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1.1 INTRODUCTION

Feature selection is a key technique originated from the fields of artificial intelligence
and machine learning [3, 10] in which the main motivation has been to improve sample
classification accuracy [5]. Since the purpose is mainly on improving classification
outcome, the design of feature selection algorithms seldom consider specifically on
which features are selected. Due to the exponential growth of biological data in
recent years, many feature selection algorithms have found to be readily applicable
or with minor modification [32], for example, to identify potential disease associated
genes from microarray studies [35], proteins from mass spectrometry (MS)-based
proteomics studies [23], or single nucleotide polymorphism (SNP) from genome
wide association (GWA) studies [37]. While sample classification accuracy is an
important aspect in many of those biological studies such as discriminating cancer
and normal tissues, the emphasis is also on the selected features as they represent
interesting genes, proteins, or SNPs. Those biological features are often referred to
as biomarkers and they often determine how the further validation studies should be
designed and conducted.
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One special issue arises from the application of feature selection algorithms in
identifying potential disease associated biomarkers is that those algorithms may give
unstable selection results [19]. That is, a minor perturbation on the data such as
a different partition of data samples, removal of a few samples, or even reordering
of the data samples may cause a feature selection algorithm to select a different set
of features. For those algorithms with stochastic components, to simply rerun the
algorithm with a different random seed may result in a different feature selection
result.

The term stability and its counterpart instability are used to describe whether a
feature selection algorithm is sensitive/insensitive to the small changes in the data and
the settings of algorithmic parameters. The stability of a feature selection algorithm
becomes an important property in many biological studies because biologists may be
more confident on the feature selection results that do not change much on a minor
perturbation on the data or a rerun of the algorithm. While this subject has been
relatively neglected before, we saw a fast growing interests in recent years in finding
different approaches for improving the stability of feature selection algorithms and
different metrics for measuring them.

In this chapter, we provide a general introduction on stability of feature selection
algorithms and review some popular ensemble strategies and evaluation metrics for
improving and measuring feature selection stability. In Section 2, we categorize
feature selection algorithms and illustrate some common causes of feature selection
instability. In Section 3, we describe some popular methods for building ensemble
feature selection algorithms and show the improvement of ensemble feature selection
algorithms in terms of feature selection stability. Section 4 reviews some typical
metrics that are used for evaluating the stability of a given feature selection algorithm.
Section 5 concludes the chapter.

1.2 FEATURE SELECTION ALGORITHMS AND INSTABILITY

Feature selection stability has been a minor issue in many conventional machine
learning tasks. However, the application of feature selection algorithms to bioinfor-
matics problems, especially in disease associated biomarker identification, has arisen
the specific interests in selection stability as evidenced by several recent publications
[4, 17]. In this section, we first categorize feature selection algorithms according to
the way they select features. Then we demonstrate the instability of different feature
selection algorithms by three case studies.

1.2.1 Categorization of feature selection algorithm

From a computational perspective, feature selection algorithms can be broadly di-
vided into three categories, namely filter, wrapper, and embedded according to their
selection manners [10]. Figure 1.1 shows a schematic view of these categories.
Filter algorithms commonly rank/select features by evaluating certain types of
association or correlation with class labels. They do not optimize the classification
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Figure 1.1  Categorization of feature selection algorithms. (a) Filter approach where feature
selection is independent from the classification. (b) Wrapper approach where feature selection
relies on an inductive algorithm for sample classification in an iterative manner. (c) Embedded
approach where feature selection is performed implicitly by an inductive algorithm during
sample classification.

accuracy of a given inductive algorithm directly. For this reason, filter algorithms are
often computationally more efficient compared to wrapper algorithms. For numeric
data analysis such as differentially expressed (DE) gene selection from microarray
data or DE protein selection from mass spectrometry data, the most popular methods
are probably ?-test and its variants [33]. As for categorical data types such as disease
associated SNP selection from GWA studies, the commonly used methods are X2'
statistics, odds ratio, and increasingly the ReliefF algorithm and its variants [27].

Although filter algorithms often show good generalization on unseen data, they
suffer from several problems. Firstly, filter algorithms commonly ignore the effects
of the selected features on sample classification with respect to the specified induc-
tive algorithm. Yet the performance of the inductive algorithm could be useful for
accurate phenotype classification [21]. Secondly, many filter algorithms are univari-
ate and greedy based. They assume that each feature contributes to the phenotype
independently and thus evaluate each feature separately. A feature set are often
determined by first ranking the features according to certain scores calculated by
filter algorithms and then selecting the top-k candidates. However, the assumption
of independence is invalid in biological systems and the selection results produced
in this way are often suboptimal.

Compared to filter algorithms, wrapper algorithms have several advantages. First-
ly, wrapper algorithms incorporate the performance of an inductive algorithm in
feature evaluation, and therefore, likely to perform well in sample classification.
Secondly, most wrapper algorithms are multivariate and treat multiple features as an
unit for evaluation. This property preserves the biological interpretation of genes
and proteins since they are linked by pathways and functioning in groups. A large
number of wrapper algorithms have been applied to gene selection of microarray and
protein selection of mass spectrometry. Those include evolution approaches such as



genetic algorithm (GA) based selection [25, 24, 15], and greedy approaches such as
incremental forward selection [30], and incremental backward elimination [28].

Despite their common advantages, wrapper approach often suffer from problems
such as overfitting since the feature selection procedure is guided by an inductive
algorithm that is fitted on a training data. Therefore, the features selected by wrapper
approach may generalize poorly on new datasets if overfitting is not prevented. In
addition, wrapper algorithms are often much slower compared to filter algorithms (by
several orders of magnitude), due to their iterative training and evaluating procedures.

Embedded approach is somewhat between the filter approach and the wrapper
approach where an inductive algorithm implicitly selects features during sample
classification. Different from filter and wrapper approaches, the embedded approach
relies on certain types of inductive algorithm and is therefore less generic. The most
popular ones that applied for gene and protein selection are support vector machine
based recursive feature elimination (SVM-RFE) [11] and random forest based feature
evaluation [7].

1.2.2 Potential causes of feature selection instability

The instability of feature selection algorithms is typically amplified by small sample
size which is common in bioinformatics applications. This is often demonstrated
by applying bootstrap sampling on the original dataset and comparing the feature
selection results from sampled datasets [1]. Beside the common cause of small
sample size, the stability is also highly dependent on the types of feature selection
algorithm in use. For example, wrapper based approaches rely on partitioning data
into training and testing sets where training set is used to build the classification
model and testing set is used for feature evaluation [9]. Therefore, a different
partition of the training and testing sets may cause different feature selection results,
and thus, instability. Feature selection algorithms using stochastic search such as GA
based feature selection may give different selection results with a different random
seed, initialization, and parameter setting. Some algorithms such as ReliefF based
algorithms are sensitive to the sample order in feature selection from categorical
dataset [36].

In this section, we demonstrate several common cases where the instability of
feature selection is observed. We select typical filter, wrapper, and embedded feature
selection algorithms for this demonstration. The case studies are classified according
to the causes of feature selection instability.

1.2.2.1 Case study I: small sample size Small sample size is the common
cause of feature selection instability. To demonstrate this effect, we applied bootstrap
sampling on the colon cancer microarray dataset [2]. Colon cancer microarray dataset
represents a typical microarray experiment where the normal samples and the tumor
samples are compared. The dataset has 40 tumor samples and 22 normal ones
obtained from colon tissue. Giving the number of genes measured (i.e. 2000) and
the total number of samples (i.e. 62), it is a typical small sample size dataset with
very high feature dimensionality.
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Figure 1.2  Instability demonstration for a filter algorithm (moderated ¢-test) and an
embedded algorithm (SVM-RFE) in feature selection on colon cancer microarray dataset
[2]. (a) scatter plot of two runs of moderated ¢-test each calculated on a bootstrap sampling of
the original dataset; (b) scatter plot of two runs of SVM-RFE each calculated on a bootstrap
sampling of the original dataset. In each case, a Spearman correlation denoted as r is calculated.

Figure 1.2a shows the scatter plot of two runs of a filter algorithm known as
moderated ¢-test [33]. Each run of moderated ¢-test is conducted on a bootstrap
sampling from the original dataset with a different seeding. The z-axis and the y-
axis are the ranking of genes (in logarithm of base 2) in the first and the second runs,
respectively, plotted against each other. The most informative gene is ranked as 1, the
second most informative one as 2, and so on. If the ranking of all genes remain the
same in these two runs, they should form a diagonal line with a Spearman correlation
of 1. However, it is clear that moderated ¢-test is highly unstable in ranking genes
from small sample size dataset. A Spearman correlation (denoted as r) of 0.66 is
observed from the two runs.

Figure 1.2b shows the result from using an embedded feature selection algorithm
known as SVM-RFE. A SVM is built to evaluate features, and we eliminate 10%
of total features in each iteration. The scatter plot of two runs of SVM-RFE each
conducted on a separate bootstrap sampling indicates a low stability of a Spearman
correlation of only 0.49. Therefore, similar to moderated ¢-test, SVM-RFE is also
highly unstable in ranking genes from small sample size dataset.

1.2.2.2 Case study II: sample order dependency Feature selection results
may be different even by changing the order of samples in the dataset. This may
occur if the feature selection algorithm scores each feature by evaluating partial as
opposed to all samples in the dataset, and the selection of the partial samples is
dependent on the order of samples. This is best exemplified by using ReliefF based
feature selection algorithms [29] for categorical feature selection.

Consider a GWA study consisting of NV SNPs and M samples. Defining each
SNP in the study as g; and each sample as s; where j = 1... N andi = 1...M.



ReliefF algorithm ranks each SNP, by updating a weight function for each SNP at
each iteration as follows:

where s; is the i¢th sample from the dataset and hj is the kth nearest neighbor of
s with same the class label (called hit) while my, is the kth nearest neighbor to s;
with a different class label (called miss). This weight updating process is repeated
for M samples selected randomly or exhaustively. Therefore, dividing by M keeps
the value of TW(g;) to be in the interval [-1,1]. D(.) is a difference function that
calculates the difference between any two samples s, and s, for a given gene g:

0 if G(g,sq) = G(g, sp)

D(g, 54,5) = { 1 otherwise (2

where G(.) denotes the genotype of SNP g for sample s. The nearest neighbors
to a sample are determined by the distance function, M D(.), between the pairs of
samples (denoted as s, and s;) which is also based on the difference function (Eq.
1.2):

N
MD(sq,8p) = ijl D(gj, Sa, sp) (1.3)

Turned ReliefF (TuRF) proposed by Moore and White [27] aims to improve the
performance of the ReliefF algorithm in SNP filtering by adding an iterative com-
ponent. The signal-to-noise ratio is enhanced significantly by recursively removing
the low-ranked SNPs in each iteration. Specifically, if the number of iteration of this
algorithm is set to R, it removes the N/R lowest ranking (i.e., least discriminative)
SNPs in each iteration, where N is the total number of SNPs.

However, both ReliefF and TuRF are sensitive to the order of samples in the dataset
due to the assignment of hit and miss nearest neighbors of each sample. Since K
nearest neighbors are calculated by comparing the distance between each sample in
the dataset and the target sample s;, a tie occurs when more than K samples have a
distance equal or less than the K'th nearest neighbor of s;. It is easy to show that a
dependency on the sample order can be caused by using any tie breaking procedure
which forces exactly K samples out of all possible candidates to be the nearest
neighbors of s;, which causes a different assignment of hit and miss of nearest
neighbors when the sample order is permuted.

We demonstrate the sample order dependency effect by using ReliefF and TuRF al-
gorithms, respectively, on a GWA study of age-related macular degeneration (AMD)
dataset [20]. In this experiment, we permuted the sample order in the original dataset
and applied ReliefF and TuRF to the original dataset and the perturbed dataset for
SNP ranking. The ranking of each SNP in the two runs are log-transferred and plotted
against each other (Figure 1.3a,b). While such an inconsistency is relatively small
for the ReliefF algorithm, it is enhanced through the iterative ranking procedure of
TuRF. A Spearman correlation of only 0.58 is obtained from the original and the
sample order perturbed dataset.
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Figure 1.3  Instability demonstration for ReliefF and TuRF algorithms. (a) scatter plot of
two runs of ReliefF one on the original AMD dataset [20] whereas the other on a sample
order perturbed dataset. (b) scatter plot of two runs of TuRF one on the original AMD dataset
whereas the other on a sample order perturbed dataset. In each case, a Spearman correlation
denoted as r is calculated.

1.2.2.3 Case study lll: data partitioning Typical wrapper algorithms gen-
erally build classification models and evaluate features using the models for data
classification. For the purpose of building models and evaluating features, the dataset
is partitioned into training and testing subsets where the training set is used with
an inductive algorithm for creating classification models and the testing set is used
for evaluating features using the models obtained from the training set. Note that
the partition of dataset is often necessary since using the entire dataset for both
model building and feature evaluation would overfit the model easily and produce
ungeneralizable feature selection results. The feature selection result from wrapper
algorithms could be unstable due to different splittings of data partition. Moreover,
wrapper algorithms often rely on certain stochastic or heuristic algorithm (known as
the search algorithm) to evaluate features in combination so as to reduce the large
search space. Therefore, a different seeding or initialization of the search algorithm
or a different parameter setting in heuristic search could also produce different feature
selection results.

Here we demonstrate the instability in wrapper based feature selection algorithms
using a wrapper of GA (genetic algorithm) with a k-nearest neighbor (kKNN) as
induction algorithm for feature selection (GA/ENN). Since the initial work by Li et
al. [25], this configuration and its variants have become very popular in biomarker
selection from high-dimensional data. We fix the neighbor size as £ = 3 in all
experiments, and the partition of dataset as 5-fold cross validation. The parameter
setting of GA is also fixed to the default values as specified in Weka package [12].
Figure 1.4 shows two separate runs of GA/ENN wrapper algorithm each with a
different 5-fold cross validation partitioning of colon microarray dataset [2] for model
training and feature evaluation. After running GA/kENN, a gene is either selected or
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Figure 1.4 Instability demonstration for GA/KNN wrapper algorithm with colon cancer
microarray dataset. The x-axis is the index of the 2000 genes in the colon cancer microarray
dataset [2]. The y-axis is a boolean value indicating whether a gene is selected. Two separate
runs of GA/KNN each with a different 5-fold cross validation partitioning of the dataset. For
example, a cross is added to the x-axis of 200 and y-axis of T2 if the gene with index of 200 in
the dataset is selected in the second run. A Jaccard set-based index denoted as J is calculated
(see 1.4.2 for details).

unselected. If the algorithm is not sensitive to a different partitioning of the dataset,
the genes selected in the first run should also be selected in the second run.

To quantify the concordance of the two runs in terms of the selected genes, we
use a metric known as Jaccard set-based index (see 1.4.2 for details) to compute
the similarity of the two runs. A Jaccard set-based index of 0.18 indicates a low
reproducibility of the GA/ENN wrapper algorithm on feature selection. Therefore,
the algorithm is highly unstable when the dataset is partitioned differently.

1.2.3 Remark on feature selection instability

Although we have demonstrated some common causes of feature selection instability
separately, they should not be considered independently. For example, a wrapper
algorithm could suffer from a combination effect of small sample size and partition of
the dataset. A ReliefF based algorithm could suffer from the sample order perturbation
and a different size of k used to determine nearest neighbors. The SVM-RFE
algorithm could suffer from small sample size and a different step size of recursive
feature elimination.

There are several possible ways to improve stability of feature selection algorithms
such as using prior information and knowledge, feature grouping, and ensemble
feature selection. We will focus specifically on ensemble feature selection which is
introduced in Section 1.3. A review for several other approaches can be found in
[13].

The stability of feature selection algorithms is generally assessed by using certain
metric. We have used Spearman correlation and Jaccard set-based index in our case
studies. The details of those metrics and many others are described in Section 1.4.
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1.3 ENSEMBLE FEATURE SELECTION ALGORITHMS

The purpose of composing ensemble feature selection algorithms is manyfold. Gen-
erally, the goals are to improve feature selection stability or sample classification
accuracy or both at the same time as demonstrated in numerous studies [1, 26, 16]. In
many cases, other aspects such as to identify important features or to extract feature
interaction relationships could also be achieved in a higher accuracy using ensemble
feature selection algorithms as compared to their single versions.

Depending on the type of feature selection algorithm, there may be many different
ways to compose an ensemble feature selection algorithm. Here we describe two
most commonly used approaches.

1.3.1 Ensemble based on data perturbation

The first approach is based on data perturbation. This approach has been extensively
studies and utilized as can be viewed in the literature [4, 1, 36]. The idea is built on the
successful experience in ensemble classification [8] and it has been found to stabilize
the feature selection result. For example, a bootstrap sampling procedure can be used
for creating an ensemble of filter algorithms each gives a slightly different ranking
of genes. The consensus is then obtained through combining those ranking lists. It
is natural to understand that beside bootstrap sampling many other data perturbation
methods (such as random spacing etc.) can also be used to create multiple versions
of the original dataset in the same framework. A schematic illustration of this class
of methods is shown in Figure 1.5.
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Figure 1.5 Schematic illustration of an ensemble of filters using data perturbation approach.



10

1.3.2 Ensemble based on different data partitioning

The second approach is based on partition the training and testing data differently
which is specifically for wrapper based feature selection algorithms. That is, data that
are used for building the classification model and the data that are used for feature
evaluation are partitioned using multiple cross validations (or any other random
partitioning procedures). The final feature subset is determined by calculating the
frequency of each feature been selected from each partitioning. If a feature is selected
more than a given threshold, it is then included into the final feature set.

A schematic illustration of this method is shown in Figure 1.6. This methods
is firstly described in [9] where a forward feature selection (FFS) wrapper and a
backward feature elimination (BFE) wrapper are shown to benefit from this ensemble
approach.
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Figure 1.6  Schematic illustration of an ensemble of wrappers using different partitions of
an internal cross validation for feature evaluation.

Beside using a different data partitioning, for stochastic optimization algorithms
such as GA or particle swarm optimization (PSO), ensemble could also be achieved
by using different initializations or different parameter settings. For wrappers such
as FFS or BFE, a different starting point in the feature space could result in a different
selection result. Generally, bootstrap sampling or other random spacing approaches
can also be applied to wrapper algorithms for creating ensembles.

1.3.3 Performance on feature selection stability

We continue the examples in Section 1.2.2 and evaluate the performance of ensemble
feature selection algorithms in terms of feature selection stability.
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1.3.3.1 For small sample size problem For the small sample size problem,
we evaluated the ensemble version of moderated ¢-test and the ensemble version of
SVM-RFE (Figure 1.7a,b). Each ensemble run of moderated ¢-test was generated
by aggregating (using averaging) 50 individual runs of bootstrap sampling from the
original colon cancer dataset [2]. An ensemble of 50 individual runs were combined
and plotted against another ensemble of 50 individual runs, with each individual run
conducted with a different bootstrap seeding. The same procedure was also used to
create the ensemble of SVM-RFE.
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Figure 1.7 Ensemble feature selection algorithms for small sample size. (a) scatter plot of
two runs of ensemble of moderated ¢-test each calculated on and combined from 50 bootstrap
sampling of the original colon cancer dataset [2]; (b) scatter plot of two runs of ensemble of
SVM-REE each calculated on and combined from 50 bootstrap sampling of the original colon
cancer dataset. Multiple ranking lists are combined by averaging. In each case, a Spearman
correlation denoted as 7 is calculated.

It appears that the ensemble of moderated ¢-test is much better in terms of feature
selection stability, with most of gene rankings clustering close to the diagonal line.
A Spearman correlation of 0.97 is obtained compared to 0.66 from the single runs
(Figure 1.2a). Similarly, the ensemble of SVM-RFE is able to increase the Spearman
correlation from 0.49 to 0.95.

1.3.3.2 For sample order dependency problem The ensemble of ReliefF
and TuRF were created by using random sample re-ordering for generating multiple
SNP ranking lists and the consensus is obtained by simple averaging. Figure 1.8
shows the ensemble version of ReliefF and TuRF algorithms where an ensemble size
of 50 is used.

It is clear that the ensemble approach for both ReliefF' and TuRF algorithms can
improve their consistency on feature selection when the sample order is perturbed.
The improvement is especially encouraging for TuRF since two runs of a single
TuRF only give a Spearman correlation of 0.58 (Figure 1.3b) whereas the ensembles
of TuRF improve the Spearman correlation to 0.98 (Figure 1.8b).
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Figure 1.8 Ensemble feature selection algorithms for sample order dependency. (a) scatter
plot of two runs of ensemble of ReliefF each calculated and combined from 50 sample order
perturbed datasets from the original AMD dataset [20]; (b) scatter plot of two runs of ensemble
of TuRF each calculated and combined from 50 sample order perturbed datasets from the
original AMD dataset. In each case, a Spearman correlation denoted as r is calculated.

1.3.3.3 For data partitioning problem We conducted two separate runs of an
ensemble of GA/ENN wrapper algorithm (an ensemble size of 50 is used) each with
a different 5-fold cross validation partitioning of the colon cancer dataset [2]. Figure
1.9 shows the concordance of two ensemble of GA/kKNN. The Jaccard set-based
index increases from (.18 (Figure 1.4) to 0.59, indicating that the ensemble version
of GA/ENN can generate much more consistent feature selection results compared
to the original GA/ENN algorithm.
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Figure 1.9 Ensemble feature selection algorithms for data partitioning. The x-axis is the
index of the 2000 genes in the colon cancer microarray dataset [2]. The y-axis is a boolean
value indicating whether a gene is selected. Two separate runs of ensemble of GA/kKNN (an
ensemble of 50) each with a different 5-fold cross validation partitioning of the dataset. For
example, a cross is added to the z-axis of 200 and y-axis of T2 if the gene with index of 200
in the dataset is selected in the second run of the ensemble of GA/ENN. A Jaccard set-based
index denoted as J is calculated (see 1.4.2 for details).
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1.3.4 Performance on sample classification

Besides improving stability, another goal is to achieve higher classification accuracy
by using ensemble feature selection approach [1]. Here we tested the classification
accuracy using the genes selected by moderated ¢-test from colon cancer microarray
dataset [2], and compare those results with its ensemble version. The classification
accuracy was calculated using a 10-fold cross validation with a k-nearest neighbor
classifier (k = 3).
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Figure 1.10  Sample classification accuracy using genes selected from colon cancer
microarray dataset [2] by (a) moderated ¢-test, and (b) ensemble of moderated ¢-test.

From Figure 1.10, we observe that genes selected using the ensemble approach
produce a minor improvement on sample classification as compared to the single
approach. Since the sample size of the dataset is small, we anticipate that a greater
improvement on sample classification may be achieved by using a dataset with larger
sample size.

1.3.5 Ensemble size

For ensemble feature selection, the choice of ensemble size may affect the perfor-
mance on feature selection and stability. In this subsection, we evaluate the effect of
different ensemble sizes on feature selection stability. All the evaluation are done on
colon cancer microarray dataset [2]. Several different evaluation metrics are used to
assess the stability. Those metrics are described in details in Section 1.4.

From Figure 1.11a,b, we can see that larger ensemble size of the moderate ¢-test
corresponds to higher feature selection stability in terms of both Spearman correlation
and Jaccard rank-based index. Similar effect is also observed for the ensemble of
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Figure 1.11 Ensemble size and its effects. (a) ensemble size of moderated ¢-test and its
effect on feature selection stability measured by Spearman correlation; (b) ensemble size of
moderated ¢-test and its effect on feature selection stability measured by Jaccard rank-based
index; (c) Ensemble size of GA/KNN and its effect on feature selection stability measured
by Jaccard set-based index; (d) Ensemble size of GA/EKNN and its effect on selected feature
subset size.

GA/ENN where increasing ensemble size results in higher feature selection stability
as indicated by Jaccard set-based index (Figure 1.11c).

The size of the selected gene subsets has been used by many studies as an eval-
vation standard for wrapper algorithms [30]. Specifically, without sacrificing the
performance, e.g. classification accuracy, small gene subsets are preferred. We ob-
serve that the larger the ensemble size of GA/KNN the smaller the identified gene
subset as shown in Figure 1.11d.
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1.3.6 Some key aspects in ensemble feature selection algorithms

There are several key aspects that may be of interests in designing ensemble feature
selection algorithms. Firstly, how to create multiple models is important and deter-
mines the quality of the final feature selection results. An ensemble of certain feature
selection algorithm may be created by using bootstrap sampling, random data par-
titioning, parameter randomization, or the combination of several. However, some
ensemble approaches are specific to certain types of feature selection algorithms. For
example, we can use sample order perturbation for creating an ensemble of ReliefF’
algorithm, but this approach will not help on a ¢-test filter. Similarly, we can not use
the data partitioning approach for the filter-based feature selection algorithms as the
classification is independent from the feature selection procedure.

The ensemble approach attempts to improve feature selection result by increasing
model complexity. Why the added complexity may improve the feature selection
result leads to the second key aspect known as diversity which is intensively studied
in designing ensemble of classification algorithms [34]. However, to our knowledge
this aspect has not been systematically studied in ensemble feature selection. There-
fore, it is interesting to evaluate relationship between the performance on sample
classification, the feature selection stability, and the diversity of ensemble models in
ensemble feature selection algorithms.

The third key aspect on ensemble feature selection algorithm is on designing
appropriate methods for combining multiple ranking lists or feature subsets. Some
initial work has been done in this aspect [6] but the main approach still remains to be
simple averaging. More sophisticated approach is clearly welcomed for improving
the finial feature selection result.

Several other aspects such as model selection and model averaging that has been
studied in ensemble classification could also be applied to study ensemble feature
selection algorithms.

1.4 METRICS FOR STABILITY ASSESSMENT

Stability metrics are used to assess the stability of multiple feature selection results. A
feature selection algorithm is often considered as stable in terms of feature selection if
the selected features are consistent from multiple runs of the algorithm with variants
of the original dataset. Depending on the types of the feature selection algorithm,
multiple variants of the original dataset can be obtained by perturbing the original
dataset in certain way such as bootstrapping, random partitioning, or re-ordering etc.
We denote each feature selection results as F;, (¢ = 1...L) where L is the number
of times the selection are repeated. To assess the stability, it is common to perform a
pairwise comparison of each selection result with others and average the assessment
with respect to the number of comparisons [9]. Formally, this procedure can be
expressed as follows:
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where §p is the assessment score of stability from averaged pairwise comparisons.
F; and F; are the ith feature selection result and the jth feature selection result
generated from different runs of a feature selection algorithm. S(.) is a stability
assessment metric which could be defined differently according to the type of feature
selection algorithm and ones interests or emphasis in assessment.

1.4.1 Rank-based stability metrics

Rank-based metrics are used to assess the stability of multiple ranking lists in which
the features are ranked based on certain evaluation criteria of a feature selection
algorithm. Filter algorithms that produce a “goodness" score for each feature can
be assessed using rank-based metrics whereas wrapper algorithms that generate a
subset of features instead of ranking the features may not be assessed properly using
rank-based metrics but require set-based stability metrics which will be introduced
in Section 1.4.2.

Within the rank-based metrics, there are mainly two sub-categories depending
on whether the full ranking list or a partial ranking list is considered. For the full
ranking list, one assess the stability based on the rank of all features whereas for the
partial list, a threshold is specified and only those that pass the threshold are used for
stability assessment.

1.4.1.1 Full ranking metrics The most widely used metric for full ranking list
is probably Spearman correlation [19, 18, 31]. For stability assessment, it is applied
as follows:

S N80T =)
S(Ri7Rj)—1—Zm (1.5)
T=1

where Ss(R;, R;) denotes computing stability score on ranking lists R; and R;
using Spearman correlation. [V is the total number of features, and 7 is an index goes
through the first feature to the last one in the dataset. r] denotes the rank of the 7th
feature in the ith ranking list.

Spearman correlation ranges between -1 to 1 with 0 indicates no correlation and
1 or -1 indicate a perfect positive or negative correlation, respectively. For feature
selection stability assessment, the higher (in positive value) the Spearman correlation
the more consistent the two ranking lists, and therefore, the more stable the feature
selection algorithm.

1.4.1.2 Partial ranking metrics In contrast to the full ranking metrics, partial
ranking metrics require to pre-specify a threshold and consider only features that pass
the threshold [14]. For example, the Jaccard rank-based index is a typical partial
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ranking metric used for assessing stability of feature selection algorithm in several
studies [19, 31]. Here, one need to make a decision on using what percentage of top
ranked features or simply how many top ranked features for stability assessment. Let
us use top k features in each list. The Jaccard rank-based index can be computed as
follows:
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where S%(R;,R;) denotes computing stability score on ranking lists R; and R;
using Jaccard rank-based index with top k ranked features. I(.) is an indicator
function which gives 1 if an evaluation is true or O otherwise. As defined before, 7
denotes the rank of the 7th feature in the ith ranking list. A is the logic and.

What the above function essentially does is to find the intersection and the union
of the top k features from ranking list ¢ and ranking list j, and then compute the
ratio of the intersection over union. Clearly, if the top & features in both ranking lists
are exactly the same, the intersection and the union of them will be the same and
therefore the ratio is 1 (perfect stability). Otherwise the ratio will be smaller than 1
and reaches 0 when none of the top k features in the two ranking lists is the same
(no stability). Note that Jaccard rank-based metric is undefined when £ = 0 and it
is always 1 if all features are considered (k = NN). Both cases are meaningless in
the context of feature selection. In other words, we need to specify a meaningful
threshold & that fulfill the inequality 0 < k < N.

Another partial ranking metric is the Kuncheva index proposed by Kunckeva [22]:

N

SH(R; R-)—Zl(r7<k/\r7<k)ﬂ (1.7)
I (3 Wi _T:1 RN VI k—kQ/N .
where N is the total number of features, I(r] < k Ar] < k) as defined before

computes the number of features in common in the top k features of the ranking lists
of 7 and j, and N is the total number of features.

Similar to the Jaccard rank-based index, the Kuncheva index looks at the inter-
section of the top k features in the two ranking lists ¢ and j. However, instead of
normalizing the intersection using the union of the two partial lists as in the Jaccard
rank-based index, the Kuncheva index normalizes the intersection using the length of
the list (that is, k) and correct for the chance of selecting common features at random
among two partial lists with the term k2 /N. This is done by incorporating the total
number of features IV in the ranking list to the metric which takes into account the
ratio of the number of features considered (k) and the total number of feature (V) in
computing the index. The Kuncheva index is in the range of -1 to 1 with a greater
value suggesting a more consistent feature selection results in the two runs. Similar
to he Jaccard rank-based index, the Kuncheva index is undefined at both £ = 0 and
k = N, which in meaningless in practice and is often ignored.
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1.4.2 Set-based stability metrics

For algorithms that directly selecting features instead of ranking features, a boolean
value is produced indicating whether a feature is included or excluded in the feature
selection result. In such a scenario, a set-based metric is more appropriate to evaluate
stability of the feature selection result.

The most common metric in this category is the Hamming index which is adopted
by Dunne et al. [9] for evaluating the stability of a few wrapper algorithms in feature
selection. Assuming the feature selection results of two independently runs of a
feature selection algorithm produces two boolean lists M; and M in which an “1"
indicates that a feature is selected and a “0" indicates that a feature is excluded. The
stability of the algorithm can be quantified as follows:

N

Sp(Mi, M) =1-Y"

=1

where m; and m] denote the value of the th position in the boolean list of ¢ and

boolean list of j, respectively. Those values could either be 0 or 1. N as before is
the total number of features in the dataset.

If same features are included or excluded in the two boolean lists, the term

25:1 LNmﬂ will be 0 which will give a Hamming index of 1. On the con-

trary, if the feature selection results are exactly opposite to each other, the term

25:1 LNmJ‘ will be 1 and the Hamming index will be 0.

Besides the Hamming index, the Jaccard index could also be applied for evaluating
the stability of set-based feature selection results. We refer to it as the Jaccard set-
based index so as to differentiate it from the Jaccard rank-based index. The Jaccard

set-based index is defined as follows:

|m] —mj|

N (1.8)

N
Sy(Mi, M;) = Z
=1
where m] and m7 as before denote the value of the 7th position in the boolean list of
i and boolean list of j. The term m] A m} over the sum of total number of features
N gives the intersection of selected features in the two boolean list, whereas the term

m; Vm; over the sum of total number of features gives the union of selected features.

m; Am}

J (1.9)
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1.4.3 Threshold in stability metrics

Depending on the feature selection algorithm and the biological questions, it may be
more interesting to look at only the top ranked genes from a ranking list instead of
considering all genes. This is generally true in cancer studies where only a subset of
top ranked genes will be selected for follow up validation. In such a case, metrics that
rely on a predefined threshold for calculation are often applied to study the stability
of the feature selection results. The question here is on what threshold to use (say
top 100 genes or top 500). Realize that a different threshold may lead to a different
conclusion on stability.
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Figure 1.12 shows the stability evaluation across multiple thresholds of Jaccard
rank-based index. In particular, Figure 1.12a is the result using SVM-RFE and Figure
1.12b is the result using ensemble of SVM-RFE all with colon cancer microarray
dataset [2]. Genes are ranked by the score from SVM-RFE or ensemble of SVM-
RFE, respectively. We applied the thresholds of top 10, 20, ..., 2000 genes with a step
of 10 genes for calculating the Jaccard rank-based index using bootstrap sampling
datasets.
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Figure 1.12  Evaluation of using different thresholds for computing stability. SVM-RFE
and its ensemble are run on bootstraps on colon cancer microarray dataset [2], respectively,
and the stability value in terms of Jaccard rank-based index are calculated using thresholds
from top 10 genes to top 2000 genes (that is, all genes) with a step of 10 (thus, 200 steps).

It is clear that the ensemble of SVM-RFE demonstrates much higher stability
especially at the very top of the ranking lists. The stability according to Jaccard rank-
based index is around 0.7 for the ensemble approach whereas for the single version
of SVM-REE it is less than 0.2. One important observation is that as more genes
are included for calculation, the difference of the Jaccard rank-based index between
the ensemble and the single approaches become smaller and eventually become 0
when all genes are included for calculation. Therefore, it may be most informative to
compare the very top of the ranking lists when using the Jaccard rank-based index,
whereas the comparison of a long list using the Jaccard rank-based index could be
meaningless as both of them will have a value close to 1.

1.4.4 Remark on metrics for stability evaluation

It is generally unnecessary or even impossible to determine which metric is the best
one for evaluating stability across all scenarios [19, 14]. In practise, depending on the
type of feature selection algorithm, certain metric may appear to be more appropriate.
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Sometimes, different metrics could be applied to the same selection results and they
may help to determine different properties of a feature selection algorithm in terms
of stability.

Since different metrics may score a feature selection algorithm differently, demon-
strating that an algorithm performs more stable than other algorithms across multiple
metrics is desirable for designing method to improve stability of feature selection.

1.5 CONCLUSIONS

Stability of feature selection algorithms has become an important research topic in
bioinformatics where the selected features have important biological interpretations.
Ensemble feature selection approach has been a general and promising solution in
many scenarios where the performance of a single feature selection algorithm is
highly unstable. In this chapter, we categorized feature selection algorithms into
three types and demonstrated their instability in different scenarios. We focused on
the ensemble feature selection algorithms and compared their performance with their
corresponding single versions. Several metrics that are commonly used for assessing
feature selection stability are introduced and used in our comparison.

Ensemble feature selection algorithms appear to be much more stable in terms of
generating feature subset or feature ranking list. However, factors such as the size
of the ensemble, the metric used for assessment, and the threshold used by some
metrics should be taken into consideration when designing and comparing ensemble
feature selection algorithms. We believe that ensemble feature selection algorithms
are useful tools in bioinformatics applications where the goal is both on accurate
sample classification and biomarker identification.
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