33]. However, these
methods do not explicitly handle the class label noise. Class
label noise that propagate through classification models may
distort the decision boundary especially when they violate
the RCN assumption such as in asymmetric RCN where the
prevalence of random label noise differs in each class [34].

Data cleaning approach formulates the noise label learning
problem similarly as heuristic approach in positive-unlabeled
learning in that an initial step is performed to identify, remove
or relabel mislabeled instances, and a final classification model
is trained using cleansed data [35]. For instance, outlier detec-
tion methods could be used for label noise identification [36],
a classification model can be trained to identify mislabeled
instances [37], [38], a clustering model can be used for
weighting instances for classification [39], or a combination
of unsupervised and supervised models can be used to find
inconsistency in data labels and distributions for detecting
mislabeled instances [40]. Since using a single model for
data filtering may remove a large number of correctly labeled
instances that are particularly close to the decision boundary,
and therefore critical for training a highly generalisable model,
ensemble approaches were proposed to improve the robustness
for data filtering by majority or consensus voting [35], [41].
Similar to the heuristic approach used in positive-unlabeled
learning, data cleansing methods in noisy label learning either
require a threshold to be determined for instance filtering or
rely on the prediction threshold of a classification model. This
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is especially unattractive when there is a large number of
mislabeled instances and a model trained on the noisy data
need to make a one-time decision on which instances to retain
for subsequent training of a final model.

An alternative approach to learning with label noise is
to model the distribution of noisy instances and construct
modified kernels or surrogate loss functions [42], [43], [44].
These approaches have strong theoretical supports and perform
better when the underlying assumptions of class label noise
hold [45]. But they require modifying the implementation of a
classification algorithm and may not be generically applicable
to all types of classification algorithms.

Finally, positive-unlabeled learning and learning with class
label noise are related to partial label learning and learning
with class imbalanced data. In partial label learning, each in-
stance is supplied with multiple labels where only one of them
is correct [46]. The problem of identifying the correct label
can be viewed as removing incorrect labels associated with
each instance, thus error-correcting [47]. In imbalanced data
classification [48], where instances from one class significantly
outnumber the other class, cost-sensitive metrics are often
introduced to balance the instances from both majority and
minority classes [49]. Alternatively, over-sampling approach
can be applied to generate synthetic instances from the mi-
nority class [50] or under-sampling approach can be used to
identify most representative instances from the majority class
while filtering noisy instances [51], [52].

III. ADASAMPLING

Let us denote the noisy training data as Dρ and comprises
of instances {xi, yi } ∈ X × {−1,+1} and (i = 1, . . . , n).
In a binary classification setting with asymmetric random
classification noise (RCN) [11], specific noise rates ρ+ =
P(Y ′ = −1|Y = +1) and ρ− = P(Y ′ = +1|Y = −1)
are assumed to be associated with instances observed from
negative and positive classes, respectively. It is assumed that
ρ+, ρ− ∈ [0, 1) and ρ++ρ− < 1 so that there are less incorrectly
labeled instances than correctly labeled instances. Positive
unlabeled learning can be viewed as discriminating positive
and negative instances from a dataset with negative instances
been contaminated by hidden positive instances, and therefore
reduces to a special case of learning with class label noise
where ρ+ ∈ [0, 1), ρ− = 0. Note that ρ± are the aggregated
statistics of ε±i = P(y′i = ∓1|yi = ±1) which are the key
quantities to be estimated in both problems.

A. Problem Formulation

It is not hard to see that the prediction uncertainties of a
probabilistic model for each instance 1 − P( ŷi |xi, Dρ) is an
estimator of ε±i in that:

ε̂+i = P( ŷi = −1|xi, yi = +1, Dρ)
= 1 − P( ŷi = +1|xi, yi = +1, Dρ) (1)

ε̂−i = P( ŷi = +1|xi, yi = −1, Dρ)
= 1 − P( ŷi = −1|xi, yi = −1, Dρ). (2)

Training a probabilistic classification model on the noisy
data allows class label prediction for each instance to be made
as a posterior probability P( ŷi |xi, Dρ) = predict(hθ (Dρ), xi).
Classification-based data cleaning methods filter instances
based on the estimation of ε±i by 1 − P( ŷi |xi, Dρ) and a
threshold defined for ε±i on whether to retain each instance i.
Due to potentially large amount of noisy labels may present in
training data Dρ, the estimation of ε±i may not be accurate and
filtering instances based on their ε±i suffers from a high risk of
removing instances that are particularly close to the decision
boundary and therefore reduce the generalisation power of the
classification model trained on the cleansed data.

AdaSampling mitigates this by resampling from Dρ initially
with uniform probability 1/n and trains a given classification
model hθ,0(Dρ,0) that iteratively updates the training dataset
Dρ,k (k is the index of iterations) by weighted sampling
from Dρ with updated probability of mislabeling ε±

i,k
for each

instance. Note that sampling probabilities for instances in posi-
tive and negative classes are normalised so that

∑n+

i=1 ε
−
i,k
/n+ =∑n−

i=1 ε
+
i,k
/n− = 1/2 where n+ and n− are the numbers of posi-

tive and negative instances in Dρ, respectively. The probability
normalisation procedure allows similar number of positive
and negative instances to be selected and therefore robust to
datasets with imbalanced class distribution [48]. The weighted
sampling with respect to the normalised probabilities reduces
the risk of selecting potentially mislabeled instances without
instance filtering.

B. AdaSampling-Based Learning Models

AdaSampling can be utilised in conjunction with various
probabilistic classification algorithms for positive-unlabeled
learning and/or learning with class label noise. As illustrated in
the schematic diagram (Figure 1), the AdaSampling procedure
wraps around a classification model to iteratively estimate ε±

i,k
and subsequently update Dρ,k . A criterion of:

1
n

n∑
i=1

���pk ( ŷi |xi, Dρ,k ) − pk−1( ŷi |xi, Dρ,k−1)��� < δ (3)

can be utilised to summarise the predictions for all instances
in Dρ in iteration k compared to k −1 and terminate if overall
change is smaller than δ. We set δ to be 0.01, requiring smaller
than 1% change in mean predicted probabilities of all instances
for the process to terminate. The model from the final iteration
is used to classify each instance in Dρ or any unseen data
drawn from the same distribution. Algorithm 1 summarises
AdaSampling-based single classification model in pseudocode.

AdaSampling can also be extended for ensemble learning,
in which the estimates ε±

i,k
from the last iteration k can be used

to sample from Dρ multiple times to create multiple training
datasets D`

ρ,k
, (` = 1, . . . , L). This allows for creating L base

models hl
θ,k

(D`
ρ,k

) each trained on a different sample of the
original dataset for ensemble prediction. The key advantage of
this procedure is to make effective use of instances in Dρ and
avoid potential high variance introduced by training a single
classification model. Algorithm 2 summarises AdaSampling-
based ensemble of models in pseudocode.
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Algorithm 1: AdaSampling-based single model
Data: Training data Dρ

Result: Output ŷ
1 ε±

i,0 ← 0; // initialise likelihood of label flip
2 Dρ,0 ← sampling(Dρ, ε±

i,0); // sampling w.r.t to ε±
i,0

3 P (̂y|X) ← 0;
4 k ← 0;
5 do
6 // train a model and classify all instances
7 P( ŷ1 |x1, Dρ,k ), . . . , P( ŷn |xn, Dρ,k ) ←

predict(hθ,k (Dρ,k ),X);
8 // update likelihood of label flip using Eq. 1 and 2
9 ε±

i,k
← 1 − P( ŷi |xi) ;

10 Dρ,k ← sampling(Dρ, ε±
i,k

);
11 if Eq. 3 > δ then
12 k ← k + 1;
13 end
14 while Eq. 3 > δ;
15 ŷ← classify(hθ,k (Dρ,k ),X);

Algorithm 2: AdaSampling-based ensemble of models
Data: Training data Dρ

Result: Output ŷ
1 ε±

i,0 ← 0; Dρ,0 ← sampling(Dρ, ε±
i,0);

2 P (̂y|X) ← 0; k ← 0;
3 do
4 P( ŷ1 |x1, Dρ,k ), ..., P( ŷn |xn, Dρ,k ) ←

predict(hθ,k (Dρ,k ),X);
5 ε±

i,k
← 1 − P( ŷi |xi, Dρ,k ) ;

6 Dρ,k ← sampling(Dρ, ε±
i,k

);
7 if Eq. 3 > δ then
8 k ← k + 1;
9 end

10 while Eq. 3 > δ;
11 // create an ensemble of models hE

θ ← ∅;
12 for l ∈ 1...L do
13 Dl

ρ,k
← sampling(Dρ, ε±

i,k
);

14 hE
θ ← hE

θ ∪ hl
θ,k

(Dl
ρ,k

);
15 end
16 ŷ← classify(hE

θ ,X);

C. Classification Models

AdaSampling is a generic framework and can be applied
with a probabilistic model that measures the posterior prob-
ability P(y |x, D). Here we selected four types of commonly
used classification algorithms including radial kernel support
vector machine (SVM), k-nearest neighbour (kNN), logistic
regression (Logit), and linear discriminant analysis (LDA) and
thus covers both linear and nonlinear classifiers as well as
eager and lazy learning models. Specifically, the nonlinear lazy
model kNN estimates the posterior probability as follows:

P( ŷ = 1|x, D) =
1
K

∑
τ∈N

I (yτ = 1) (4)

where yτ is the class label of an instance that is within a
neighbourhood N of x (defined by Euclidean distance in this
study), and K is a pre-defined size of N .

For radial kernel SVM, a nonlinear eager learning model,
the posterior probability is estimated by Platt’s method [53]:

P( ŷ = 1|x, D) =
1

1 + exp(A × f (x) + B)

f (x) = β +
∑
τ∈S

ατ exp(−γ | |x − xτ | |22 ) (5)

where S is the support vector set and A and B are parameters
(estimated by maximum likelihood) of a Sigmoid link function
that converts the output f (x) from the SVM into a probability.

For Logit, a parametric linear model, the posterior proba-
bility is estimated using a logistic function:

P( ŷ = 1|x, D) =
eβ0+β1x

1 + eβ0+β1x (6)

and when predictive variables in the data are approximately
normal, an LDA can be used to better capture this information
by estimating the posterior probability as follows:

P( ŷ = 1|x, D) =
n+ f +(x)

n+ f +(x) + n− f −(x)
(7)

where f +(x) and f −(x) are the density functions for positive
and negative classes, respectively, defined as follows:

f ±(x) =
1

(2π)p/2 |Σ |1/2
exp

(
−

1
2

(x − µ±)TΣ−1(x − µ±)
)

(8)

IV. EVALUATION AND BENCHMARK

A. Synthetic Datasets

Synthetic datasets were created to simulate the scenarios
of positive-unlabeled learning and learning with class label
noise. These were used to investigate the behaviour of the
AdaSampling procedure. Specifically, for positive-unlabeled
learning, we randomly generated 100 positively labeled in-
stances and 400 unlabeled instances comprising 100 unlabeled
positive instances and 300 unlabeled negative instances (ρ+ =
0.5; ρ− = 0). Each sample is represented by two features
and for positive instances the two features were created from
N (µ = 6, σ2 = 1) whereas for negative instances they are from
N (µ = 4, σ2 = 1). The goal is to create a classification model
that is capable of classifying data consisting of labeled and
unlabeled positive instances and unlabeled negative instances.

In the case of learning with class label noise, we generated
100 positive instances each described by two features drawn
independently from N (µ = 6, σ2 = 1) and 300 negative
instances each described by two features drawn independently
from N (µ = 4, σ2 = 1). We subsequently introduced 50
positive instances with their class label flipped to the negative
class and 100 negative instances with their class label flipped
to the positive class (ρ+ = 1/3; ρ− = 1/4). The aim is
to recover the true class labels for mislabeled instances and
correctly classify both positive and negatives instances in the
dataset. Table I summarises synthetic data used for assessing
AdaSampling in these two scenarios.
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TABLE I
SYNTHETIC DATA FOR ADASAMPLING IN POSITIVE-UNLABELED

LEARNING (PU) AND LEARNING WITH CLASS LABEL NOISE (LN).

Dataset n+o , n
−
o ,m Setup Task

Synthetic I 200, 300, 2 ρ+=1/2; ρ−=0 PU
Synthetic II 150, 400, 2 ρ+=1/3; ρ−=1/4 LN

B. Benchmark Datasets
To compare the proposed AdaSampling-based approach for

positive-unlabeled and label noise learning with other com-
monly used alternative approaches, we obtained six benchmark
datasets from UC Irvine Machine Learning Repository [54]
that cover a range of sample and feature sizes. These include
breast cancer diagnosis (referred to as “Breast”), predicting
free electrons in the ionosphere (“Ionosphere”), sonar predic-
tion of mines vs. rocks (“Sonar”), the Wisconsin database of
breast cancer (“WDBC”), the Pima Indians diabetes dataset
(“Pima”), and the spam e-mail database (“Spam").

To simulate positive-unlabeled learning scenarios, we ran-
domly flipped 1/2, 2/3 or 3/4 of instances in the positive
class to the negative class and treated them with the rest of
negative instances as unlabeled instances in each dataset. This
gives three experimental setups that we refer to as “easy”,
“median” and “hard” for each dataset on which the evaluation
experiments were performed. To simulate learning with class
label noise, we also created three setups where 35% and 15%
(easy); 40% and 20% (median); and 50% and 30% (hard) of
positive and negative instances were flipped to their opposite
class, respectively. Table II shows the details of datasets and
configurations used for benchmark comparison. The notation
n+o and n−o refer to the sizes of positive and negative instances
with respect to the true labels.

TABLE II
SUMMARY OF DATASETS AND CONFIGURATIONS USED FOR

POSITIVE-UNLABELED (PU) AND CLASS LABEL NOISE (LN) LEARNING.

Dataset n+o , n−o , m ρ+ ρ− Task Level
Breast 239, 444, 9 0.5 0 PU easy
Inonsphere 126, 225, 34 2/3 0 PU median
Sonar 97, 111, 60 × 0.75 0 PU hard
WDBC 212, 357, 32 0.35 0.15 LN easy
Pima 268, 500, 8 0.4 0.2 LN median
Spam 1813, 2788, 57 0.5 0.3 LN hard

C. Performance Comparison
We compared AdaSampling-based single model (“AdaSin-

gle”) and ensemble of models (“AdaEnsemble”) with other
commonly used generic approaches that can be applied to
a wide range of classification algorithms. Specifically, for
comparison in positive-unlabeled learning settings, we im-
plemented bias-based approach (denoted as “BiasModel”)
described in [1] and bagging-like approach (“BagModel”)
described in [26]. For BiasModel, aligned with [1], we used
20% of the training dataset for estimating a bias factor that
was used to correct for the final predictions. For BagModel, we
implemented the procedure described in [26] where a bootstrap
sample from unlabeled instances were drawn and combined
with labeled positive instances for prediction.

For comparison in learning with class label noise we imple-
mented the filtering model (“FilterModel”) [37] and a bagging-
like subsampling (“SubsampleBag”) as described in [30].
The FilterModel used all instances and their provided class
labels to train an initial classifier. Instances that are labeled
as positive but predicted as negative and vice versa by the
initial classifier were filtered to remove potentially mislabeled
instances. The remaining data were used to train a final
model for prediction. SubsampleBag approach is similar to
Bagging but subsampling randomly 60% of the original data.
AdaEnsemble, BagModel, and SubsampleBag are ensemble-
based approaches and for all ensemble-based approaches the
number of base classifiers were set to 50.

In all comparisons, the classification results from each
original dataset without introducing label-flip were used as
gold standard (“Original”), and the classification results after
introducing label-flip but without applying any form of cor-
rection were used as a baseline (“Baseline”) for comparisons.

A multi-layered repeated 5-fold cross-validation (CV) pro-
cedure was used for performance comparison. Specifically,
class labels of instances were repeatedly (5 times) randomly
removed in positive-unlabeled learning settings or flipped in
class label noise settings to account for variability in class label
perturbations. Data were subsequently split using 5-fold CV in
such a way as to maintain the proportion of class label changes
applied to each fold in each setting. To account for randomised
data split in 5-fold CV, this procedure was repeated 10 times.
Each time of data split in the 5-fold CV, the same partition
of data was used for training or testing each of all methods
to reduce variability in randomised data split and class label
changes for model comparisons.

The performance of each method is the average of each trial
plus and minus the mean standard error with respect to a given
evaluation metric. Evaluation metrics included are sensitivity
(Se), specificity (Sp), and F1 score that combines the both.
Area under the curve (AUC) is not included as a comparison
metric as it is not effective for evaluating bias-based methods
where the ranks of the prediction often remain the same [1],
leading to adjusted thresholds but result in the same ROC
curve. Since the study focuses on data with roughly balanced
class distribution, the F1 score provides a good trade-off of
summarising sensitivity with specificity for the purpose of
method comparison. The definition of each metric is included
in Supplementary Materials.

The non-parametric Wilcoxon signed ranks test was applied
for performance comparison on final predictions (w.r.t. F1)
over multiple datasets [55]. The test was two-sided, paired
across each dataset, and p-values were reported.

V. BIOINFORMATICS APPLICATIONS

Partial and inaccurate class labelling are common in many
bioinformatics applications [3], [56]. Here we formulate two
novel biological problems into positive-unlabeled learning and
learning with class label noise, respectively.

A. Kinase Substrate Prediction
Protein phosphorylation is one of the most common types

of post-translational modifications in that a protein kinase
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alters its substrates between activate and inactive forms for
signal transduction [57]. The development of mass spec-
trometry (MS)-based phosphoproteomics has enabled global
protein phosphorylation profiling at unprecedented scale and
resolution [58]. A key challenge in phosphoproteomics data
analysis is to identify novel substrates of kinases that are
intimately involved in signal transduction, as these kinase-
substrate relationships can subsequently be used to reconstruct
signalling networks in the cell. Kinase substrate prediction
can be formulated as a positive-unlabeled learning problem
because often only a handful of known substrates (a.k.a.
positive examples) of a given kinase are annotated in current
protein phosphorylation databases [59], whereas the kinases
that regulate the rest of MS quantified phosphorylation sites
are unknown (i.e. unlabeled). Given a kinase of interest, the
task is therefore to model from both its known substrates as
well as the rest of phosphorylation sites to discover novel
substrates that are phosphorylated by the given kinase.

Here we processed a time-course phosphoproteomics data
of insulin treated adipocytes [58] and aim to predict novel
substrates for Akt and mTOR kinases which are known to
be the key nodes in insulin signalling networks [60]. The
data contains 9 time points that can be used as learning
features and there are 22 and 26 known substrates for Akt
and mTOR, respectively, with another ∼10,000 MS-quantified
phosphorylation sites.

B. Transcription Factor Target Gene Prediction

Transcription factors (TFs) are key regulators that bind to
specific genes to control their expressions [61]. Predicting
TF target genes is critical for characterising transcriptional
networks. The binding modes of TFs to their target genes are
diverse and can cause significant challenges in transcription
factor target gene prediction. For example, TFs can bind
closely to their target genes (refer to as proximal targets)
or to distal regions of their target genes (distal targets) [62].
Using chromatin immunoprecipitation followed by sequencing
(ChIP-seq) [63], many of the TF proximal target genes can be
identified with relatively high accuracy. While experimental
techniques such as genome-wide chromatin interaction anal-
ysis with paired-end-tag (ChIA-PET) [64] can be used to
identify distal genes by measuring interaction between distal
TF binding sites and candidate gene promoters, calling any
genes that have ChIA-PET interactions as TF distal targets
will give high false positive rates because not all ChIA-PET
measured interactions are functional. Since most of the proxi-
mal target genes are regulated by direct binding, and therefore
are mostly positive instances whereas distal binding contains
much more negative instances, we propose to formulate TF
target gene prediction as learning with class label noise by
treating proximal target genes as positive and distal ones as
negative, and recover from each class “mislabeled” instances.

To apply AdaSampling for TF target gene prediction, we
processed RNA-sequencing (RNA-seq) data from embryonic
stem cell (ESC) differentiation [65], ChIP-seq data of two
master TFs, Nanog and cMyc, that are known to regulate ESC
identity and their differentiation [66], [67], and ChIA-PET

data that profile interactions genome-wide in ESC [68]. By
integrating these “multi-omics” data, we compiled a putative
target list that comprises of both proximal and distal genes
for Nanog and cMyc, respectively. The RNA-seq data contains
4 time points each with two biological replicates that can be
used as learning features, and the putative positive and negative
instances for Nanog are (339, 598) and cMyc are (2785, 1281).

VI. RESULTS

A. Synthetic Data

We first assessed the AdaSampling on positive-unlabeled
learning and learning with class label noise using simula-
tions. Figure 2a shows the decision boundary of each of the
four tested classification algorithms without (yellow strap;
Baseline) or with (green strap) AdaSampling on a simu-
lated positive-unlabeled learning scenario (see Section IV-A).
Firstly, all four classification algorithms tested are susceptible
to misclassifying positive instances (both labeled and unla-
beled) presumably due to a great amount of unknown positive
instances treated as negative instances in model fitting. In
comparison, the decision boundary in all cases are largely
corrected when AdaSampling is applied with each of the
four classification algorithms, recovering most of the positive
instances that are misclassified in Baseline cases. Importantly,
while AdaSampling is a generic procedure it retains the
characteristics of the classification algorithm-specific decision
boundary in that it remains to be linear or nonlinear based
solely on the classification algorithm utilised.
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Fig. 2. Comparison of “Baseline” (yellow strap) and AdaSampling-based
classification (green strap) in (a) positive-unlabeled learning and (b) learning
with class label noise, using synthetic data.

Similarly, when applying AdaSampling for learning with
class label noise (Figure 2b; green strap), the prediction
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TABLE III
POSITIVE-UNLABELED LEARNING. FOR EACH DATASET AND CLASSIFIER, THE HIGHEST F1 SCORES GIVEN BY EACH METHOD ARE IN BOLD.

SVM kNN Logit LDA SVM kNN Logit LDA SVM kNN Logit LDA
Breast; easy (ρ+=0.5; ρ−=0) Breast; median (ρ+=2/3; ρ−=0) Breast; hard (ρ+=0.75; ρ−=0)

Original 95.5±0 95.5±0 95.1±0 94.1±0 95.5±0 95.5±0 95.1±0 94.1±0 95.5±0 95.5±0 95.1±0 94.1±0
Baseline 57.4±0.7 64.3±0.6 60.1±0.4 70.9±0.6 11.4±1.2 40±0.5 31.2±0.9 47.2±0.8 3.4±0.8 25.3±0.6 15.1±1.1 33.3±0.8
BiasModel 78.5±0.3 88±0.2 83.4±0.3 81.4±0.3 67.4±1 79±0.4 76.8±1.1 72±1.1 58.8±1.3 69.4±0.7 72.8±1.4 67.7±1.3
BagModel 72.1±0.4 77.1±0.4 73.3±0.4 78.7±0.4 31.4±0.8 54.7±0.6 48.8±0.7 59±1 14.4±1.2 37.8±0.9 31.4±0.8 45.2±0.7
AdaSingle 95.1±0.1 95.7±0.1 92.6±0.2 93.8±0.1 95±0.1 95.1±0.1 91.5±0.3 93.3±0.2 95±0.1 94.8±0.1 90.8±0.3 93.1±0.2
AdaEnsemble 95.2±0 95.7±0 93.2±0.2 93.7±0.1 95.2±0.1 95.3±0.1 92±0.3 93.4±0.2 95.1±0 94.9±0.1 91.9±0.3 93.2±0.2

Ionosphere; easy (ρ+=0.5; ρ−=0) Ionosphere; median (ρ+=2/3; ρ−=0) Ionosphere; hard (ρ+=0.75; ρ−=0)
Original 91.3±0.1 73.2±0.2 75.9±0.2 75.7±0.3 91.3±0.1 73.2±0.2 75.9±0.2 75.7±0.3 91.3±0.1 73.2±0.2 75.9±0.2 75.7±0.3
Baseline 25.5±1.4 45.7±1.8 51.5±0.7 53.4±0.6 1.3±0.2 27.5±2.3 40.1±0.6 40.2±0.6 0.2±0.1 16.7±1.7 37.3±0.5 37±0.6
BiasModel 84.5±0.4 71.9±0.9 66.7±0.5 67.1±0.6 75.3±0.9 58.6±1.7 56.4±0.6 58±0.7 71.2±1.2 50.8±1.5 52.1±0.7 53.2±0.9
BagModel 68.8±0.9 55.9±2 62.1±0.5 60.8±0.5 41.5±1.3 36.2±2.8 50±0.6 47.9±0.7 23.5±1.7 21.5±2.2 46.3±0.6 42.6±0.6
AdaSingle 88.2±0.3 73.5±1.1 64.6±0.4 69.5±0.4 85.1±0.3 61.9±1.8 62.2±0.5 66.8±0.4 80.7±0.5 52.5±2.2 58.5±0.7 62.2±0.6
AdaEnsemble 89.3±0.2 74.6±1.1 65.5±0.4 69.9±0.4 86.6±0.4 61.2±2.2 64.1±0.4 68.2±0.4 83.4±0.5 53.8±2.5 61.8±0.6 64.7±0.5

Sonar; easy (ρ+=0.5; ρ−=0) Sonar; median (ρ+=2/3; ρ−=0) Sonar; hard (ρ+=0.75; ρ−=0)
Original 80.9±0.2 77.9±0.2 67±0.3 71.7±0.4 80.9±0.2 77.9±0.2 67±0.3 71.7±0.4 80.9±0.2 77.9±0.2 67±0.3 71.7±0.4
Baseline 36.8±1.9 53±2.2 51.8±1 50.2±1.3 13.4±1.8 33.5±2.5 44.3±1 37±1.3 3.9±0.8 25.4±2.3 36.9±1 30.8±1.2
BiasModel 64.7±0.5 63.6±1 52.6±0.8 58±0.8 52±0.9 49.7±1 45.7±1 46.6±0.9 48.9±1.2 45.2±1.3 39.9±0.9 41.4±1
BagModel 55.5±0.9 59.4±1.9 56.1±1 56.5±1.2 31.3±2.2 39±2.5 45.8±1.2 43.8±1.2 19.3±2 29.5±2.4 39.9±1.2 37.7±1.4
AdaSingle 67±0.4 60.4±0.8 55.8±0.7 56.8±0.7 59.5±0.6 53.9±0.7 49.6±0.6 56.1±0.8 56.9±1 52.5±0.9 50.4±0.7 57.9±0.6
AdaEnsemble 68.5±0.4 61.1±0.8 59.1±0.9 59.2±0.8 60.5±0.5 52.9±0.6 54.3±0.8 60.7±0.8 58.2±1 52.6±0.8 54.5±0.6 61.3±0.6

WDBC; easy (ρ+=0.5; ρ−=0) WDBC; median (ρ+=2/3; ρ−=0) WDBC; hard (ρ+=0.75; ρ−=0)
Original 96.6±0 90.1±0.1 92.2±0.1 93.7±0.1 96.6±0 90.1±0.1 92.2±0.1 93.7±0.1 96.6±0 90.1±0.1 92.2±0.1 93.7±0.1
Baseline 42.7±1.6 57.3±0.6 57±0.5 60.4±0.4 5.9±0.8 37.7±0.8 34.6±0.7 39.6±0.8 0.5±0.2 23.4±0.8 22.8±0.6 28.3±0.6
BiasModel 81.4±0.4 79.9±0.4 81.9±0.4 79.4±0.6 70.3±0.9 70.3±0.4 72.4±0.7 70.1±0.9 64.5±1 61.7±0.5 68.5±1.1 67±1
BagModel 67.8±0.3 69.1±0.5 70.8±0.4 71.8±0.3 25.8±1.5 49.6±0.7 50.6±0.5 52±0.5 8.7±1 34±0.8 37.9±0.6 40.7±0.6
AdaSingle 93.2±0.2 88.6±0.1 85.8±0.3 92.5±0.2 91.9±0.1 87.6±0.2 82.1±0.5 88.9±0.3 91.4±0.2 87±0.2 78.6±0.5 85.6±0.5
AdaEnsemble 93.2±0.1 88.4±0.1 87.6±0.3 93.1±0.1 92.3±0.1 87.9±0.2 85.1±0.4 90.2±0.3 91.4±0.2 87.7±0.2 83±0.4 87.3±0.4

Pima; easy (ρ+=0.5; ρ−=0) Pima; median (ρ+=2/3; ρ−=0) Pima; hard (ρ+=0.75; ρ−=0)
Original 61.5±0.1 55.2±0.1 63.7±0.1 63.3±0.1 61.5±0.1 55.2±0.1 63.7±0.1 63.3±0.1 61.5±0.1 55.2±0.1 63.7±0.1 63.3±0.1
Baseline 2.3±0.2 28.9±0.3 17.8±0.4 21±0.4 0.3±0.1 14.8±0.4 4.4±0.2 6.4±0.2 0±0 9.6±0.4 1.9±0.2 3.4±0.3
BiasModel 52.1±0.1 53.6±0.2 66±0.2 66.1±0.2 51.7±0.1 46.6±0.3 65.1±0.2 64.3±0.2 51.7±0 42±0.5 64.1±0.2 63.2±0.3
BagModel 16.5±0.5 39±0.4 37.2±0.4 38.3±0.5 2.6±0.1 23±0.5 14.1±0.2 16.7±0.2 0.7±0.1 15.8±0.5 6.9±0.4 8.9±0.5
AdaSingle 65.5±0.2 61.8±0.2 65.9±0.2 67±0.1 64.4±0.1 60.5±0.3 65.2±0.2 65.9±0.2 63.7±0.2 59.4±0.3 64.3±0.2 64.6±0.3
AdaEnsemble 66±0.1 63±0.2 66.4±0.1 67.2±0.1 65.3±0.1 61.5±0.3 65.5±0.2 66.1±0.1 64.9±0.2 61.3±0.3 64.6±0.2 65.4±0.2

Spam; easy (ρ+=0.5; ρ−=0) Spam; median (ρ+=2/3; ρ−=0) Spam; hard (ρ+=0.75; ρ−=0)
Original 91.2±0 88.2±0 90.1±0.2 84.7±0.1 91.2±0 88.2±0 90.1±0.2 84.7±0.1 91.2±0 88.2±0 90.1±0.2 84.7±0.1
Baseline 27.6±1.3 55.7±0.7 41.7±0.4 47±0.5 1±0.1 31±0.7 7.6±0.2 21.1±0.2 0.5±0.1 19.7±0.8 3.1±0.1 12.1±0.9
BiasModel 80.3±0.4 80.8±0.2 88.5±0.1 81.8±0.2 57.9±0.3 71.1±0.4 85.6±0.2 79.2±0.3 56.5±0 61.8±0.4 84±0.3 75.7±0.4
BagModel 66.3±0.2 68.2±0.6 67.5±0.2 61.2±0.3 11.9±0.5 42.9±0.6 26.4±0.4 34.6±0.2 3.8±0.2 29.2±0.8 9.5±0.2 21.2±0.5
AdaSingle 89.5±0.1 84.2±0.1 87±0.5 86.3±0.1 88.6±0.1 82.5±0.2 84.4±0.5 86.4±0.1 87.9±0.1 80.5±0.3 82.7±0.3 85.5±0.1
AdaEnsemble 89.6±0.1 85.2±0.1 88.3±0.2 86.4±0.1 89±0.1 84±0.2 86.3±0.5 86.6±0.1 88.5±0.1 82.7±0.2 84.6±0.3 85.9±0.1

confidence for correctly labeled instances (with respect to
their labeled class) are much higher than those without (Fig-
ure 2b; yellow strap). Whereas for the mislabeled instances,
the prediction probability to their corresponding class labels
dropped significantly. This can be seen from the much less
colour overlap in predictions for each of the four classification
algorithms with AdaSampling compared to those without
(green strap vs yellow strap in Figure 2b).

B. Evaluation on Benchmark Data

The comparison on six UCI benchmark datasets in positive-
unlabeled learning are shown in Table III and Supplemen-
tary Table 1-3 in Supplementary Materials. The results from
Original and Baseline comparison demonstrate consistently,
i.e., across all datasets, that prediction sensitivity suffers
most severely when we directly apply any of the four tested
classification algorithms (SVM, kNN, Logit, and LDA) in
positive-unlabeled learning settings. Furthermore, the decrease
in sensitivity is clearly associated to the increase in percent-
age of unlabeled positive instances as demonstrated by the
“easy”, “median”, and “hard” settings. BiasModel improves
prediction sensitivity in most cases but could over-correct
towards positive class such as those in Pima dataset when
using SVM, suggesting a potential problem on correcting a

poorly fitted initial classifier. BagModel appears to improve
the prediction sensitivity moderately compared to Baseline but
the improvement is lower than other alternative methods and
therefore leads to an overall lower F1 score in most cases.
This is expected because though the bootstrap sampling on
unlabeled instances can incorporate model diversity [69], this
procedure does not enforce unlabeled positive instances to
be treated as negative examples in base classifier training
since the sampling is completely random. In comparison,
AdaSampling-based single model (AdaSingle) and ensemble
of models (AdaEnsemble) show higher overall F1 score in
three positive-unlabeled settings across all datasets. While
AdaSingle and AdaEnsemble both sacrifice specificity when
improving sensitivity, the improvement in sensitivity outweigh
the relatively small decline in specificity, and hence leads to
the most competitive performance in terms of F1.

We observed similar results in learning with class label noise
(Table IV and Supplementary Table 4-6 in Supplementary
Materials). Specifically, FilterModel appears to offer limited
improvement on F1 in both “easy”, “median”, and “hard”
settings potentially due to the removal of correctly labeled
training instances that are close to the decision boundary since
these instances are likely to be excluded in a single pass by a
pre-defined filtering threshold. SubSampleBag in comparison
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TABLE IV
LEARNING WITH CLASS LABEL NOISE. FOR EACH DATASET AND CLASSIFIER, THE HIGHEST F1 SCORES GIVEN BY EACH METHOD ARE IN BOLD.

SVM kNN Logit LDA SVM kNN Logit LDA SVM kNN Logit LDA
Breast; easy (ρ+=0.35; ρ−=0.15) Breast; median (ρ+=0.4; ρ−=0.2) Breast; hard (ρ+=0.5; ρ−=0.3)

Original 95.5±0 95.5±0 95.1±0 94.1±0 95.5±0 95.5±0 95.1±0 94.1±0 95.5±0 95.5±0 95.1±0 94.1±0
Baseline 90.6±0.2 76.9±0.3 84.1±0.2 86.4±0.2 84.2±0.4 72.6±0.3 79.2±0.5 81.3±0.5 61.5±0.5 56.6±0.3 62±0.6 63.7±0.6
FilterModel 90.6±0.2 82.9±0.4 84.4±0.2 90.2±0.2 84.9±0.4 79.2±0.4 79.4±0.5 86±0.6 61.5±0.6 58.3±0.5 61.9±0.6 69.9±0.6
SubsampleBag 92±0.2 81.6±0.3 84.2±0.2 86.3±0.2 85.8±0.4 77.5±0.3 79.2±0.5 81.3±0.5 58.7±0.8 58.2±0.4 61.7±0.7 63.6±0.6
AdaSingle 95.2±0.1 94.2±0.2 91.3±0.2 93.3±0.1 95.2±0.1 90.1±0.7 89.8±0.2 93.1±0.1 90.9±0.3 76.8±0.8 78.6±0.6 83.7±0.4
AdaEnsemble 95±0.1 94.8±0.2 92±0.2 93.1±0.1 95.2±0.1 91.8±0.5 90.6±0.2 93±0.1 92.5±0.2 80.3±0.9 80.7±0.5 85.3±0.4

Ionosphere; easy (ρ+=0.35; ρ−=0.15) Ionosphere; median (ρ+=0.4; ρ−=0.2) Ionosphere; hard (ρ+=0.5; ρ−=0.3)
Original 91.3±0.1 73.2±0.2 75.9±0.2 75.7±0.3 91.3±0.1 73.2±0.2 75.9±0.2 75.7±0.3 91.3±0.1 73.2±0.2 75.9±0.2 75.7±0.3
Baseline 78.7±0.4 57.5±0.7 65.1±0.6 65.3±0.5 71.8±0.8 56.3±1 63±0.9 62.9±0.9 33.8±1.1 45.5±0.6 56.6±0.8 56.4±0.8
FilterModel 75.4±0.5 56.1±0.8 66.5±0.5 63.5±0.5 69±0.8 55.4±1.5 62.7±0.8 60.6±0.9 47.8±0.8 45.1±1.4 55.8±0.8 52.7±0.8
SubsampleBag 74.7±0.5 58.5±1 65.5±0.6 65±0.6 66.4±1.1 57.3±1.3 63.5±0.9 63±1 22.5±1.1 45.1±1.1 56.8±0.9 56.1±0.8
AdaSingle 87±0.4 68.9±0.5 59.1±0.6 68.5±0.5 86±0.3 70.5±0.6 58±0.5 66.7±0.5 69.9±1.8 54.9±1.7 50.4±0.6 56.2±0.7
AdaEnsemble 87.6±0.4 70.7±0.4 60±0.6 68.3±0.5 87±0.3 72.8±0.6 58.2±0.5 67.6±0.5 71.6±1.2 54.9±2.1 50.9±0.6 57.9±0.7

Sonar; easy (ρ+=0.35; ρ−=0.15) Sonar; median (ρ+=0.4; ρ−=0.2) Sonar; hard (ρ+=0.5; ρ−=0.3)
Original 80.9±0.2 77.9±0.2 67±0.3 71.7±0.4 80.9±0.2 77.9±0.2 67±0.3 71.7±0.4 80.9±0.2 77.9±0.2 67±0.3 71.7±0.4
Baseline 51.9±1.3 59.4±0.8 56.1±0.5 56.6±0.5 46.3±1.5 56.6±0.6 52.4±0.6 53.1±0.7 20.9±1.5 48.5±0.7 46.4±0.6 45.9±0.6
FilterModel 55.2±1.2 57.6±0.8 55±0.6 54.3±0.7 50.8±1.3 55.6±0.7 52.6±0.6 51.6±0.8 22.6±1.5 46.2±0.9 46.1±0.5 46.3±0.6
SubsampleBag 42±1.2 54.1±0.8 56.3±0.7 56.8±0.6 38.8±1.7 52.4±0.7 52.9±0.7 52.6±0.7 12.7±1.3 46.2±0.6 47.4±0.7 46.4±0.7
AdaSingle 64.5±1.4 55.1±0.5 54.3±0.6 53.7±0.5 50.2±2.3 55.2±0.6 52.4±0.5 53.6±0.6 29.5±1.4 52.1±0.8 50.6±0.6 50.9±0.6
AdaEnsemble 65.2±1.3 54±0.5 55±0.7 54.1±0.5 42.9±2.9 54.2±0.7 53.4±0.6 54.1±0.6 15.8±1 50.9±0.8 51±0.6 50.8±0.6

WDBC; easy (ρ+=0.35; ρ−=0.15) WDBC; median (ρ+=0.4; ρ−=0.2) WDBC; hard (ρ+=0.5; ρ−=0.3)
Original 96.6±0 90.1±0.1 92.2±0.1 93.7±0.1 96.6±0 90.1±0.1 92.2±0.1 93.7±0.1 96.6±0 90.1±0.1 92.2±0.1 93.7±0.1
Baseline 84±0.4 70.5±0.4 76.6±0.2 78.1±0.2 77.5±0.5 63.4±0.3 71.9±0.4 73±0.4 47.7±1.4 49±0.4 53.8±0.7 54.2±0.8
FilterModel 85.4±0.3 73.1±0.5 76.9±0.3 80.2±0.2 78.6±0.6 66.8±0.4 71.3±0.4 74.6±0.5 47.5±1.3 50.9±0.5 53.2±0.7 53±0.7
SubsampleBag 83.2±0.4 76±0.5 77.1±0.3 78.2±0.2 76.8±0.4 69.8±0.4 72.3±0.4 73±0.4 43.1±1.5 51.5±0.5 54.7±0.6 54.8±0.8
AdaSingle 92.9±0.2 86.8±0.3 76.4±0.5 89.4±0.2 91.9±0.2 82.9±0.3 72.2±0.3 86.6±0.4 75.9±1.6 64.9±0.5 57.8±0.5 64.1±0.7
AdaEnsemble 93.6±0.2 87.5±0.3 77.5±0.4 90.1±0.2 92.5±0.3 84.4±0.2 73±0.3 87.3±0.4 80±1.4 67.5±0.5 58.2±0.4 65.3±0.7

Pima; easy (ρ+=0.35; ρ−=0.15) Pima; median (ρ+=0.4; ρ−=0.2) Pima; hard (ρ+=0.5; ρ−=0.3)
Original 61.5±0.1 55.2±0.1 63.7±0.1 63.3±0.1 61.5±0.1 55.2±0.1 63.7±0.1 63.3±0.1 61.5±0.1 55.2±0.1 63.7±0.1 63.3±0.1
Baseline 34.9±0.3 42.8±0.3 44±0.8 44.7±0.8 26.8±0.9 42.6±0.2 36±0.9 36.4±0.9 20±0.9 39±0.3 24.3±0.7 24.3±0.7
FilterModel 36.8±0.3 42.3±0.4 44±0.8 42.4±1 27.2±1.1 41.6±0.4 36.6±0.8 33.3±0.9 21.4±0.8 37.9±0.4 23.8±0.8 18.8±0.8
SubsampleBag 30.6±0.4 43.1±0.3 44.1±0.8 44.5±0.8 21.1±1 41.3±0.3 36.4±0.9 36.6±0.8 15.2±1 38.5±0.3 24.4±0.7 24.3±0.7
AdaSingle 62.2±0.2 56±0.3 63.9±0.2 64.1±0.2 59.5±0.4 53.6±0.3 63.9±0.3 64.1±0.3 35.2±1.5 48.4±0.3 55.5±0.7 55.6±0.7
AdaEnsemble 63.1±0.2 57.1±0.3 64.3±0.2 64.2±0.2 60.4±0.5 55.2±0.2 64.2±0.3 64.2±0.3 35.3±1.7 49.7±0.4 56.5±0.7 57±0.7

Spam; easy (ρ+=0.35; ρ−=0.15) Spam; median (ρ+=0.4; ρ−=0.2) Spam; hard (ρ+=0.5; ρ−=0.3)
Original 91.2±0 88.2±0 90.1±0.2 84.7±0.1 91.2±0 88.2±0 90.1±0.2 84.7±0.1 91.2±0 88.2±0 90.1±0.2 84.7±0.1
Baseline 78.4±0.1 69±0.3 68.7±0.1 68.4±0.1 71.2±0.1 62.2±0.2 59.7±0.4 60.2±0.6 32.5±1.4 49.9±0.4 38.7±0.3 39.1±0.2
FilterModel 79.6±0.2 70.9±0.3 69.3±0.2 68.8±0.1 72.5±0.2 65.2±0.2 59.7±0.6 59.8±0.8 32.4±1.3 50.5±0.5 38.3±0.3 39.1±0.4
SubsampleBag 77.6±0.2 72.1±0.2 69.1±0.2 68.5±0.1 69.4±0.2 65.4±0.2 60.3±0.4 60.4±0.5 26.8±1.4 50.4±0.5 39.2±0.4 39.4±0.3
AdaSingle 89.2±0.1 82±0.3 87.3±0.2 82.7±0.1 88.1±0.1 78.8±0.3 85.1±0.2 83.3±0.3 80.8±0.5 63.6±0.4 75±0.3 76.4±0.3
AdaEnsemble 89.4±0.1 83.8±0.2 87.9±0.1 83±0.1 88.4±0.1 81±0.3 85.9±0.2 83.6±0.3 82±0.5 66±0.3 76.1±0.4 77.1±0.4

TABLE V
PAIRED WILCOXON SIGNED RANKS TEST FOR PERFORMANCE COMPARISON (F1) OF ADAENSEMBLE TO OTHER METHODS IN POSITIVE-UNLABELED

(PU) LEARNING AND LEARNING WITH CLASS LABEL NOISE (LN). TEST IS TWO-SIDED AND REPORTED ARE p-VALUES.

PU; easy (ρ+=0.5; ρ−=0) PU; median (ρ+=2/3; ρ−=0) PU; hard (ρ+=0.75; ρ−=0)
Baseline BiasModel BagModel AdaSingle Baseline BiasModel BagModel AdaSingle Baseline BiasModel BagModel AdaSingle

AdaEnsemble 1.2×10-7 8.0×10-5 1.2×10-7 1.0×10-4 1.2×10-7 1.2×10-7 1.2×10-7 3.7×10-4 1.2×10-7 1.2×10-7 1.2×10-7 2.9×10-5

LN; easy (ρ+=0.35; ρ−=0.15) LN; median (ρ+=0.4; ρ−=0.2) LN; hard (ρ+=0.5; ρ−=0.3)
Baseline FilterModel SubsampleBag AdaSingle Baseline FilterModel SubsampleBag AdaSingle Baseline FilterModel SubsampleBag AdaSingle

AdaEnsemble 3.0×10-5 1.4×10-4 1.6×10-5 1.2×10-3 1.4×10-4 1.6×10-5 4.7×10-5 3.0×10-3 1.0×10-5 7.1×10-5 2.3×10-6 1.8×10-3

is more conservative in that all instances will be treated
equally. However, similarly to BagModel in positive-unlabeled
learning, SubSampleBag does not directly estimate for mis-
labeled instances but relies on model diversity to improve
the final classification accuracy. Therefore, it suffers from
the same problem as all mislabeled instances can pollute the
training subsets in SubSampleBag, and therefore propagate to
the final prediction. Both AdaSingle and AdaEsnemble show
notably better performance than other alternative methods
across all datasets and classification algorithms tested.

Using the Wilcoxon signed ranks test for performance
comparison of the proposed approach and other alternatives
(Table V), we found that the performance of AdaEnsemble in
terms of F1 score is statistically significantly better than all
other methods including AdaSingle in both positive-unlabeled
learning and learning with class label noise. While the numeric

improvement of AdaEnsemble on AdaSingle is comparatively
small, such improvement appears to be consistent across most
datasets, settings, and classification algorithms.

C. Application in Bioinformatics

1) Kinase Substrate Prediction: In kinase substrate predic-
tion using phosphoproteomics data, often only a handful of
substrates are known for a given kinase [58]. This problem
can easily be formulated into a positive-unlabeled learning
task where the goal is to uncover novel kinase substrates
that are embedded in the unlabeled phosphorylation sites that
are profiled in phosphoproteomics data. We demonstrate this
by using a time-course phosphoproteomics dataset profiled in
insulin stimulated adipocytes [58]. It is known that kinases
such as Akt and mTOR are activated after insulin stimulation
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and therefore the aim is to identify novel substrates for Akt and
mTOR by learning the typical response of previously known
substrates for each kinase in the phosphoproteomics dataset.
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Fig. 3. Positive-unlabeled learning for predicting novel kinase substrates.
(a) Comparison of prediction probability with respect to positive class for
known Akt and mTOR substrates and other phosphorylation sites with (“+”)
or without (“-”) using AdaEnsemble. (b) Comparison of motif enrichment in
terms of position-specific scoring matrix score for predicted Akt and mTOR
substrates and their respective negative predictions. Statistical significance was
calculated using Wilcoxon signed ranks test.

For Akt, the prediction probability of being a substrate for
either known Akt substrates or other unknown phosphorylation
sites (or phosphosites) with or without using AdaSampling are
shown in Figure 3(a), upper panel. As can be seen, directly
applying a classification model (columns marked by “-”) on
this dataset gives relatively low prediction score (in terms
of probability; yellow boxes) for known Akt substrates and
discover almost no new substrates from other phosphosites
(green boxes). In contrast, using AdaEnsemble for positive-
unlabeled learning (columns marked by “+”) gives much
higher prediction score for known substrates while also un-
cover many potential novel substrates. Similar results are
observed for mTOR (Figure 3(a), lower panel). Together,
these results suggest that AdaEnsemble can accurately classify
known Akt and mTOR substrates while may also uncover
many previously unknown substrates for each kinase.

To validate novel substrate predictions, we obtained known
Akt and mTOR kinase recognition motifs from public database
[59] and compared the motif enrichment score (PSSM) for
those that are predicted to be substrates of either Akt (Figure
3(b), upper panel) or mTOR (Figure 3(b), lower panel) with
those that are predicted to be negative. We found that positive
predictions for Akt and mTOR are significantly enriched for
their respective kinase recognition motifs compared to negative
predictions, suggesting these predicted novel substrates indeed
possess structures that are more likely to be recognised and
bind by Akt or mTOR.

2) Prediction of Transcription Factor Target Genes: A key
task in characterising cell type-specific transcriptional net-
works is to accurately identify genes that are directly targeted
and regulated by cell type-specific TFs. By integrating RNA-
seq, ChIP-seq, and ChIA-PET data generated from ultrafast
sequencing techniques, we created a multi-omic dataset com-

prising all putative target genes that are potentially regulated
by proximal and/or distal TF bindings in ESCs (see V-B for
details). Nevertheless, we expect that a subset of genes labeled
as positive instances are not truly regulated by TF bindings and
vice versa. Therefore, the task is to remove target genes that
are falsely labeled as target genes and recover genes that are
true targets but mislabeled as negative.
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Fig. 4. Learning with noisy labels for predicting transcription factor target
genes using multi-omics dataset. (a) Gene expression (log2) of Nanog and
cMyc in ESC, Epiblast-like cells (EpiLC), primordial germ cell-like cells at
day 2 (PGCLCd2) and day 6 (PGCLCd6) in two biological replicates (r1 and
r2). (b) Standardised expression profiles of all putative target genes or target
genes identified by AdaEnsemble for Nanog and cMyc, respectively.

Figure 4(a) shows the gene expression of two master TFs,
Nanog and cMyc, during ESC differentiation to Epiblast-like
cells (EpiLC) and subsequently to primordial germ cell-like
cells at day 2 (PGCLCd2) and then day 6 (PGCLCd6) in
two biological replicates, i.e. r1 and r2. The expression of
Nanog appears to be down-regulated from ESC to EpiLC and
PGCLC2d, and up-regulated from PGCLC2d to PGCLC6d to
its original level (Figure 4(a), upper panel). In contrast, the
expression of cMyc is up-regulated from ESC to EpiLC, and
down-regulated to its original level from EpiLC to PGCLCd2
and PGCLCd6 (Figure 4(a), lower panel). The standardised
expression profile of all putative Nanog and cMyc target genes
are shown in the first column of Figure 4(b) whereas the
AdaEnsemble predicted ones are shown in the second and third
columns. Compared to the expression profiles of all putative
target genes, genes identified by AdaEnsemble for Nanog
and cMyc resemble much better the expression of themselves
(Figure 4(a)), suggesting functional relevance of these genes
that are more likely to be genuinely regulated by Nanog or
cMyc during the ESC differentiation process. These results
illustrate the formulation of TF target gene prediction as a class
label noise learning problem and the utility of AdaSampling in
identifying true target genes from all putative candidate genes.

VII. CONCLUSION AND FUTURE WORK

In this work, we extended an adaptive sampling (AdaSam-
pling) approach to handle positive-unlabeled learning and
learning with class label noise in the same framework. We
evaluated the characteristics of AdaSampling using simulation
studies and demonstrated its effectiveness in learning a single
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or an ensemble of classifiers using multiple real-world bench-
mark datasets, and a range of base classification algorithms.
Empirical results on synthetic and benchmark datasets verified
the effectiveness and robustness of our proposed framework.
We subsequently demonstrated the utility of the proposed
framework in two novel bioinformatics applications in which
we (1) identified novel kinase substrates, and (2) TF target
genes from diverse biological systems using various high-
throughput sequencing and mass spectrometry data.

Here, we considered the scenarios that noise are random
within each class but asymmetric between classes. It is of
interest in our future work to consider the scenarios that
noise not at random (NNRA). Secondly, while it is clear
that the performance of AdaSampling-based classification de-
crease with increasing data noise, in our future work, we
will evaluate how different amounts and ratios (within and
between classes) of mislabeled instances impact on the model
quality. Thirdly, our future work will also look to incorporate
imbalanced data classification and partial label learning into
the proposed framework. Lastly, many more bioinformatics
problems are confounded by the incomplete knowledge due to
our increasing capacity to generate data but limited resource to
annotate them. To the end of applications, our future work will
be to extend and apply AdaSampling to address bioinformatics
problems that can be formulated as positive-unlabeled learning
and/or learning with class label noise.
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