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Abstract

Modern molecular biology increasingly relies on the application of high-throughput

technologies for studying the function, interaction, and integration of genes, protein-

s, and a variety of other molecules on a large scale. The application of those high-

throughput technologies has led to the exponential growth of biological data, making

modern molecular biology a data-intensive science. Huge effort has been directed to

the development of robust and efficient computational algorithms in order to make

sense of these extremely large and complex biological data,giving rise to several inter-

disciplinary fields, such as computational and systems biology.

Machine learning and data mining are disciplines dealing with knowledge discovery

from large data, and their application to computational andsystems biology has been

extremely fruitful. However, the ever-increasing size andcomplexity of the biological

data require novel computational solutions to be developed. This thesis attempts to con-

tribute to these inter-disciplinary fields by developing and applying different ensemble

learning methods and hybrid algorithms for solving a variety of problems in computa-

tional and systems biology. Through the study of different types of data generated from

a variety of biological systems using different high-throughput approaches, we demon-

strate that ensemble learning methods and hybrid algorithms are general, flexible, and

highly effective tools for computational and systems biology.
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Chapter 1

Introduction

Central dogma is the classic framework for studying and understanding biological sys-

tems and their functions [46]. It loosely divides the information in biological systems

into three levels, i.e. genes, transcripts, and proteins, in which the information flows

from gene to transcript by transcription and from transcript to protein by translation

(Figure1.1). Although there are many other information flows in a variety of biological

systems, the studies of genes, transcripts, and proteins and the information flows among

them have been the most fundamental subjects in molecular biology research.

Nucleus 

DNA 

RNA 

Transcription 

mRNA 

Protein 

Cytoplasm 

Translation 

Figure 1.1: The biological system of the cell. The information flows from genes (DNA)
to transcripts (RNA and mRNA) and to proteins through transcription and translation.

1



2 CHAPTER 1. INTRODUCTION

The collections of all the genes, transcripts, and proteinsin a cell, tissue, or or-

ganism at a given time or state are commonly referred to as genome, transcriptome,

and proteome [6], respectively. With the development and the application of various

high-throughput technologies, we are in the era of profilingand interrogating the en-

tire genome, transcriptome, and proteome of a cell, tissue,organism, or even multiple

organisms, giving rise to new emerging research fields such as genomics [39], tran-

scriptomics [16], and proteomics [147] among numerous other “-omics” science. The

explosion of the biological data generated from -omics studies and the attempt to un-

derstand tens of thousands of genes, proteins, and other biological molecules in a sys-

tematic way transformed molecular biology into an information-based science that is

best exemplified by the rise of inter-disciplinary fields such as computational biology

and systems biology. The key characteristic of computational and systems biology is

the application of computational techniques and statistical models for the analysis and

interpretation of the huge amount of biological data. The knowledge discovered from

these data and systems could have significant impact on biology and human welfare.

Machine learning and data mining are intelligent computational approaches used to

extract information from large datasets and discover relationships. Their application

to computational and systems biology have been extremely fruitful [111]. Ensemble

learning and hybrid algorithms are intensive studies techniques in machine learning

and data mining. The goal of this thesis is to contribute to the fast-growing field of

computational and systems biology by designing ensemble learning methods and hy-

brid algorithms and applying them to solve biological and computational challenges in

genomics, transcriptomics, and proteomics.

1.1 Methods in computational and systems biology

Systems biology aims to study and understand biological systems in its full scale and

complexity. It is characterized by using high-throughput technologies to identify and

profile biological systems in high speed and large scales. Itrelies on computational

methods for effective data analysis and interpretation. Here we provide a brief intro-

duction on some of the key high-throughput technologies utilized for studying genomic-

s, transcriptomics, and proteomics and the main questions that associated with each of

them. Specifically, at the genomic level, we introduce genome-wide association (GWA)
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studies, at the transcriptomic level, we focus on microarray-based gene expression pro-

filing, and at the proteomic level, we describe mass spectrometry (MS)-based protein

identification. These topics are the main focus of our research and are the subjects that

this thesis is devoted to. They span across genomics and transcriptomics to proteomics,

capturing the main aspects of systems biology.

1.1.1 Genome-wide association studies

Single nucleotide polymorphisms (SNPs) are single-base-pair variants on DNA se-

quences that contribute to the genotype difference among individuals. Genome-wide

association (GWA) studies are designed to specifically explore SNP genotypes to un-

derstand the genetic basis of many common complex diseases [85]. The studies rely on

screening common SNPs and comparing the variations betweenindividuals who have

a certain disease (case) from a control population of individuals (control) by adopting

a case-control study design [88]. The rationale is that comparing the SNP genotype-

s of case and control samples can provide critical insight tothe genetic basis and the

hereditary aspects of complex diseases. One of the key technologies that enables the

genome-wide screening of SNPs is known as SNP chips [72]. SNPchips interrogate

alleles by hybridizing the target DNA to the allele-specificoligonucleotide probes on

the chips [188]. Since a DNA sequence containing a SNP may match perfectly to a

probe-producing a stable hybridization, or be a mismatch tothe probe-producing an un-

stable hybridization, the amount of DNA that could be found in the stable hybridization

is relatively much more abundant than what could be found in unstable hybridization.

Based on the amount of hybridization of the target DNA to eachof those probes, one

can determine if an allele is homozygous or heterozygous. Figure1.2 is a schematic

illustration of SNP chips. On the SNP chip, each spot corresponds to a SNP site on the

genome. The data obtained from SNP chips is a matrix with eachposition providing

a profiling of the genotype of a SNP as homozygous or heterozygous alleles inherited

from the parents [148]. Each row represents a sample that hasbeen genotyped, and the

last column is the class label for the disease status of each sample.

GWA studies have been proven to be extremely useful for locating disease associat-

ed genes in complex diseases. Some of the most cited studies include the identification

of genesTCF7L2 andSLC30A98, which contribute to the risk of developing type 2

diabetes [180], and the identification of genesCFH andARMS2as the risk factors for
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Figure 1.2: A schematic illustration of SNP chip and the datastructure. A SNP chip
is applied for genotyping and the data matrix obtained is a categorical data matrix with
each variable taking a genotype ofAA, AB, or BB corresponding to homozygous or
heterozygous alleles. The SNP-disease associations and the SNP-SNP interactions can
be represented as a “heat map” with brighter colours indicating stronger associations.

developing age-related macular degeneration [103]. Some of the main computational

challenges in GWA data analysis include data normalization[31], SNP calling [161],

disease-associated SNP identification [87, 142], and gene-gene interaction identifica-

tion [42, 59]. In particular, the analysis of the huge amountof SNP data has been the

bottleneck. That is, the number of SNPs considered in a typical GWA study is very

large compared to the number of samples, giving an extremelyhigh SNP-to-sample ra-

tio. Furthermore, given the large number and the high density of SNPs in a genome,

the SNP genotyping process is subject to errors [155]. Therefore, the development of

computational algorithms that are robust to data noise and high data dimensionality, and

can efficiently process several hundreds of thousands of SNPs is the key to successful

GWA studies [122].

1.1.2 Gene expression microarray

Developed in the mid-90s, a microarray-based hybridization approach [49, 174] has

served as the key high-throughput technology for quantifying the expression of genes
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at the transcript level for more than a decade. Although there are a few types of microar-

rays, they utilize essentially the same principle for measuring gene expressions [184].

Essentially, gene expression microarray relies on hybridization to capture mRNA ex-

pressed in the cells, tissues, and organisms with the complementary probes manufac-

tured on the glass slides. Using the intensities of fluorophores labelled on mRNAs as

the surrogate of gene expression levels, we are able to compare the relative changes

between cells and tissues from different treatments (Figure1.3). Following a decade of

development, microarray has become a highly effective transcriptome profiling technol-

ogy for model organisms where the genomes are relatively complete. Tens of thousands

of genes can be measured simultaneously, which provides a holistic measurement of bi-

ological systems under various treatments and conditions.

g1,1

g1,N

g1,2

g2,1 gM,1…

g2,2 …

c1

c2

…g2,N gM,N

gM,2

cN

… … … … …

Class labelM genes

N samples

Microarray chips

Figure 1.3: A schematic illustration of gene expression microarray data. From the
computational viewpoint, microarray data can be viewed as an N×M matrix. Each row
represents a sample while each column represents a gene except the last column which
represents the class label of each sample.gi, j is a numeric value representing the gene
expression level of theith gene in thej th sample.c j in the last column is the class label
of the j th sample

The analysis of microarray data has been an extensively studied subject. The fun-

damental issues include how to (1) normalize data so as to reduce data noise and en-

hance biological signal [160, 205], (2) group samples and genes into clusters based

on their expression profiles [68, 186], (3) identify genes where the expression are up-

and down-regulated (collectively known as differentiallyexpressed (DE) genes ) with

respect to the treatments or disease status [57, 181], (4) identify enriched biological

pathways [187], (5) computationally select key genes and gene subsets that are asso-

ciated with the treatments or disease status [55, 74], and (6) classify samples based on

their gene expression profiles [56,70].
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1.1.3 Mass spectrometry-based proteomics

The study of the global protein translation in the cell, tissue or organism is known

as proteomics [2]. The goal of proteomic research is to identify and quantify all the

proteins present in a cell, tissue or organism at a specific state or moment. Liquid

chromatography-mass spectrometry (LC-MS)-based high-throughput proteomics is the

key technology for such a large-scale profiling. With the tandem design (LC-MS/MS),

increased sensitivity and specificity can be achieved [79].

Figure 1.4: A schematic illustration of experimental procedures and computational pro-
cedures in protein identification using mass spectrometry.

In a typical MS-based experiment, cell or tissue samples areextracted and the pro-

tein mixture from the samples is purified and digested with anenzyme such as trypsin.

The digested protein mixture is then injected into liquid chromatography and captured

by a mass spectrometer or tandem mass spectrometer (LC-MS/MS) according to the

mass/charge (m/z) of the generated peptide and peptide fragment ions. The output from

the mass spectrometer is spectra, each corresponding to a peptide or peptide fragment.

LC-MS/MS-based proteomics relies highly on the computational analysis. Typical-

ly, the raw spectra files are processed by a denoising algorithm [195], and from those

spectra, the peptides are identified [38]. This is commonly accomplished by comparing
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the observed spectra with theoretical spectra generatedin silico from a given protein

database (database searching) [43, 62], or with an annotated spectral library (library

searching) [45, 109]. The identified peptides are then further post-processed for filter-

ing potential false positive identifications [101, 141], and the filtered peptides are then

used to infer the proteins that may present in the sample [139]. Figure1.4summarizes

the experimental procedures and computational procedures.

After determining the protein identifies and abundances in asample, the data can be

analysed in a similar fashion to microarray-based gene expression profiling. Specifical-

ly, similar questions are commonly asked, such as disease-associated protein identifica-

tion [84], and sample classification based on the protein abundance [200,215].

1.1.4 Ensemble methods and hybrid algorithms

Ensemble methods and hybrid algorithms are fast developingtechniques in the field of

data mining and pattern recognition. These techniques havebeen increasingly applied

to processing the large amount of biological data generatedfrom using aforementioned

high-throughput technologies. The strength of ensemble methods mainly reside in the

robustness to the data noise. This is commonly achieved through various types of mod-

el averaging techniques which are one of the most important components in ensemble

methods. For hybrid algorithms, they are, by definition, comprised of multiple algo-

rithms and therefore are highly specialized for solving complex biology problems that

are often modular and require the application of a diverse set of algorithmic tools. In

Chapter2, we will briefly review some of the most popular ensemble methods and

hybrid algorithms. Those techniques will serve as the key techniques from which the

followup chapters build on and extend to specific biologicalquestions and systems.

1.2 Contributions and organization of the thesis

In this thesis, we present our research on designing ensemble learning methods and

hybrid algorithms for addressing some of the key biologicalquestions in computational

and systems biology. Specifically, the organization and thecontributions of the thesis

are as follows:
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• In Chapter2, we introduce some of the most popular ensemble methods and hy-

brid algorithms and review their applications in computational and systems biol-

ogy. We start by describing the rationale behind ensemble methods. Then, based

on the applications, we categorize the ensemble methods as those for sample clas-

sification and those for feature selection. The rest of the chapter mainly focuses

on reviewing some of the most representative applications of ensemble methods

and hybrid algorithms in dealing with some of the key questions in computational

and systems biology. These literature reviews will serve asthe motivation and the

building blocks for the subsequent chapters of this thesis.

• Chapter3 describes using the ensemble feature selection approach for filtering

gene-gene interactions in complex diseases. In this chapter, we propose a novel

ensemble of filters using the ReliefF algorithm and its variants. By permutating

the samples in the GWA dataset, we can create multiple filters, each built on a

permuted version of the original dataset. We demonstrate that this permutation

and ensemble of filter approach is advantageous in that complementary informa-

tion in the dataset can be extracted. We show that the original filter algorithms are

unstable in terms of SNP ranking. A low reproducibility is observed with the Re-

liefF algorithm and its variants in SNP filtering. By using the proposed ensemble

of filters, not only can we largely improve the reproducibility of SNP rankings

but also we can significantly increase the success rate on ranking functional S-

NPs and interaction pairs. This is critical for the follow upgene-gene interaction

identification.

• Chapter4 is about gene-gene interaction and gene-environmental interaction i-

dentification. It takes the SNP filtering results from Chapter 3 and utilizes a much

more computationally intensive procedure to jointly evaluate multiple SNPs and

environmental factors for potential gene-gene interaction and gene-environmental

interaction identification in complex disease. Our contribution here is in develop-

ing an effective algorithm for gene-gene interaction identification. Specifically,

we propose a novelgenetic ensembleapproach that incorporates multiple classi-

fication algorithms in a genetic algorithm. By using three integration functions

in a novel way to combine the results from multiple classification algorithms, we

observe a large increase of power on identifying SNP interaction pairs, signifi-

cantly better than using any single classifier. Moreover, weintroduce an equation
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for evaluating the degree of complementarity of results generated by different

gene-gene interaction identification algorithms. We show that the proposed ge-

netic ensemble algorithm generates complementary resultsto other algorithms

and is therefore useful even when other algorithms are successfully applied for

data analysis.

• In Chapter5, we move on to the transcriptome level by analysing gene expres-

sion data generated from microarray. In particular, we design a hybrid algorithm

for gene set selection for accurate classification of disease and control samples.

Given the small sample size and the large number of genes measured by microar-

ray, traditional approaches either use computationally efficient filter algorithms to

evaluate each gene separately, or evaluate a subset of prioritized genes in combi-

nations using computationally intensive wrapper algorithms. Different from the

traditional approach, we propose a score-mapping strategyto combine the advan-

tages of filter and wrapper algorithms in that multiple filteralgorithms are used to

pre-evaluate each gene from microarray data in a computationally efficient way,

and the pre-evaluation scores are combined and fused to a genetic ensemble-based

wrapper algorithm for gene set selection. We named this hybrid algorithm “MF-

GE” and demonstrate that (1) MF-GE converges faster than genetic ensemble

without the multiple-filter component; (2) the size of the gene subset selected by

MF-GE is smaller than the original genetic ensemble; and (3)MF-GE is supe-

rior to several other filter and wrapper feature selection algorithms in terms of

identifying discriminative genes in sample classification.

• From Chapter6, we turn to the proteome level. In this chapter, we address one

of the key computational challenges, known as post-processing of peptide identi-

fications, in processing and analysing mass spectrometry (MS)-based proteomic-

s data. In MS-based proteomics, proteins are digested to peptides prior to the

MS analysis and the proteins that are present in the sample are inferred from

the identified peptides after the MS analysis. Prioritizingtrue peptide identi-

fications while removing false positive identifications is akey post-processing

step for eliminating false positive protein identifications. We model this post-

processing step as a semi-supervised learning (SSL) procedure and propose a

cascade-ensemble learning approach to improve peptide identification results.

The proposed method is considered as an ensemble approach inthat multiple
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learning models are built in a cascade manner; each attemptsto improve the re-

sult for its next model. By using the cascade-ensemble learning approach, the

SSL algorithm boosts itself to a stable state, producing many more peptide iden-

tifications at a controlled level of false discovery rate.

• Chapter7 focuses on protein set selection for normal and disease sample classi-

fication. Here we propose a novel clustering-based hybrid algorithm to extract

complementary protein sets. Those protein sets are functionally distinctive units

and represent potential biological pathways that are each involved in a unique

biological process. By selecting proteins from those diverse functional units,

the proposed hybrid algorithm can reduce the dominance of some universal bio-

logical pathways and extract much more useful information from the proteomics

dataset for accurate sample classification and disease discrimination. We compare

the hybrid algorithm with four other competitive algorithms on protein selection

and sample classification. The proposed hybrid algorithm isable to give signif-

icantly lower error rate on sample classification across 10 different classification

algorithms. Furthermore, we show that the proteins selected by the hybrid algo-

rithm are highly complementary, providing useful extra information on potential

biomarker identification.

• In the final chapter (Chapter8), we summarize the thesis and propose potential

directions for future work.



Chapter 2

Ensemble and Hybrid Algorithms in

Computational Biology: Methods and

Reviews

This chapter is partially based on the following publication:

Pengyi Yang, Yee Hwa Yang, Bing B. Zhou, Albert Y. Zomaya, A review of ensemble

methods in bioinformatics. Current Bioinformatics, 5(4):296–308, 2010

One key component in computational and systems biology is the application of com-

putational techniques for analysing and integrating different biological data sources and

types. Various computational techniques, especially machine learning and data mining

algorithms, are applied, for example, (1) to select biomarkers such as genes or proteins

that are associated with the traits of interest, (2) to classify different types of samples

based on genomic, transcriptomic, and proteomic profiling of biological systems, and

(3) for the integration of data from multiple levels such as the integrative analysis of

transcriptomic and proteomic data.

These tasks are data intensive in nature and often involve solving multiple subtasks

in a modular or parallel fashion in achieving the final result. In order to analyse these

complex biological systems, multiple models and multiple algorithms may be combined

to solve the problem in an efficient and effective way.Ensemble methodsrefer to com-

bining multiple models to improve performance [81]. For example, in classification,

11
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an ensemble of decision tree models, each generated from a bootstrap of the original

dataset, may perform in a superior fashion to a single decision tree model on the same

dataset. In contrast,hybrid algorithmsrefer to combining multiple algorithms for solv-

ing tasks that are modular in nature [8]. In particular, the original problems are often

subdivided to smaller and functionally unique subproblems, and each subproblem is

solved by an algorithmic component in the hybrid algorithm.

In this chapter, we briefly introduce some of the most popularensemble methods

and hybrid algorithms that have been successfully applied to computational and systems

biology. We also review some of the most representative applications in gene expression

microarray, MS-based proteomics, and gene-gene interaction identification from GWA

studies. They will serve as the motivation and the building blocks for the rest of the

thesis.

2.1 Ensemble methods

Based on their applications, we categorize ensemble methods into (1) ensemble method-

s for classification, and (2) ensemble methods for feature selection. Ensemble methods

for classification have been established as a useful approach for improving sample clas-

sification accuracy [145]. For classification, ensemble methods are effective in extract-

ing limited information, which is critical for bioinformatics applications where only a

small sample size is available. In contrast to classification, ensemble feature selection is

a fast-developing technique where the main focus has been toimprove feature selection

stability [82]. Yet, several recent studies have found that, besides improving feature

selection stability, many other aspects such as sample classification accuracy can also

benefit from the ensemble feature selection approach [1].

2.1.1 Ensemble methods for classification

2.1.1.1 The rationale

Ensemble methods for classification have been intensively studied in machine learning

and pattern recognition. They are effective ways for improving classification accuracy

and model stability [53]. In bioinformatics, ensemble methods provide the advantage of

alleviating the small sample size problem by averaging and incorporating over multiple
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models to reduce the potential on overfitting [54]. In this regard, the training data are

used in a more efficient way, which is critical to many biological applications with lim-

ited sample size. Some ensemble methods such asrandom forests[21] are particularly

useful for high-dimensional datasets because increased classification accuracy can be

achieved by generating multiple prediction models, each with a differentfeaturesubset.

These properties have a major impact on many different bioinformatics applications.

For the task of classification, increased accuracy is often obtained by aggregating

a group of classifiers (referred to asbase classifiers) as an ensemble committee and

making the prediction for unseen data in a consensus way. Theaim of designing/using

ensemble methods is to achieve more accurate classification(on training data) as well

as better generalization (on unseen data). However, this isoften achieved at the expense

of increased model complexity (decreased model interpretability) [107]. A better gen-

eralization property of the ensemble approach is often explained by using the classic

bias-variance decomposition analysis [197]. Here we provide an intuitive interpretation

of the advantage of ensemble approach.

Let the best classification rule (calledhypothesis) hbest of a given induction algo-

rithm for certain kind of data be the circle in Figure2.1. Suppose the training data

is free from noise, without any missing values, and sufficiently large to represent the

underneath pattern. Then, we expect the classifier trained on the dataset to capture the

best classification hypothesis represented as the circle. In practice, however, the train-

ing datasets are often confounded by small sample size, highdimensionality, and high

noise-to-signal ratio, etc. Therefore, obtaining the bestclassification hypothesis is often

nontrivial because there are a large number of suboptimal hypotheses in the hypothesis

space (denoted asH in Figure2.1a) that can fit the training data but do not generalize

well on unseen data.

Creating multiple classifiers by manipulating the trainingdata in an intelligent way

allows one to obtain a different hypothesis space with each classifier (H1, H2, ..., HL;

whereL is the number of classifiers), which may lead to a narrowed overlap hypothesis

space (Ho) as shown in Figure2.1b. By combining the classification rules of multiple

classifiers using integration methods that take advantage of the overlapped region (such

as averaging and majority voting), we are approaching the best classification rule by

using multiple rules as an approximation. As a result, the ensemble composed in such

a manner often appears to be more accurate.

To aggregate the base classifiers in a consensus manner, strategies such asmajority
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(a) Hypothesis space of a single classifier (b) Hypothesis space of an ensemble classifier
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Figure 2.1: A schematic illustration of hypothesis space partitioning with ensemble of
classifiers. By combining moderately accurate base classifiers, we can approximate the
best classification rulehbestwith the increase of model complexity. This can be achieved
by combining base classifiers with averaging or majority voting, which takes advantage
of the overlapped region.

votingor simple averaging are commonly used. Assuming the prediction outputs of the

base classifiers are independent of each other (which, in practice, is partially achieved

by promoting diversity among the base classifiers), the majority voting error rateεmv

can be expressed as follows [110]:

εmv=
L

∑
i=⌊L/2⌋+1





L

i



ε i(1− ε)L−i (2.1)

whereL is the number of base classifiers in the ensemble. Given the condition that

ε < εrandom for εrandom being the error rate of a random guess and all base classifiers

have identical error rateε, the majority voting error ratesεmv monotonically decreases

and approaches 0 whenL → ∞.

Figure2.2 shows an ideal scenario in which the dataset has two classes each with

the same number of samples, the prediction of base classifiers is independent of each

other, and all base classifiers have an identical error rate.It can be seen from the figure

that, when the error rate of the base classifiers is smaller than 0.5, which is a random

guess for a binary dataset with equal numbers of positive andnegative samples, the

ensemble error rate quickly gets smaller than the error rateof the base classifiers. If we

add more base classifiers, the improvement becomes more significant. In this example,

we used odd numbers of base classifiers where the consensus ismade by(L+ 1)/2
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Figure 2.2: Majority Voting. The relationship of error rates of base classifiers and error
rates of the ensemble classifier in majority voting. The diagonal line represents the case
in which the base classifiers are identical to each other, while the three curved lines
represent combining different numbers of base classifiers that are independent of each
other.

classifiers. When using an even number of base classifiers, the consensus is made by

L/2+1 classifiers.

From the above analysis, it is clear that in order to obtain animprovement the base

classifiers need to be accurate (better than chance) and diverse from each other [193].

The need for diversity originates from the assumption that if a classifier makes a mis-

classification, there may be another classifier that complements it by correctly classi-

fying the misclassified sample. Ideally, each classifier makes incorrect classifications

independently. Popular ensemble methods likebagging [20] (Figure2.3a) andrandom

subspace[86] (Figure2.3c) harness the diversity by using different perturbed data sets

and different feature sets for training base classifiers, respectively. That is, each base

classifier is trained on a subset of samples/features to obtain a slightly different clas-

sification hypothesis, and then combined to form the ensemble. The difference is that

bagging relies on bootstrap sampling of the original dataset, whereas random subspace

uses randomly selected samples without replacement to create multiple subsets. Ran-

dom forests [21] (Figure2.3d) is a combination of boosting on samples and random
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subspace on features. As forboosting [173] (Figure2.3b), diversity is obtained by

increasing the weights of misclassified samples in an iterative manner. Each base clas-

sifier is trained and combined from the samples with different classification weights,

and therefore, different hypotheses. By default, these three methods usedecision tree

as base classifiers because decision trees are sensitive to small changes on the training

set [53], and are thus suited for the perturbation procedureapplied to the training data.
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Figure 2.3: Schematic illustration of the four most popularensemble methods. They
are known as (a) bagging, (b) boosting, (c) random subspace,and (d) random forests.

2.1.1.2 Related literatures

Ben-Dor et al. [12] and Dudoitet al. [56] pioneered the application of bagging and

boosting algorithms for classifying tumour and normal samples using gene expression



2.1. ENSEMBLE METHODS 17

profiles. Both studies compared the ensemble methods with other individual classi-

fiers such ask-nearest neighbour (kNN), clustering based classifiers, support vector

machines (SVM), linear discriminant analysis (LDA), and classification trees. The con-

clusion was that ensemble methods of bagging and boosting performed similarly to

other single classification algorithms included in the comparison.

In contrast to the results obtained by Dudoitet al. and Ben-Doret al., the fol-

low up studies revealed that much better results can be achieved through minor tuning

and modification. For instance, Dettling and Bühlmann [50]proposed an algorithm

called LogitBoost that replaces the exponential loss function used in AdaBoost with a

log-likelihood loss function. They demonstrated that LogitBoost is more accurate in

classification of gene expression data compared with the original AdaBoost algorithm.

Long [120] argued that the performance of AdaBoost can be enhanced by improving the

base classifiers. He then proposed several customized boosting algorithms for microar-

ray data classification. The experimental results indicatethat the customized boosting

algorithms performed favourably compared with SVM-based algorithms. In compari-

son to the single tree classifier, Tan and Gilbert [189] demonstrated that, overall, en-

semble methods of bagging and boosting are more robust and accurate in microarray

data classification using seven publicly available datasets.

In MS-based proteomics, Quet al. [159] conducted the first study using boosting

ensembles for classifying mass spectra serum profiles. A classification accuracy of

100% was estimated using the standard AdaBoost algorithm, while a simpler ensemble

called “boosted decision stump feature selection” (BDSFS)showed slightly lower clas-

sification accuracy (97%) but gives more interpretable classification rules. A thorough

comparison study was conducted by Wuet al.[200], who compared the ensemble meth-

ods of bagging, boosting, and random forests to individual classifiers of LDA, quadratic

discriminant analysis,kNN, and SVM for MALDI-TOF (matrix assisted laser desorp-

tion/ionization with time-of-flight) data classification.The study found that among all

methods, on average, random forests gives the lowest error rate with the smallest vari-

ance. Another recent study by Gertheiss and Tutz [67] designed a block-wise boosting

algorithm to integrate feature selection and sample classification of mass spectrome-

try data. Based on LogitBoost, their method addresses the horizontal variability of the

m/z values by dividing the m/z values into small subsets called blocks. Finally, the

boosting ensemble has also been adopted as the classification and biomarker discovery

component in the proteomic data analysis framework proposed by Yasuiet al. [207].
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In comparison to bagging and boosting ensemble methods, random forests holds

a unique advantage because its use of multiple feature subsets is well suited for high-

dimensional data such as those generated by microarray and MS-based proteomics s-

tudies. This is demonstrated by several studies such as [112] and [52]. In [112], Lee

et al. compared the ensemble of bagging, boosting and random forests using the same

experimental settings and found random forests was the mostsuccessful. In [52], the

experimental results through ten microarray datasets suggest that random forests are

able to preserve predictive accuracy while yielding smaller gene sets compared with

diagonal linear discriminant analysis (DLDA),kNN, SVM, shrunken centroides (SC),

andkNN with feature selection. Other advantages of random forests such as robustness

to noise, lack of dependence upon tuning parameters, and thespeed of computation

have been demonstrated by Izmirlian [89] in classifying SELDI-TOF proteomic data.

Giving the good performance of random forests in high-dimensional data classifi-

cation, the development of random forests variants is a veryactive research topic. For

instance, Zhanget al. [213] proposed a deterministic procedure to form a forest of

classification trees. Their results indicate that the performance of the proposed deter-

ministic forest is similar to that of random forests, but with better reproducibility and

interpretability. Geurtset al. [69] proposed a tree ensemble method called “extra-trees”

which selects at each node the best amongk randomly generated splits. This method

is an improvement on random forests because unlike random forests, which are grown

with multiple subsets, the base trees of extra-trees are grown from the complete learning

set and by explicitly randomizing the cut-points.

2.1.2 Ensemble methods for feature selection

Feature selection is a key technique originating from the fields of artificial intelligence

and machine learning [17,73] in which the main motivation has been to improve sample

classification accuracy [48]. Since the focus is mainly on improving classification out-

come, the design of feature selection algorithms seldom considers specifically which

features are selected. Due to the exponential growth of biological data in recent years,

many feature selection algorithms have been found to be readily applicable, or only

require minor modification [172], for example, to identify potential disease-associated

genes from microarray studies [201], proteins from MS-based proteomics studies [114],

or SNP from GWA studies [214]. While sample classification accuracy is an important
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aspect in many of those biological studies such as discriminating cancer and normal

tissues, the emphasis is also on the selected features as they represent interesting genes,

proteins, or SNPs. These biological features are often referred to as biomarkers and they

frequently determine how further validation studies should be designed and conducted.

One unique issue arising from the application of feature selection algorithms in i-

dentifying potential disease-associated biomarkers, is that those algorithms may give

unstable selection results [96]. That is, a minor perturbation in the data such as a dif-

ferent partition of data samples, removing a few samples, oreven reordering the data

samples may cause a feature selection algorithm to select a different set of features.

For instance, typical microarray-based gene profiling studies produce high-dimensional

datasets with several thousand genes and a few dozen samples. Commonly, at-test

may be used to rank the importance of the genes in discriminating disease and con-

trols, tumours and normals, etc. It is possible that a small change in the dataset, such

as removing a few samples, may cause thet-test to rank the genes differently. For

those algorithms with stochastic components, simply rerunthe algorithm with a differ-

ent random seeding may give a different feature selection result. The termstabilityand

its counterpartinstability are used to describe whether a feature selection algorithm is

sensitive or insensitive to small changes in the data and thesettings of algorithmic pa-

rameters. The stability of a feature selection algorithm becomes an important property

in many biological studies because biologists may be more confident about the feature

selection results that do not change much with a small perturbation in the data or a re-

run of the algorithm. While this subject has been relativelyneglected in the past, we

saw a fast-growing interest in recent years where differentapproaches to improve the

stability of feature selection algorithms and different matrices for measuring them have

been proposed. It has been demonstrated that ensemble methods could be used to im-

prove feature selection stability and data classification accuracy [1]. In this chapter, we

categorize different feature selection algorithms, introduce two common approaches for

creating ensemble feature selection, and review recent development and applications of

ensemble feature selection algorithms in computational and systems biology.

2.1.2.1 Categories of feature selection algorithms

From a computational perspective, feature selection algorithms can be broadly divided

into three categories offilter , wrapper, andembeddedapproaches according to their



20CHAPTER 2. ENSEMBLE & HYBRID ALGORITHMS IN COMPUTATIONAL BIOLOGY

selection manners [73]. Figure2.4 shows the schematic view according to the catego-

rization.

(a) Filter approach

Optimization

Classification

Selected 

Features

(b) Wrapper approach (c) Embedded approach

Selected 

Features

Classification
Filtering or Ranking

Selected 

Features 

Figure 2.4: Categorization of feature selection algorithms. (a) Filter approach where
feature selection is independent from the classification. (b) Wrapper approach where
feature selection is explicitly performed by an inductive algorithm for sample classifi-
cation in an iterative manner. (c) Embedded approach where feature selection is per-
formed implicitly by an inductive algorithm during sample classification.

Filter algorithms commonly rank/select features by evaluating certain types of as-

sociation or correlation with class label, etc. They do not optimize the classification

accuracy of a given inductive algorithm directly. For this reason, filter algorithms are

often computationally more efficient compared with wrapperalgorithms. For numer-

ic data analysis such as differentially expressed (DE) geneselection from microarray

data or DE protein selection from mass spectrometry data, the most popular method-

s are probably thet-test and its variants [181]. As for categorical data types such as

disease-associated SNP selection from GWA studies, the commonly used methods are

χ2-test or odds ratio while increasingly popular methods are the ReliefF algorithm and

its variants [130].

Although filtering algorithms often show good generalization and extend well on

unseen data, they suffer from several problems. Firstly, filtering algorithms commonly

ignore the effects of the selected features on sample classification of a given inductive

algorithm. Yet the performance of the inductive algorithm could be useful for accu-

rate phenotype classification [104]. Secondly, many filter algorithms are univariate and

greedy based. They assume that each feature contributes to the phenotype independent-

ly and evaluate each feature separately. The feature set is often determined by ranking

the features according to certain scores calculated by filter algorithms and selecting the
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top-k candidates. Those assumptions are most likely invalid in biological systems, and

the selection results produced in this way are often suboptimal.

Compared with filter algorithms, wrapper algorithms have several advantages. First-

ly, wrapper algorithms incorporate the performance of an inductive algorithm in feature

evaluation, and are therefore likely to perform well in sample classification. Second-

ly, most wrapper algorithms are multivariate and treat multiple features as a unit for

evaluation. This property preserves the biological interpretation of genes and proteins

since they are linked by pathways and function in groups. A large number of wrap-

per algorithms have been applied to gene selection of microarray and protein selection

of mass spectrometry. Those include evaluation approachessuch as genetic algorithm

(GA)-based selection [92,116,117], and greedy approachessuch as incremental forward

selection [168], and incremental backward elimination [156].

Despite their common advantages, wrapper approaches oftensuffer from problems

such as overfitting, since the feature selection procedure is guided by an inductive algo-

rithm that fitted on training data. Therefore, the features selected by a wrapper approach

may generalize poorly on new datasets if overfitting is not prevented. Other than that,

wrapper algorithms are often much slower compared with filter algorithms (by several

orders of magnitude), due to their iterative training and evaluating procedures.

An embedded approach is somewhat between the filter approachand the wrapper

approach, where an inductive algorithm implicitly selectsfeatures during sample clas-

sification. As opposed to filter and wrapper approaches, embedded approaches rely

on certain types of inductive algorithms and are therefore less generic. The most pop-

ular ones that apply for gene and protein selection are support vector machine-based

recursive feature elimination (SVM-RFE) [74] and random forest-based feature evalu-

ation [52].

2.1.2.2 Ensemble feature selection algorithms

Ensemble feature selection algorithms are composed for many reasons. Generally, the

goals are to improve feature selection stability, or sampleclassification accuracy, or

both simultaneously, as demonstrated in numerous studies [1, 93, 118]. In many cas-

es, other aspects such as identifying important features orextracting feature interaction

relationships could also be achieved with higher accuracy using ensemble feature se-

lection algorithms as compared with the single approaches.
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Depending on the type of feature selection algorithm, theremay be many different

ways to create an ensemble feature selection algorithm. Here we describe two most

commonly used approaches for creating ensemble filters and ensemble wrappers, re-

spectively.

Ensemble based on data perturbation.The first class of methods is based on data

perturbation. This approach has been extensively utilizedand studied as can be viewed

in the literature [1, 19, 203]. The idea is built on the successful experience in ensemble

classification [53] and it has been found to be able to stabilize the feature selection re-

sult. For example, a bootstrap sampling procedure can be used for creating an ensemble

of filter algorithms, each of which may give a different ranking of genes. The consen-

sus is then obtained through combining those ranking lists.Naturally, besides bootstrap

sampling many other data perturbation methods (such as random spacing, etc.) can al-

so be used to create multiple versions of original datasets in the same framework. A

schematic illustration of this class of methods is shown in Figure2.5.

Figure 2.5: Schematic illustration of an ensemble of filtersusing data perturbation ap-
proach.

Ensemble based on different data partitioning.The second approach is based on

partitioning the training and testing data differently, which is specifically for wrapper-



2.1. ENSEMBLE METHODS 23

based feature selection algorithms. That is, data that are used for building the classifi-

cation model and data that are used for feature evaluation are partitioned using multiple

cross validations (or any other random partitioning procedures). The final feature subset

is determined by calculating the frequency of each gene selected from each partitioning.

If a gene is selected more than a given threshold, it is then included into the final feature

set.

A schematic illustration of this method is shown in Figure2.6. This method is firstly

described in [58] where a forward feature selection (FFS) wrapper and a backward

feature elimination (BFE) wrapper are shown to benefit from this ensemble approach.

Figure 2.6: Schematic illustration of an ensemble of wrappers using different partitions
of an internal cross validation for feature evaluation.

Besides using a different data partitioning, for stochastic optimization algorithms

such as GA or particle swarm optimization (PSO), ensemble could also be achieved by

using different initializations or different parameter settings. For wrappers such as FFS

or BFE, a different starting point in the feature space couldresult in a different selection

result. Generally, bootstrap sampling or other random spacing approaches can also be

applied to wrapper algorithms for creating ensembles.
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2.1.2.3 Related literatures

In computational and systems biology, ensemble feature selection originated from the

use of multiple filters for evaluating genes and proteins in microarray and MS-based

proteomics data [172]. This is due to the fact that no single feature selection algorith-

m can perform optimally on all datasets or under all criteria[206] and the potential

existence of multiple subsets of features that have similardiscriminant power [112].

The most straightforward approach for creating an ensembleof filters is to borrow

the idea of bagging by generating multiple bootstrap samples; each is then used for

building a filter. This approach is first adopted by Yu and Chenfor m/z feature selection

from MS-based proteomics data [210] and then extended by Saeyset al. for gene selec-

tion from microarray data [1,171]. Particularly, Saeyset al. also considered the stability

of the feature selection algorithms and found that an ensemble approach based on boot-

strap sampling can significantly improve the stability of the feature selection algorithm

and therefore reproducible feature selection results. Forthe wrapper feature selection

algorithm, Liet al. proposed a genetic algorithm (GA) based wrapper approach, called

GA/kNN, for gene selection from microarray and combining the result through averag-

ing multiple runs with different initializations [115]. The power and the parameters in

GA/kNN were further optimized [117] and the algorithm was extended for m/z feature

selection from MS-based proteomics data [116] in their subsequent studies.

Besides these data sampling-based approaches, a Bayesian model averaging ap-

proach has been applied for ensemble gene selection from microarray data [113, 209],

and a distance synthesis scheme for combining the gene selection results from multiple

statistics has been introduced by Yanget al. for gene selection [206].

Among different ensemble feature selection methods proposed for identifying gene-

gene interaction [208, 217], random forests enjoyed the most popularity [42]. This is

largely due to its intrinsic ability to take multiple SNPs jointly into consideration in a

nonlinear fashion [124]. In addition, random forests can beused easily as an embed-

ded feature evaluation algorithm [26], which is very usefulfor disease-associated SNP

selection.

The initial work of Bureauet al. [26] shows the advantage of the random forests

regression method in linkage data mapping. Several quantitative trait loci have been

successfully identified. The same group [25] then applied the random forests algorithm

in the context of the case-control association study. A similar method was also used by
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Lunettaet al. [121] for complex interaction identification. However, these early studies

limited the SNPs under analysis to a relatively small number(30 - 40 SNPs).

Recent studies focus on developing customized random forests algorithms and ap-

plying them for gene-gene interaction identification to a much higher data dimension,

containing several hundred thousands of candidate SNPs. Specifically, Chenget al.[34]

investigated the statistical power of random forests in SNPinteraction pair identifi-

cation. Their algorithm was then applied to analyse the SNP data from the complex

disease of age-related macular degeneration (AMD) [103] byusing a haplotype-based

method for dimension reduction. Menget al.[128] modified random forests to take into

account the linkage disequilibrium (LD) information when measuring the importance

of SNPs. Jianget al. [91] developed a sequential forward feature selection procedure

to improve random forests in gene-gene interaction identification. The random forests

algorithm was first used to compute theGini indexfor a total of 116,204 SNPs from the

AMD dataset [103] and then used as a classifier to minimize theclassification error by

selecting a subset of SNPs in a forward sequential manner with a predefined window

size.

2.2 Hybrid algorithms

In artificial intelligence (AI), hybrid algorithms often refer to the effective combination

of multiple learning algorithms for solving complex problems [40]. Hybrid algorithms

are flexible tools that could be very useful in many bioinformatics applications where

the solution involves solving multiple subtasks. Hybrid algorithms could be categorized

into (1) tightly coupled in that both algorithms executes inan intertwined way, (2) less

tightly coupled in that only the objective function links the two, or (3) loosely coupled

in that the algorithms do not have any direct interaction with each other but rather

they execute in relative isolation [99]. However, since there are no hard rules dictating

which and how algorithms can be combined, one of the difficulties is the discovery of

the most appropriate combinations of algorithms for a specific biological problem. One

approach is to select different combinations of hybrid algorithms using an agent-based

framework [216]. Utilizing domain knowledge has also been demonstrated to be an

effective approach for designing specialized and highly tailored systems for answering

specific biological questions [137].
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Evolutionary-based algorithms [60], such as genetic algorithm (GA), genetic pro-

gramming, and particle swarm optimization (PSO) to name a few, are popular building

blocks for creating hybrid algorithms. Classification algorithms such as support vector

machines (SVM) [27] andk-nearest neighbour (kNN) [3] are also commonly used as

algorithmic building blocks that when combined with evaluation algorithms form one

of the most popular hybrid approach which can be used for feature selection and sample

classification. The computation principle of this approachhas been validated by Yang

and Honavar [202] and it has been subsequently applied in various forms to numerous

biological studies. For instance, Liet al.’s study in combining GA withkNN (called

GA/kNN) has been very successful in simultaneously performing gene set selection and

sample classification for microarray data [117]. This hybrid algorithm has then been

extended for protein marker selection and sample classification of mass spectrometry

(MS)-based proteomic data [116]. Based on the same framework, many similar hybrid

algorithms have been proposed such as (1) the combination ofGA with SVM [149]

for gene selection and sample classification of microarray data, (2) the combination

of PSO with SVM (PSO/SVM) [178] for gene selection and sampleclassification of

microarray data, and (3) the combination of ant colony optimization (ACO) with SVM

(ACO/SVM) for m/z feature selection and sample classification of MS-based proteomic

data [162].

Another commonly utilized hybrid component is neural networks [75] which is one

of the key foundation algorithm in machine learning and datamining. For example,

in gene-gene interaction identification from GWA study, a combination of genetic pro-

gramming with neural networks has been demonstrated to identify disease associated

interactions among multiple genes [165]. In gene networks construction, the combi-

nation of a neural-genetic hybrid has been successfully applied for reverse engineer-

ing from microarray data the gene networks relationship [98]. Several other neural

network-based hybrid approaches were also compared by Motsinger-Reifet al. [135]

for identifying gene-gene interactions.

The optimization of feature space is a key component in disease associated biomark-

er selection. Several researchers propose a hybrid approach to improve optimization

performance and efficiency. For example, Shenet al. proposed a hybrid algorithm that

combined PSO and tabu search to overcome local optimum in gene selection from mi-

croarray [177]. Chuanget al. embedded in a GA in PSO for gene selection so as to

perform local optimization in each PSO iteration [36].
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In contrast to ensemble algorithms, which typically focus on improving the perfor-

mance of a specific task (e.g. improving classification accuracy of a single classifier),

hybrid algorithms can be composed in such a way that multiplesubtasks are solved in

a modular and parallel manner, and are thus multitasking. Nevertheless, hybrid algo-

rithms can also be designed to improve the performance of a single task. The flexibility

and the numerous ways to integrate multiple algorithms havebeen the key characteris-

tics of hybrid algorithms and their successful applications in computational and systems

biology.



Chapter 3

Gene-Gene Interaction Filtering Using

Genotype Data

This chapter is based on the following publication:

Pengyi Yang, Joshua W.K. Ho, Jean Yee-Hwa Yang, Bing B. Zhou,Gene-gene inter-

action filtering with ensemble of filters. BMC Bioinformatics, 12:S10, 2011

3.1 Gene-gene interaction in GWA studies

High-throughput genome-wide association (GWA) studies have become the main ap-

proach in exploring the genetic basis of many common complexdiseases [190]. Under

the assumption that common diseases are associated with common variants, the goal

of GWA studies has been to identify a set of single nucleotidepolymorphisms (SNPs)

that are associated with the complex disease of interest. Typically, this is achieved

by adopting a case-control study design that prospectivelyidentifies SNPs that distin-

guish individuals who have a certain disease (case) from a control population of indi-

viduals (control) [88]. However, there are several practical issues when achieving this

goal in terms of data analysis. First, to identify true disease associated SNPs from a

massive set of candidate SNPs, an accurate SNP selection strategy is of critical impor-

tance. However, the accurate identification of disease associated SNPs is hindered by

thecurse-of-dimensionalityand thecurse-of-sparsity[182]. More importantly, it has

28
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become increasingly clear that gene-gene interactions andgene-environment interac-

tions are ubiquitous and fundamental mechanisms for the development of complex dis-

eases [42]. That is, complex diseases such as type 2 diabetesor Alzheimer are unlikely

to be explained by any single SNP variant. In contrast, the characterization of gene-

gene interactions and gene-environment interactions may be the key to understanding

the underlying pathogenesis of these complex diseases [42,154,191]. The explanations

from the biological perspective are as follows: (1) a SNP in acoding region may cause

amino acid substitution, leading to the functional alteration of the protein; (2) a SNP in a

promoter region can affect transcriptional regulation, causing the change of the protein

expression abundance; and (3) a SNP in an intron region can affect splicing and expres-

sion of the gene [192]. All these effects contribute quantitatively and qualitatively to

the ubiquity of molecular interactions in biological systems.

For this reason, several methods have been developed to jointly evaluate SNP and

environmental factors with the aim of identifying gene-gene and gene-environment in-

teractions that have major implications for complex diseases [136]. These methods

analyse genetic factors in a combinatorial manner when applied to the SNP dataset with

case and control samples. Therefore, we shall refer to them as combinatorial methods.

Combinatorial methods will be described in Chapter4.

The problem of applying combinatorial methods to GWA datasets is that they are

commonly computationally intensive and the computation time increases exponentially

with the number of SNPs considered. Therefore, it is commonly necessary to perform a

filtering step prior to the combinatorial evaluation to remove as many irrelevant SNPs as

possible [125]. This is commonly known as the two-step analysis approach as described

in [191]. As discussed in a number of recent reviews [42, 131,191], a good filtering

algorithm is of critical importance since, if functional SNPs are removed by the filter,

the subsequent combinatorial analysis will be in vain.

3.2 Filtering gene-gene interactions

For categorical data such as genotypes of SNPs, univariate filtering algorithms includ-

ing χ2-test andodds ratioare commonly used. However, these methods consider the

association between each SNP and the class label independently of other SNPs in the

dataset [87]. Therefore they may filter out SNP pairs that have strong interaction effects
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but display weak individual association with the phenotype[42]. Recently, new multi-

variate approaches known as “ReliefF-based” filtering algorithms [123, 131] captured

much attention. This family of methods, including ReliefF [166], tuned ReliefF (TuR-

F) [130], and Spatially Uniform ReliefF (SURF) [71] takes into account dependencies

between attributes [166]. This is critical for preserving and prioritizing potential gene-

gene interactions in SNP filtering [133].

Although ReliefF-based filtering algorithms have gained much attention and have

been applied to several association studies (e.g., [7]; and [158]), we found that filtering

results produced by ReliefF and TuRF are sensitive to the order of samples presented in

the dataset and may produce unstable SNP ranking results when the order of samples in

the dataset is changed.

In this section, we first introduce the ReliefF algorithm andits variant TuRF algo-

rithm. Then we explain why ReliefF-based algorithms are sensitive to the sample order

in the dataset and may generate inconsistent SNP ranking when the order of samples is

changed. Before we start, let us consider a GWA study consisting of N SNPs andM

samples. We denote each SNP in the study asg j and each sample assi where j = 1. . .N

andi = 1. . .M. The aim of the filtering procedure is to produce a ranking score defined

asW(g j), commonly referred to as weight. This score represents the ability of each

SNPg j to separate samples between the case and control groups, andthe filtering is

done by removing those with low ranking scores according to apre-defined threshold.

3.2.1 ReliefF algorithm

In the ReliefF algorithm, the weight score of each SNP,W(g j), is updated at each

iteration as follows [123]:

W(g j) =W(g j)−D(g j ,si,hk)/M+D(g j ,si,mk)/M (3.1)

wheresi is the ith sample from the dataset andhk is the kth nearest neighbourof s

with the same class label (called “hit”) whilemk is thekth nearest neighbour tosi with

a different class label (called “miss”). This weight updating process is repeated forM

samples selected randomly or exhaustively. Therefore, dividing byM keeps the value of

W(g j) in the interval [-1,1].D(.) is the difference function that calculates the difference

between any two samplessa andsb for a given geneg:
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D(g,sa,sb) =







0 : if G(g,sa) = G(g,sb)

1 : otherwise
(3.2)

whereG(.) denotes the genotype of SNPg for samples, which can take the value

of aa (homozygotes of recessive alleles),Aa (heterozygotes), orAA (homozygotes of

dominant alleles). The nearest neighbours to a sample are determined by the distance

function, MD(.), between the pairs of samples (denoted assa and sb) which is also

based on the difference function (Equation3.2):

MD(sa,sb) = ∑N
j=1D(g j ,sa,sb) (3.3)

Using pseudocode, we can outline the ReliefF algorithm inAlgorithm 1 .

Algorithm 1 ReliefF
1: for j =1 to N do
2: initiate(W(g j));
3: end for
4: for i =1 toM do
5: si = randomSelect(sampleSize);
6: H = findHitNeighbours(si,K); (h1...hK ∈ H )
7: M = findMissNeighbours(si,K); (m1...mK ∈ M )
8: for j =1 toN do
9: for k=1 to K do

10: W(g j) =W(g j)−D(g j ,si,hk)/M+D(g j ,si ,mk)/M
11: end for
12: end for
13: end for

The ReliefF algorithm calculates the distance between different samples using the

genotype information of all SNPs. However, such a procedureis sensitive to noise in

the dataset.

3.2.2 Tuned ReliefF (TuRF)

Tuned ReliefF (TuRF) [130] aims to improve the performance of the ReliefF algorithm

in SNP filtering by adding an iterative component. The signal-to-noise ratio is enhanced

significantly by recursively removing the low-ranked SNPs in each iteration. Specifi-

cally, if the number of iterations of this algorithm is set toR, it removes theN/R lowest
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ranking (i.e., least discriminative) SNPs in each iteration, whereN is the total number

of SNPs. The pseudocode for TuRF is shown inAlgorithm 2 .

Algorithm 2 TuRF
1: for i =1 toR do
2: apply ReliefF(M,K);
3: sortSNP();
4: removeLowSNP(N/R);
5: end for
6: return last ReliefF estimate for each SNP

3.2.3 Instability of ReliefF-based algorithm

We found that the ReliefF algorithm is sensitive to the orderof samples used to calcu-

late the SNP ranking score (Eq.3.1). That is, running these algorithms on the same

dataset with the order of the samples permuted (while maintaining the sample-class

label association), leads to different SNP ranking results.

A close investigation of the ReliefF algorithm found that such a sample order depen-

dency is related to an intrinsic tie-breaking procedure inherited in thek-nearest neigh-

bours (kNN) routine. It causes a partial utilization of neighbour information, leading

ReliefF and TuRF to generate unstable results. Specifically, such a sample order de-

pendency is related to the assignment of “hit” and “miss” nearest neighbours of each

sample (lines 6 and 7 ofAlgorithm 1 ). SinceK nearest neighbours are calculated by

comparing the distance between each sample in the dataset (using all the SNP attributes)

and the target sample (si in Algorithm 1 ), a tie occurs when more thanK samples have a

distance equal or less than theKth nearest neighbour ofsi. We can show that the sample

order dependency can be caused by using any tie breaking procedure that forces exactly

K samples out of all possible candidates to be the nearest neighbours ofsi, which causes

a different assignment of “hit” and “miss” of nearest neighbours when the sample order

is permuted.
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3.3 Ensemble of filters for gene-gene interaction filter-

ing

As described in Section2.1.2, the ensemble feature selection approach has been suc-

cessfully used to reduce instability. Here we perturb the original dataset by randomly

permuting the sample orders. The aim is to take advantage of the different SNP rank-

ing results generated from the perturbed version of the original dataset by aggregating

multiple SNP rankings.

From our analysis of the aforementioned tie-breaking problem, it is clear that a

different set of samples may be assigned to be a sample’s nearest neighbours. Therefore,

the result of a single run of ReliefF utilizes only partial information embedded in the

full set of the nearest neighbours. In other words, the results from multiple runs of

ReliefF using the dataset with permuted sample order shouldcontain complementary

information about how well each set of SNPs can discriminatebetween the two classes

(case vs. control). In this sense, we can potentially harness the “diversity” of ranking

results from multiple executions with permuted sample order using an ensemble-based

method to produce more stable and accurate SNP ranking results.

Formally, our ensemble of ReliefF (called ReliefF-E) producesL copies of the in-

put SNP dataset by randomly permuting the order of the samples, and invoking Reli-

efF to calculate a ranking score for each SNPg j in each of these permuted datasets,

calledWl (g j) for iteration l , (l = 1, ...,L). An ensemble ranking score of each gene

Wensemble(g j) is defined to be the mean of the individual ranking score of each SNP:

Wensemble(g j) =
∑L

l=1Wl (g j)

L
(3.4)

Similarly, the ensemble of TuRF (called TuRF-E) performs multiple runs of TuRF,

and aggregates the ranking scores of each SNP produced in each iteration of TuRF using

Equation3.4. Schematically, the ensemble of filters can be illustrated as in Figure3.1,

where the original datasetD is randomly re-orderedL times to create multiple copies

of perturbed datasets. Then, each perturbed dataset is usedfor filtering (Fi , (i = 1...L))

and a corresponding ranking is obtainedRi . The final ranking is obtained by combining

each individual ranking, and re-ranking the SNPs using Equation 3.4.
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Figure 3.1: A schematic illustration of ensemble of filters using random sample re-
ordering.

3.4 Experiment on simulation and real-world GWA da-

ta

To illustrate this effect, we used both a set of simulation datasets generated by [132]

and a real world GWA dataset for our demonstration. These simulation datasets were

generated using different genetic models (different heritability and sample size) and

each model randomly simulated the genotype of 1000 SNPs across all the samples

except for one functional SNP-SNP interaction pair denotedas “X0” and “X1” in the

dataset. These datasets are summarized in Table3.1.

Table 3.1: Summary of simulation datasets. Each model contains 100 datasets.
Model SNP size Sample size Heritability

Epistatic400 0.05 1000 case: 200; control: 200 0.05
Epistatic400 0.1 1000 case: 200; control: 200 0.1
Epistatic400 0.2 1000 case: 200; control: 200 0.2
Epistatic400 0.3 1000 case: 200; control: 200 0.3
Epistatic800 0.05 1000 case: 400; control: 400 0.05
Epistatic800 0.1 1000 case: 400; control: 400 0.1
Epistatic800 0.2 1000 case: 400; control: 400 0.2
Epistatic800 0.3 1000 case: 400; control: 400 0.3
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A GWA dataset generated from case-control design of age-related macular degen-

eration (AMD) samples [103] is also used to illustrate the sample order dependency of

ReliefF and TuRF when applied to real SNP datasets. The AMD dataset contains 96

cases and 50 controls, with the genotype of 116,212 SNPs for each sample.

3.4.1 The effect of the sample order dependency

Figure3.2a shows the Pearson correlation of the ranking of the SNPs in two separate

runs of ReliefF and TuRF using a dataset containing 1000 SNPsand 400 samples (200

controls and 200 cases), respectively. Figure3.2b is the result of the same analysis ap-

plied to a simulation dataset containing 800 samples. It is clear that both ReliefF and

TuRF algorithms are sensitive to the order of samples presented in datasets, causing

the rank of each SNP to be inconsistent between the original dataset and the randomly

re-ordered dataset. While such an inconsistency is relatively small for the ReliefF al-

gorithm, the problem is much more severe in TuRF. The Pearsoncorrelation coefficient

of two runs of TuRF isr = 0.43 for the dataset with 400 samples andr = 0.36 for the

dataset with 800 samples.

By using the aggregation procedure (by aggregating rankingscores from 50 runs of

the algorithms; see Section3.4.3for details), we are able to stabilize the ranking results

of both ReliefF and TuRF. Especially, TuRF-E can significantly increase the stability of

the SNP ranking results of TuRF, withr = 0.97 for the dataset with 400 samples and

r = 0.95 for the dataset with 800 samples.

Similar results were obtained when the AMD dataset was analysed (Figure3.2c).

The results illustrate that the sample order instability isindeed a problem in analysing

real biological datasets with ReliefF and TuRF. The use of ensemble of filters increases

stability and this is evident from the increase of the ranking correlation tor = 0.99 for

ReliefF andr = 0.98 for TuRF.
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Figure 3.2: The correlation between SNP ranking (log10 transformed) generated by two runs of ReliefF, TuRF, ReliefF-E, and TuRF-E
using simulation datasets (400 and 800 samples) and the AMD dataset in which each run used a different sample order.
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3.4.2 The origin of the sample order dependency

To verify whether the sample order dependency is indeed caused by tie-breaking, we

modified and recompiled the source code ofmdr-2.0 beta 6.zip (downloaded

fromhttp://sourceforge.net/projects/mdr/) to report when a tie-breaking

happens. Figure3.3shows how many times a tie-breaking case happens when using Re-

liefF and TuRF for filtering SNPs in the AMD dataset, respectively. It is evident that

when using TuRF for SNP filtering, many more tie-breaking cases happen. This ex-

plains why the SNP ranking results from re-ordered datasetsusing TuRF is far more

unstable compared to those using ReliefF.
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Figure 3.3: The number of times a tie breaking case happens when using ReliefF and
TuRF for filtering SNPs in the AMD dataset.

We also modified the source code ofmdr-2.0 beta 6.zip to report the tie-

causing samples and remove them from the dataset. After removing all tie-causing

samples, we were able to obtain completely reproducible ranking results (i.e., r = 1)

with both ReliefF and TuRF (Figure3.4). Hence, we pinpoint the origin of sample

order dependency in ReliefF and TuRF algorithms. However, resolving sample order

dependency using this approach requires aggressive removal of a large number of sam-

ples, which inevitably reduces the algorithms’ power to filter functional SNP pairs.

One tempting way to solve such a sample order dependency is touse a randomize

procedure to select a sample randomly when a tie occurs. However, our experiments

indicate that such a procedure does not increase the correlation (data not shown). In fact,

any tie-breaking procedure that chooses one sample out of all valid candidate samples

will necessarily produce instability in its resulting ranking score.
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Figure 3.4: The correlation between the SNP rankings (log10 transformed) of two sep-
arate runs using datasets with tie-causing samples removed.

Another way to solve such a sample order dependency can be achieved by defining

nearest neighbours to a sample as the ones that are within a certain distance threshold

of the target sample. A recently developed variant algorithm of ReliefF called SURF

(Spatially Uniform ReliefF; [71]) employed this idea. However, by doing so, the al-

gorithm will rely directly on a predefined threshold for nearest neighbours selection,

which may negatively affect the result given the sample sparsity in high-dimensional

space. Therefore, such an approach lacks the robustness of the rank basedkNN criteria.

Our study (Section3.4.4) confirmed that SURF does not fully recover the SNP filtering

capacity. As discussed later in this paper, our aggregationapproach, which relies on

sample ranking instead of direct thresholding, gives consistently better results.

3.4.3 Determination of ensemble size

An important parameter in any aggregation method is the aggregation size. This is the

number of times an algorithm is repeatedly applied on a dataset with reordered samples.

It is important to estimate the minimum aggregation size that is sufficient to reduce

sample order dependency. We estimate this value via repeating the correlation analysis

on TuRF-E with an aggregation size of 10, 20, 30, 40, and 50 using the simulated

datasets with 400 samples and 800 samples (Figure3.5). It is apparent that the increase

of the correlation in two separate runs using the original and the randomly re-ordered

datasets plateaus at around an aggregation size of 40 for both datasets, and there is only

minor improvement when employing more than 50 runs. Therefore, the aggregation

size of 50 is used in all our subsequent experiments.
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Ensemble Size

Figure 3.5: The correlation between the SNP rankings with respect to different aggrega-
tion size of TuRF, using simulation datasets with 400 samples (s=400) and 800 samples
(s=800).

3.4.4 Ensemble approach to improve success rate in SNP filtering

One motivation for using the proposed aggregation approachis to gain a more infor-

mative SNP scoring. Therefore, we investigated whether ouraggregation scheme can

improve the ability of ReliefF and TuRF to retain functionalSNP pairs in SNP filter-

ing. Figure3.6 shows the trend of the success rate of each filtering algorithm across

percentile 1 to 50 (i.e., 10-500 top ranking SNPs) using simulated datasets with 400

samples and 800 samples respectively. Table3.2shows the average cumulative success

rate of these algorithms on the same set of simulated datasets. We found that TuRF-E

performs the best in all cases examined in our experiments regardless of sample size and

heritability of the simulated datasets. ReliefF-E and ReliefF have similar performance

in terms of success rate, while traditional univariate filters such asχ2-test and odds ra-

tio give the lowest success rates. The superiority of TuRF-Eis particularly noticeable

in datasets simulated with low heritability or a small number of samples. This implies

that TuRF-E is applicable in even these “challenging” caseswhere other ReliefF-based

algorithms fail to achieve high enough success rates.

It is found that ReliefF-E does not exhibit much improvementon ReliefF whereas

TuRF-E achieves significant improvement on TuRF. This is probably due to the fact

that the TuRF algorithm executes ReliefF multiple times while removing low ranking
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Table 3.2: Average cumulative success rate from percentile1 to 50 using the simulated
datasets (400 and 800 samples). The best algorithm with the highest average cumulative
success rate in each dataset is shown inbold.

Methods Heritability = 0.05 Heritability = 0.1 Heritability = 0.2 He ritability = 0.3
Simulated dataset with 400 samples

χ2-test 6.92 7.20 8.06 8.51
Odds Ratio 5.86 7.84 8.43 8.58

ReliefF 18.96±0.38 20.93±0.47 30.35±0.28 33.98±0.31
ReliefF-E 19.27±0.17 21.22±0.14 30.92±0.24 34.76±0.26

TuRF 22.11±1.34 24.59±2.53 42.27±3.41 61.37±1.58
SURFTuRF 18.12 21.88 44.92 59.88

TuRF-E 35.23±0.37 35.85±0.82 63.55±0.93 84.71±0.25
Simulated dataset with 800 samples

χ2-test 7.73 8.53 9.61 7.84
Odds Ratio 8.53 9.86 9.92 6.61

ReliefF 24.37±0.52 25.11±0.80 44.23±0.86 54.40±0.75
ReliefF-E 25.59±0.63 25.85±0.28 44.81±0.36 56.91±0.46

TuRF 33.20±2.11 39.99±2.04 78.64±3.14 91.93±1.13
SURFTuRF 41.20 50.82 96.27 99.86

TuRF-E 61.59±0.58 65.75±1.09 96.69±0.26 99.96±0.21

SNPs in each iteration. Therefore, an aggregation approachcould gain more informa-

tion in each iteration. It is also observed that SURFTuRF does not improve on TuRF

in analysing datasets of 400 samples. This is consistent with our hypothesis that a

predefined distance threshold may be sensitive to a high SNP-to-sample ratio (thus,

high-dimensionality).

We further investigated whether TuRF-E is simply “averaging” out the detection

ability in different runs of TuRF. Figure3.7shows the average cumulative success rates

of 50 runs of TuRF on a simulated dataset (sample size = 400, heritability = 0.05) where

a different sample order is used in each run, and the corresponding average cumulative

success rate of their aggregate version (TuRF-E). It is clear that the aggregate SNP

ranking result is significantly better than any single run ofTuRF. This implies that

our aggregation algorithm is indeed able to make use of the information embedded in

multiple runs of TuRF to improve its detection ability, verifying our motivation for

using an aggregation approach.

3.5 Summary

The field of gene-gene and gene-environment interaction identification from GWA stud-

ies is still young and rapidly developing. One of the main challenges in identification of
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Figure 3.6: Success rate for retaining a functional SNP pairin simulated datasets with
(a) 400 samples and (b) 800 samples.

such interaction relationships is computational efficiency since in the worst case an ex-

ponentially large number of SNP combinations need to be evaluated. As discussed by a
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Figure 3.7: Comparison of average cumulative success rate of 50 individual runs of
TuRF (shown in a blue circle) and their aggregate results (TuRF-E; shown in a red
square) using a simulated dataset with 400 samples (heritability = 0.05).

number of authors [42,131,191], effective SNP filtering cangreatly reduce the compu-

tational burden of the subsequent combinatorial evaluation by removing a large portion

of noise. The main advantage of using ReliefF-based algorithms for SNP filtering is that

they can detect conditional dependencies between attributes [166]. Furthermore, they

are computationally efficient. A good implementation of TuRF can analyse a GWAS

dataset with up to a few hundred samples in the order of minutes. Such computational

efficiency, coupled with its intrinsic ability in detectingSNP dependencies, has led to

its increasing wide-spread applications.

Through analysing the ReliefF-based algorithms, we discovered a previously un-

known anomaly in both ReliefF and TuRF. We show these two popular filtering algo-

rithms are sensitive to sample ordering, and therefore, give unstable and suboptimal

SNP ranking in different runs when the sample order is permuted. Using a simple

ensemble procedure based on the general theory of ensemble learning, we can vastly

improve the stability and reliability of the SNP ranking generated by these algorithms.

It is indeed quite remarkable that such a simple modification, which is guided by the

theory of ensemble learning, can yield such a vast improvement in the final result. The

fact that TuRF-E is better than the state-of-the-art SURFTuRF algorithm indicates that

preserving thekNN rank-based routine is indeed a good idea.

ReliefF-based algorithms are also used to perform feature selection tasks for a range

of machine learning problems including gene selection in microarray analysis. This

implies our findings are not limited to the field of gene-gene interaction identification

in GWA studies, and may have relevance to the broader machinelearning community.
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Although we recognize that the sample order sensitivity problem is of less relevance

to continuous datasets since tie-breaking is less likely tooccur, the potential problem

caused by tie-breaking in akNN procedure is still noteworthy in the development of

new algorithms.

Our work indicates that new algorithms should be validated against a range of cri-

teria. Many bioinformatics algorithms have been developedto perform such filtering

tasks. These algorithms are mostly assessed and compared based on their objective, in

our situation, how well a filtering algorithm can retain functional SNP pairs. However,

much less focus has been placed on analysing whether the results generated by a SNP

filtering algorithm satisfy a set of desirable properties. The sample order dependency

property in this paper is one such example, as it is not natural to expect the SNP rank-

ing to change due to reordering the samples in a dataset. In fact, the importance of

validating a bioinformatics algorithm and its software implementation is increasingly

being recognized [32], and we believe that systematically validating an algorithm a-

gainst a range of desirable properties of its behaviour is becoming more important as

biological interpretations are increasingly drawn from results produced by bioinformat-

ics programs.

3.6 Software availability

The TuRF-E package is freely available from:

http://code.google.com/p/ensemble-of-filters



Chapter 4

Gene-Gene Interaction Identification

Using Genotype Data

This chapter is based on the following publication:

Pengyi Yang, Joshua W.K. Ho, Albert Y. Zomaya, Bing B. Zhou, Agenetic ensemble

approach for gene-gene interaction identification. BMC Bioinformatics, 11:524, 2010

4.1 Combinatorial testing for gene-gene interaction i-

dentification from genome-wide association studies

As mentioned in Section3.1, current opinion is that the development of complex dis-

eases is inherently multifactorial governed by multiple genetic and environmental fac-

tors and the interactions among them. The fast development of the genotyping technolo-

gies has empowered us to study genetic and environmental interactions on a genome-

wide scale. However, data analysis is swamped by the large amount of data and high-

dimensionality. Methods for gene-gene interaction filtering that we described in Chap-

ter3 are key computational techniques to reduce the variables toa manageable amount

for combinatorial testing.

A number ofcombinatorial methodshave been developed recently. These include

logistic regression-based approaches [146] random forests-based algorithms [25, 34],

and nonparametric methods like Polymorphism Interaction Analysis (PIA) [127], Mul-

tifactor Dimensionality Reduction (MDR) [76], and Combinatorial Partitioning Method

44
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(CPM) [138]. However, there is no one-size-fits-all method for the detection and char-

acterization of gene-gene interaction relationships in GWA studies. Several comparison

and evaluation studies suggested that applying a combination of multiple complemen-

tary algorithms, each having its own strength, could be the most effective strategy to

increase the chance of a successful analysis [22,83,136].

Here we attempt to address the problem from an alternative perspective by con-

verting the issue into a combinatorial feature selection problem. From the data mining

perspective, a sample from a SNP dataset of an association study is described as a SNP

feature set of the formf i={g1,g2, ...,gn}, (i = 1, ...,m) where each SNP,gi , is a cate-

gorical variable that can take the value of 0, 1, and 2 for genotypes ofaa, Aa, or AA at

this locus, andm is the number of samples in the dataset. The dataset can, therefore, be

described as anm×n matrix Dmn={(f1,y1),(f2,y2), ...,(fm,ym)}, whereyi is the class

label of theith sample. The assumption is that a gene-gene interaction exists if it helps

in discriminating the disease status. To evaluate the discrimination power of a set of

SNPs jointly, we apply the following two steps. (1) Generating a reduced SNP feature

set f′i={g1,g2, ...,gd}, (f′i ⊂ f i) in a combinatorial manner which restrains the dataset

matrix intoDmd={(f′1,y1),(f′2,y2), ...,(f′m,ym)}. A key observation is that feature selec-

tion algorithms that evaluate SNPs individually are not appropriate since they cannot

capture the associations among multiple SNPs. (2) Creatingclassification hypothesis

h using an inductive algorithm, and evaluating the quality ofthe trained model using

criteria such as accuracy, sensitivity, and/or specificitywith an independent test set.

Without loss of generality, we simplify the notation asf to denote applying a SNP

subset to restrain the SNP datasetDmn. If a SNP combinationf yields a lower misclas-

sification rate than others, we shall consider that it possibly contains SNPs with main

effects or SNP-SNP interactions with major implications. We now have two challenging

problems for the SNP interaction identification. The first challenge is to generate SNP

combinations efficiently since the number of SNP combinations grows exponentially

with the number of SNPs, and it is not feasible to evaluate allpossible combinations

exhaustively. The second challenge is to determine which inductive algorithm should

be applied for the goodness test of SNP combinations. To tackle the first problem,

we shall apply genetic algorithm (GA) since it has been demonstrated to be one of

the most successful wrapper algorithms in feature selection from high-dimensional da-

ta [105,106]. Furthermore, its intrinsic ability in capturing nonlinear relationships [193]

is valuable for modelling various nonadditive interactions. With regard to the second
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problem, there is no guiding principle on which inductive algorithms are preferable

for identification of multiple loci interaction relationships. However, a promising solu-

tion is to employ multiple classifiers and then to integrate/balance the evaluation results

from these classifiers [34]. The key issue in applying this method is that the individual

classifiers used for integration should be able to capture multiple SNP interactions that

commonly have nonlinear relationships. This may be achieved by using appropriate

nonlinear classifiers.

As mentioned in Section2.1.1, the rationale of using multiple classifiers is that,

suppose a given classifieri generates a hypothesis spaceHi for sample classification,

if the number of training samplesm is large enough to characterize the real hypothesis

f (in this context,f is the set of disease-associated SNPs and SNP combinations)and

the data are noise-free, the hypothesis space generated byi should be able to converge

to f through training. However, since the number of training samples is often far too

small compared to the size of the hypothesis space, which increases exponentially with

the size of the features (SNPs), the number of hypotheses a classifier can fit to the

available data is often very large. One effective way to constrain the hypothesis space

is to apply multiple classifiers, each with a different hypothesis-generating mechanism.

If each classifier fulfils the criteria of being accurate and diverse [24], it can be shown

that one is able to reduce the hypothesis space to better capture the real hypothesisf by

combining them with an appropriate integration strategy [53]. By combining GA with

multiple classifiers, we obtain a hybrid algorithm (calledgenetic ensembleor GE) for

gene-gene interaction identification that is able to identify different sizes of interactions

in parallel.

One other motivation for developing alternative methods for SNP-SNP interaction i-

dentification is in hope that different algorithms may complement each other to increase

the overall chance of identifying true interaction relationships. Therefore, it is important

to evaluate the degree of complementarity of multiple algorithms for SNP-SNP interac-

tion identification. Specifically, based on the notion ofdouble fault[170], we propose a

formula for calculating the co-occurrence of mis-identification that gives an indication

of the degree of complementarity between two different algorithms. Accordingly, the

joint identification of using multiple algorithms is derived.
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4.2 Gene-gene interaction identification using genetic en-

semble hybrid algorithm

As illustrated in Figure4.1, the GE approach is applied to SNP selection repeatedly. In

each run, randomly generated SNP subsets are fed into a committee of multiple classi-

fiers for goodness evaluation. Two classifier integration strategies, namelyblockingand

voting, and a diversity-promoting method calleddouble faultstatistic are employed to

guide the optimization process.
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Figure 4.1: Genetic ensemble system. Multiple classifiers are integrated for gene-
gene and gene-environment interaction identification. Genetic algorithm is employed
to select SNP subsets that have been identified to have potential gene-gene and gene-
environment interaction information.

When the evaluation of a SNP subset is done, the evaluation feedbacks of this SNP

subset are combined through a given set of “weight” values and sent back to GA as

the overall fitness of this SNP subset. After the whole population of GA is evaluated,

selection, crossover and mutation are conducted and the next generation begins. A near

optimal SNP subset is produced and collected when a set of termination conditions are

met. The entire GA procedure is repeated (with different seeds for random initializa-

tion) n times (n = 30 in our experiments) to generaten best SNP subsets. These SNP

subsets are then analysed to identify frequently occurringSNP-pairs, SNP-triplets, and

higher-order SNP combinations.
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For SNP interaction identification, a combinatorial ranking is applied to then s-

elected SNP subsets. Each possible SNP combination is then given an identification

frequency score (the number of times it appears divided by the total number of itera-

tions n). For example, if the SNP combination{snp1, snp2} appears in 25 out of 30

iterations, then its identification frequency score is 25/30=0.833. Two alterative criteria

can be used to decide whether a SNP combination should be called or not. The first

criterion is to set a frequency score cut-off, say 0.8, and call all SNP combinations with

a frequency score higher than this cut-off as functional SNPcombinations. The second

criterion is to set a cut-off rank, and call all SNP combinations equal to or higher than

that rank as functional SNP combinations. As will be demonstrated in subsequent sec-

tions, the choice between these two criteria is likely to be abalance between detection

power and false discovery rate.

4.2.1 Genetic component

The number of SNPs considered by the genetic ensemble algorithm for potential inter-

action detection, ranges from the lower bound of 2 to the upper bound ofd, whered is

the “chromosome” size of GA. The size of the GA chromosome hastwo implications.

Firstly, it controls the number of factors we can identify. For example, if the size of

d = 15 is used, we can identify from 2-factor up to 15-factor interactions in parallel.

Secondly,d also influences the size of the combinatorial space to be explored. It is a

trade-off between the computational time and the combinatorial space to be searched.

Therefore, for different SNP sizes (that is, the number of SNPs in the dataset), we shall

use different sizes ofd accordingly. Similar to the size of GA chromosome, the popu-

lation sizep and the generation of GAg are also specified according to the SNP size in

the dataset. In our implementation of the GE algorithm, the parametersd, p, andg can

be specified by users. The default values of these parametersare chosen empirically

such that they work well in a range of datasets.

For the GA selection operation, we employ the tournament selection method as

it allows control of convergence speed. Specifically, the tournament selection size,

denoted ast, is dependent on the size of the population, varying from 3 to7. The

measure for determining the winner is as follows:

Winner= argmax
s∈p

f itness(Ri(p)) (i = 1,2, ..., t) (4.1)
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whereRi(.) is the random selection function which randomly selects gene subsets from

the GA populationp, t is the tournament size, andf itness(.) determines the overall

fitness of the randomly selected gene subset. Single point crossover is adopted with the

probability of 0.7. In order to allow pair mutations, we implemented a multi-mutation

strategy; that is, when a single mutation occurs (configuredwith the probability of 0.1)

on a chromosome, another single point mutation may occur on the same chromosome

with a probability of 0.25 and so on. The chromosome coding scheme is to assign an

id to each SNP in the dataset, and to represent the chromosome asa string of SNPids

that specify a selected SNP subset. For each position on a chromosome, it could be a

SNPid or a “0”, which specifies an empty position. Therefore, different sizes of SNP

combinations are explored in a single GA population in parallel. Table4.1summarizes

the parameter settings.

Table 4.1: Genetic algorithm parameter settings.
Parameter Value

Chromosome size 15-25
Population size 40-340

Termination generation 8-20
Selector Tournament selection (3-7)

Crossover Single point (0.7)
Mutation Multiple points (0.1 & 0.25)

The fitness of GA is defined as follows:

f itness(s) = w1× f itnessB(s)+w2× f itnessV(s)+w3× f itnessD(s) (4.2)

wheresdenotes a SNP combination under evaluation. The functionsf itnessB(s), f itnessV(s)

and f itnessD(s) denote the fitness of a SNP combinationsas evaluated by theblocking,

voting anddouble faultdiversity measures, respectively. A complexity regularization

procedure is implemented in the GE algorithm to favour shorter SNP combinations if

two SNP combinations have the same fitness value. The computation details of each

component of the fitness function are described in the next section.
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4.2.2 Integration functions

4.2.2.1 Blocking

Our first integration function isblocking. It is a statistical strategy that creates similar

conditions to compare random configurations in order to discriminate the real differ-

ences from differences caused by fluctuation and noise [18].Suppose a total ofL clas-

sification algorithms, each having a different hypothesis denoted ashs
i , (i = 1, ...,L),

are used to classify the data using a SNP subsets. The fitness function determined by

blockingintegration strategy is as follows:

f itnessB(s) =
L

∑
i=1

BC(p(t|hs
i ,D),y) (4.3)

wherey is the class label vector of the test datasetD, function p(.) predicts/classifies

samples inD ast usinghs
i , andBC(.) is the balanced classification accuracy devised to

deal with the dataset with an imbalanced class distribution. In the binary classification,

it is the area under ROC curve (AUC) [29], which can be approximated as follows:

BC(p(t|hs
i ,D),y) =

Se+Sp
2

(4.4)

Se=
NTP

Ncase
×100, Sp=

NTN

Ncontrol
×100 (4.5)

whereSeis the sensitivity value calculated as the percentage of thenumber of true pos-

itive classifications (NTP) divided by the number of cases (Ncase). Sp is the specificity

value calculated as the percentage of the number of true negative classifications (NTN)

divided by the number of controls (Ncontrol). Such a balanced classification accuracy

measure can accommodate the situation in which the dataset contains an imbalanced

class distribution of cases and controls [194].

The idea of applying this strategy for classifier integration in SNP selection is that by

using more classifiers to validate a SNP subset, we are able toconstrain the hypothesis

space to the overlap regionHo, increasing the chance of correctly identifying functional

SNPs and SNP-SNP interactions.
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4.2.2.2 Majority voting

The second classifier integration strategy applied in our GEhybrid algorithm ismajority

voting [102]. Majority voting is one of the simplest strategies in combining classifi-

cation results from an ensemble of classifiers. Despite its simplicity, the power of this

strategy is comparable to many other more complex methods [?, 110]. With a majority

voting ofL classifiers, consensus is made byk classifiers where:

k>







L/2+1 : if L is even

(L+1)/2 : if L is odd
(4.6)

Again, suppose a total ofL classifiers, each having a different hypothesis denoted

ashs
i , (i = 1, ...,L), are used to classify the data using SNP subsets, the fitness function

derived from majority voting is as follows:

f itnessV(s) = BC
(

Vk

(

t′|∑L
i=1 p(t|hs

i ,D)
)

,y
)

(4.7)

wherey is the class label vector of the test datasetD, Vk(.) is the decision function

of majority voting, andt′ is the voting prediction. Here the balanced classification

accuracyBC(.) is calculated with voting results.

The reason for using the majority voting integration is to improve sample classifi-

cation accuracy while also implicitly promoting diversityamong individual classifier-

s [169].

4.2.2.3 Double fault diversity

The third objective function is an explicit diversity promoting strategy calleddouble

fault statistic. This statistic is commonly used to measure the diversity of ensemble

classifiers [170].

Let ca, cb ∈ {F,S} in whichF denotes the sample being misclassified by a classifier

while S denotes the sample being correctly classified. We defineNcacb as the number

of samples that are (in)correctly classified by two classifiers in which the correctness

of the two classifiers is denoted byca andcb respectively. Using this notation, we can

obtain the term:

D(p(t|hs
ca
,D), p(t|hs

cb
,D)) =

NFF

N
(4.8)
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which is the estimation statistic of coincident errors of a pair of classification models

hs
ca

andhs
cb

(hence the name “double fault”) in classification of a total of N samples in

test datasetD, using SNP subsets.

The fitness with regard to the diversity measurement ofL classifiers over subsets

(denoted asf itnessD(s)) derived from the double fault statistic is defined as follows:

f itnessD(s) = 1−
2

L(L−1)

L

∑
a=1

L

∑
b=a+1

D(p(t|hs
ca
,D), p(t|hs

cb
,D)) (4.9)

The value of this fitness function varies from 0 to 1. The valueequals 0 when all

classifiers misclassified every sample. It equals 1 when no sample is misclassified or

there is a systematic diversity, leading to no sample being misclassified by any pair of

classifiers.

4.2.3 Selecting classifiers

The motivation for applying nonlinear classifiers is based on the assumption that non-

linear and nonadditive relationships are commonly presented in gene-gene interac-

tion [134]. This is particularly relevant in detecting complex epistatic interaction that

involves both additive and dominant effects. Therefore, inensemble construction, we

focus on evaluating nonlinear classifiers. Moreover, we prefer classifiers that are rela-

tively computationally efficient since the identification of gene-gene interaction is car-

ried out in a wrapper manner. Thus, our attention has been focused on decision tree-

based classifiers and instance-based classifiers, as well astheir hybrids because they are

fast among many alternatives, while also being able to perform nonlinear classification.

However, we note that any combination of linear and nonlinear classifiers can be used

in our framework. With the above considerations, an initialset of experiments is con-

ducted to select candidate classifiers for ensemble construction. Those results will be

presented in Section4.5.1.

4.3 Evaluation datasets

We used the simulation datasets generated from the same model [132] as those de-

scribed in Section3.4for evaluation. The dataset from the GWA study of AMD is also

used as a case study of a real-world dataset [103].
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For the simulation study, we used both balanced and imbalanced simulation dataset-

s. For datasets with balanced class distribution [194], theclass ratio is 1:1 with 100 case

samples and 100 control samples. The datasets are simulatedunder three different ge-

netic heritability models (heritability of 0.2, 0.1, and 0.05), and two SNP sizes (SNP

size of 20 and 100). This gives six sets of datasets and every set contains 100 replicates,

each generated with a different random seed [132]. The property of the imbalanced

datasets used for evaluation is the same as the balanced datasets, except that the class

ratio is approximately 1:2 with 67 case samples and 133 control samples. For imbal-

anced data, we restrict the evaluation to SNP size of 20, and therefore, we obtain three

sets of datasets with each set containing 100 replicates. Table4.2summarizes the char-

acteristics of the simulated datasets.

Table 4.2: Summary of simulation datasets used for SNP pair identification.
Dataset Sample size Ratio Heritability SNP size No. replicates
balanced200 0.2 20 200 1:1 0.2 20 100
balanced200 0.1 20 200 1:1 0.1 20 100
balanced200 0.05 20 200 1:1 0.05 20 100
balanced200 0.2 100 200 1:1 0.2 100 100
balanced200 0.1 100 200 1:1 0.1 100 100
balanced200 0.05 100 200 1:1 0.05 100 100
imbalanced200 0.2 20 200 1:2 0.2 20 100
imbalanced200 0.1 20 200 1:2 0.1 20 100
imbalanced200 0.05 20 200 1:2 0.05 20 100

4.4 Evaluation statistics

4.4.1 Evaluation statistics for single algorithm

We compare the detection power of the proposed GE algorithm with PIA (version:

PIA-2.0) and MDR (version:mdr-2.0 beta 6). In the previous studies of M-

DR [164] and PIA [127], the power of an algorithm to identify gene-gene interaction-

s is estimated as the percent of times the algorithm “successfully identifies” the true

functional SNP pair from 100 replicates of simulated datasets. This is repeated for ev-

ery heritability model to quantify how well each algorithm performs when dealing with

datasets of varying difficulty (lower heritability being more difficult). An algorithm is
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said to have successfully identified a functional SNP pair ina dataset if the true SNP-

pair is reported as the top rank. For comparison with MDR and PIA, we follow this

approach and estimate the power of GE, MDR, and PIA using the following statistics:

Power=
NS

N
(4.10)

whereN is the number of datasets tested (N=100 in our case), andNS is the number of

successful identification.

For GE in particular, we are also interested in estimating the distribution of false

discovery rate (FDR) and true positive rate (TPR) since, in the worst case, if there is

no SNP-SNP interaction in the dataset, a top-ranked interaction list only contains false

positive identifications. Formally, we estimate FDR as:

FDR(c) =
NFP(c)
N(c)

(4.11)

whereFDR(c) is the FDR at the cut-off ofc, NFP(c) is the number of accepted false

positive identifications at the cut-off ofc, andN(c) is the number of accepted identifi-

cations at the cut-off ofc. Similarly, TPR is calculated as:

TPR(c) =
NTP(c)

NTP(c)+NFN(c)
(4.12)

whereTPR(c) is the TPR at the cut-off ofc. NTP(c) andNFN(c) are the number of

accepted true positives and the number of false negatives atthe cut-off ofc.

Both the rank and the identification frequency score of each SNP combination can

be used as the cut-off to calculate FDR and TPR at different confidence levels. We con-

sider both approaches, and using the 100 replicate datasetsof each heritability model,

we obtain the average FDR and TPR at different cut-offs for each heritability model.

4.4.2 Evaluation statistics for combining algorithms

One major motivation for developing a genetic ensemble algorithm for gene-gene in-

teraction identification is to harness the complementary strength of different classifiers

such that a more robust and predictive SNP subset can be obtained. To extend this

idea further, we propose to combine the inferred SNP-SNP interaction from different
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algorithms (such as MDR and PIA), in the hope that more robustresults can be ob-

tained. However, such benefits may come only when the resultsyielded by different

SNP-SNP interaction identification algorithms are complementary to each other, which

is analogous to the idea of the ensemble diversity.

By modifying the equation of double fault, we design the following terms to quanti-

fy the degree of complementarity (CD) of a pair of algorithmsin SNP-SNP interaction

identification:

SF(X,Y) = NFS+NSF, DF(X,Y) = NFF (4.13)

CD(X,Y) =
SF(X,Y)

DF(X,Y)+SF(X,Y)
(4.14)

whereNXY is the number of datasets with certain identification statususing algorithms

X andY, andX,Y ∈ {F,S} in which F denotes that an algorithm fails to identify the

functional SNP pair whileSdenotes it succeeds in identifying the functional SNP pair.

SF(X,Y) (single fault) is the number of times algorithmsX andY give inconsistent

identification results, which is the situation when one algorithm succeeds while the

other one fails. DF(X,Y) (double fault) is the number of times bothX andY fail.

The pairwise degree of complementarity of the algorithmsX andY is determined by

CD(X,Y).

Excluding the case in which bothX andY achieve 100% successful identification

(which gives0
0), the value ofCD(X,Y) varies between 0 and 1. When the results pro-

duced byX andY are completely complementary to each other, the value ofDF(X,Y)

decreases to 0, and the value ofCD(X,Y) reaches 1. On the contrary, the value of

CD(X,Y) decreases with the decrease of the degree of complementarity between algo-

rithmsX andY, and reaches 0 when no degree of complementarity is found.

Our premise is that combining algorithms with a higher degree of complementarity

will yield higher identification power. In this study, we estimate the joint power of two

or three algorithms as:

PowerJ(X,Y) = N−DF(X,Y) (4.15)

PowerJ(X,Y,Z) = N−TF(X,Y,Z); TF(X,Y,Z) = NFFF (4.16)
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whereTF(X,Y,Z) is the “triple fault” which gives the coincident errors of three i-

dentification algorithms, andPowerJ(X,Y) andPowerJ(X,Y,Z) are the joint power of

combining two and three identification algorithms respectively.

4.5 Experiments and results

4.5.1 Classifier selection for ensemble construction

One of the most important steps in forming an ensemble of classifiers is base classifier

selection. As described above, characteristics such as nonlinear separation capability,

computational efficiency, high accuracy and diversity should be taken into account.

With these considerations, a classifier selection and ensemble construction experiment

was carried out. Specifically, we tested the merits of each candidate classifier using

datasets with model numbers of 10, 11, 12, 13 and 14 from Mooreet al. [132], all of

which have a minor allele frequency of 0.2, heritability of 0.1, and sample size of 200

(100 case and 100 control). These are considered “difficult”datasets since they are

simulated to have low minor allele frequency, low heritability, and small sample size

[127]. Twenty replicates from each model were used for evaluation, and the power of

each classifier in identifying the functional SNP pair was calculated. Figure4.2a shows

the 12 candidate classifiers we evaluated in this study. Theyare REPTree(REPT),

random tree(RT), alternating decision tree(ADT) [65], random forests(RT) [21],

1-nearest neighbour(1NN), 3-nearest neighbor(3NN), 5-nearest neighbour(5NN),

decision tree(J48), 1-nearest neighbourwith cover tree(CT1NN), 3-nearest neighbour

with cover tree(CT3NN) [15], entropy-based nearest neighbour(KStar) [37], and 5-

nearest neighbourwith cover tree(CT5NN).

The identification power of each classifier was estimated using the simulated dataset-

s. Among the twelve classifiers, six of them successfully identified the functional SNP

pair more than 50% of the time. Five of them were selected to form the ensemble

(coloured in red in Figure4.2a). They are J48, KStar, and three decision tree andk-

nearest neighbour hybrids – CT1NN, CT3NN, and CT5NN.

The configuration of parameters such as GA chromosome mutation rate and integra-

tion weights of diversity measure, blocking, and voting were tested using the same sets

of data as above. Specifically, the mutation rates tested were 0.05, 0.1 and 0.15. The in-

tegration weights of diversity tested were also 0.05, 0.1 and 0.15, while the integration
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Figure 4.2: Selection of base classifiers and ensemble configuration. (a) Classifier se-
lection. The value on the top of each bar denotes the estimated power in functional SNP
pair identification using each classifier. (b) Ensemble configuration. The value on the
top of each bar denotes the power in functional SNP pair identification using ensem-
ble of classifiers with different values of GA chromosome mutation rate and diversity
integration weight, respectively (denoted as a duplex in thex-axis).

weights for blocking and voting were kept equal, and the three weights add up to 1. This

gives 9 possible configurations for the ensemble of classifiers. The identification pow-

ers of the ensemble of classifiers using these 9 configurations are shown in Figure4.2b.

It is observed that all the ensembles achieved better results than the best single classifier

which has an identification power of 53.8%. Among them, the best parameter setting

is (0.1, 0.15) which specifies the use of a mutation rate of 0.1and integration weights

of 0.15, 0.425, and 0.425 for diversity, blocking, and voting, respectively. This config-

uration gives an identification power of 60.8%, which is a significant improvement on

53.8%. This setting was then fixed in our GE in the followup experiments.

4.5.2 Simulation results

4.5.2.1 Gene-gene interaction identification

In the simulation experiment, we applied GE, PIA, and MDR fordetecting the func-

tional SNP pairs from 20 candidate SNPs and 100 candidate SNPs, respectively. Table
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4.3 shows the evaluation results. By fixing the candidate SNP size to 20 and testing

datasets generated with three heritability values (0.2, 0.1, and 0.05), we observed a de-

crease in the average identification power of the three algorithms (taking the average of

the three identification algorithms) from 98.33±0.94 to 78.67±2.62 and to 43.67±0.94.

By fixing the candidate SNP size at 100 and testing datasets generated with three heri-

tability values (0.2, 0.1 and 0.05), the average identification power drops to 93.67±0.94,

48.33±2.49, and 19.00±1.63, respectively. It is clear that both heritability and SNP size

are important factors to SNP-SNP interaction identification. When comparing the pow-

er of each algorithm, we found no significant differences. The standard deviation is

generally small, ranging from 0.94 to 2.62, indicating thatthe three algorithms have

similar performance.

Table 4.3: Functional SNP pair identification in balanced datasets using GE, PIA, and
MDR.

Dataset GE PIA MDR
Power (%) Power (%) Power (%)

balanced200 0.2 20 99 97 99
balanced200 0.1 20 80 75 81
balanced200 0.05 20 45 43 43
balanced200 0.2 100 95 93 93
balanced200 0.1 100 45 49 51
balanced200 0.05 100 17 19 21

Table 4.4: Functional SNP pair identification in imbalanceddatasets using GE, PIA,
and MDR.

Dataset GE PIA MDR
Power (%) Power (%) Power (%)

imbalanced200 0.2 20 92 90 95
imbalanced200 0.1 20 59 45 62
imbalanced200 0.05 20 32 24 27

To investigate whether an imbalanced class distribution affects identification power,

we applied GE, PIA, and MDR to imbalanced datasets with a case-control ratio of 1:2

and a candidate SNP size of 20. From Table4.4, we found that the power of the three

identification algorithms decreased in comparison to thoseof the balanced datasets (Ta-

ble 4.3). Such a decline of power is especially significant when the heritability of the
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Figure 4.3: True positive rate and false discovery rate estimation of GE at different rank
cut-offs. Simulated datasets with different heritabilitymodels, number of SNPs, and
class distribution, are used to evaluate the true positive rate and false discovery rate of
GE at different identification cut-offs using different rank-values [1-10].

dataset is small. This finding is essentially consistent with [194] in that datasets of larg-

er heritability values are more robust to imbalanced class distribution. Since the sample

size and other dataset characteristics in the balanced and the imbalanced datasets are

the same, the observed decline of power could be attributed to the imbalanced class

distribution. It is also noticed that the identification power of PIA is relatively low-

er compared to GE and MDR. This indicates that PIA may be more sensitive to the

presence of the imbalanced class distribution than GE and MDR.

For the GE algorithm, two approaches were used to study the distribution of the TPR

and FDR. For the first approach, we calculated the TPR and FDR by varying the rank
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Figure 4.4: True positive rate and false discovery rate estimation of GE at different
frequency score cut-offs. Simulated datasets with different heritability models, number
of SNPs, and class distribution, are used to evaluate the true positive rate and false
discovery rate of GE at different identification cut-offs using different frequency scores
[1-0].

cut-off of the reported SNP pairs. Figure4.3shows the distribution by using a rank cut-

off of 1 to 10 (the lower the number, the higher the rank). Notethat the rank cut-off of 1

gives the results equal to the power defined in Equation4.10. For the second approach,

we calculated the TPR and FDR by varying the identification frequency cut-off of the

reported SNP pairs. Figure4.4shows the distribution by decreasing the frequency cut-

off from 1 to 0. By comparing the results, we found that the decrease of the heritability

(from 0.2, to 0.1 and to 0.05) has the greatest impact on TPR ofGE. Sample size

appears to be the second factor (from 20 SNPs to 100 SNPs), andthe imbalanced class

distribution is the third factor (from a balanced ratio of 1:1 to an imbalanced ratio of
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1:2).

Generally, by decreasing the cut-off stringency (either rank cut-off or identification

frequency cutoff), the TPR increases, and therefore, more functional SNP pairs can be

successfully identified. However, this is achieved by accepting increasingly more false

identifications (higher FDR). The simulation results indicate that FDR calculated by

using the identification frequency cut-off is very steady, regardless of the change of

heritability, SNP size, or class ratio. In most cases, an FDRclose to 0 is achieved with

a cut-off greater than 0.78.

4.5.2.2 The degree of complementarity among GE, MDR, and PIA

As illustrated in Table4.3and Table4.4, large candidate SNP size, low heritability val-

ue, and the presence of imbalanced class distribution together give the worst scenario

for detecting SNP-SNP interaction. One solution to increase the chance of successful

identification in such a scenario is to combine different identification results produced

by different algorithms, which extends the idea of the ensemble method further. How-

ever, similar to the notion of diversity in ensemble classifier, the improvement can only

come if the combined results are complementary to each other. Hence, the evaluation of

the degree of complementarity among each pair of algorithmsbecomes indispensable.

We carried out a pairwise evaluation using Equation4.13and4.14. Tables4.5and

4.6 give the results for balanced and imbalanced situations, respectively. We observed

that higher degree of complementarity is generally associated with higher identification

power. For the balanced datasets, the degree of complementarity of PIA and MDR is

relatively low compared to those generated by GE and PIA, or GE and MDR. The results

indicate that the GE algorithm, which tackles the problem from a different perspective,

is useful in complementing methods like PIA and MDR in gene-gene interaction iden-

tification. As for the imbalanced datasets, the difference of the complementarity degree

between each pair of algorithms is reduced. This suggests that more methods need to

be combined for imbalanced datasets in order to improve identification power.
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Table 4.5: Functional SNP pair identification in balanced datasets by combining multiple algorithms.
Dataset (GE + PIA) (GE + MDR) (PIA + MDR) (GE + PIA + MDR)

CD PowerJ (%) CD PowerJ (%) CD PowerJ (%) PowerJ (%)
balanced200 0.2 20 1.000 100 1.000 100 0.667 99 100
balanced200 0.1 20 0.448 84 0.556 88 0.240 81 88
balanced200 0.05 20 0.303 54 0.303 54 0.068 45 55
balanced200 0.2 100 1.000 100 0.923 99 0.444 95 100
balanced200 0.1 100 0.441 62 0.400 61 0.148 54 63
balanced200 0.05 100 0.093 22 0.116 24 0.025 21 24

Table 4.6: Functional SNP pair identification in imbalanceddatasets by combining multiple algorithms.
Dataset (GE + PIA) (GE + MDR) (PIA + MDR) (GE + PIA + MDR)

CD PowerJ (%) CD PowerJ (%) CD PowerJ (%) PowerJ (%)
imbalanced200 0.2 20 0.714 96 0.818 98 0.750 97 99
imbalanced200 0.1 20 0.567 71 0.481 73 0.475 68 76
imbalanced200 0.05 20 0.286 40 0.301 42 0.287 38 47
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The last columns of Tables4.5 and4.6 show the joint identification power of the

three algorithms in analysing balanced and imbalanced data. These results indicate a

significant recovery of detection ability in functional SNPpair identification by apply-

ing three algorithms collaboratively. This is especially true when analysing imbalanced

datasets and the heritability of the underlying genetic model is low. For example, the

average identification power of three algorithms for imbalanced datasets with heritabil-

ity of 0.1 and 0.05 are 55.33% and 27.67%, respectively (Table 4.4). By combining

the results of the three algorithms, we are able to increase the power to 76% and 47%,

respectively, improving by around 20% (Figure4.5).
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Figure 4.5: A comparison of identification power of GE, PIA, MDR, and combination of the three algorithms. The name of each
dataset denotes sample size, heritability, and the number of SNPs (SNP size). (a) Identification power of each algorithmand their
joint power using datasets with balanced class distribution. (b) Identification power of each algorithm and their jointpower using
datasets with imbalanced class distribution.
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4.5.3 Real-world data application

As an example of a real-world data application, we applied the GE algorithm, PIA and

MDR, to analyze the complex disease of AMD. To reduce the combinatorial search

space, we followed the two-step analysis approach [191] andused a SNP filtering pro-

cedure that is similar to the method described in [34], whichcan be summarized as

follows:

S1: Excluding SNPs that have more than 20% missing genotype values of total sam-

ples.

S2: Calculating allelicχ2-statistics of each remaining SNP and keeping SNPs which

have ap-value smaller than 0.05 while discarding others. A total of3583 SNPs

passed filtering.

S3: Utilizing RTREE program [212] to select top splitting SNPs in AMD classifica-

tion. Two SNPs withid of rs380390 and rs10272438 are selected.

S4: Utilizing Haploview program [11] to construct the Linkage Disequilibrium (LD)

blocks around the above two SNPs.

After the above processing steps, we obtained 17 SNPs from the two LD block-

s. They are rs2019727, rs10489456, rs3753396, rs380390, rs2284664, and rs1329428

from the first block, and rs4723261, rs764127, rs10486519, rs964707, rs10254116,

rs10486521, rs10272438, rs10486523, rs10486524, rs10486525, and rs1420150 from

the second block. Based on the previous investigation of AMD[63,77,175], we added

another six SNPs to avoid analysis bias. They are rs800292, rs1061170, rs1065489,

rs1049024, rs2736911, and rs10490924. Moreover, environmental factors of Smok-

ing status and Sex are also included for potential environment interaction detection.

Altogether, we formed a dataset with 25 factors for AMD association screening and

gene-gene interaction identification.

Tables4.7 and 4.8 illustrate the top 5 most frequently identified 2-factor and3-

factor interactions, respectively. At first glance, we see that the identification results

given by different methods are quite different from one another. Considering the results

of 2-factor and 3-factor interaction together, however, wefind that two gene-gene inter-

actions and a gene-environment interaction are identified by all three methods. Specif-

ically, the first gene-gene interaction is characterized bythe SNP-SNP interaction pair
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of rs10272438×rs380390. The first SNP is an A/G variant located in intron 5 ofBBS9

located in 7p14, while the second SNP is a C/G variant locatedin intron 15 ofCFH lo-

cated in 1q32. The second frequently identified gene-gene interaction is characterized

by the SNP-SNP interaction pair of rs10490924×rs10272438. The first SNP in this

interaction pair is a nonsynonymous coding SNP of Ser69Ala alteration located in exon

1 of ARMS2located in 10q26, and the second SNP is again the A/G variant located

in intron 5 ofBBS9located in 7p14. As to the gene-environment interaction pair, it is

characterized by rs10272438×Sex. This pair indicates that the SNP factor of the A/G

variant located in intron 5 ofBBS9located in 7p14 is likely to associate with the disease

differently in males and females.

We also test the association of the Age factor with AMD by using Gaussian dis-

cretization to partition the age value of each sample into three categories as follows:

age(x) =















“young” x6 µ −σ/2

“medium” µ −σ/2< x < µ +σ/2

“elderly” x> µ +σ/2

(4.17)

whereµ is the average age value andσ is the standard deviation of age values.

After including the Age factor in the dataset, all three algorithms identified the gene-

environment interaction of rs1420150×Age as the interaction with major implication,

indicating that Age factor is, expectedly, strongly associated with the development of

AMD. The SNP that interacted with the Age factor is a C/G variant located in intron 9

of BBS9located in 7p14.
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Table 4.7: Two-factor interaction candidates of the AMD dataset using GE, PIA, and MDR, respectively.
GE CV Acc % PIA CV Acc % MDR CV Acc %

rs10272438×rs4723261 68.5 rs10272438×rs380390 64.2 rs10490924×rs1420150 65.5
rs10272438×rs2736911 66.9 rs10490924×rs10272438 68.2 rs10272438×rs1065489 68.4
rs10272438×rs964707 68.5 Y402H×rs10272438 65.5 rs10272438×rs2284664 66.7
rs10272438×Sex 67.5 rs10254116×Smoking 67.1 rs10272438×Sex 67.5
rs10272438×rs2284664 66.7 rs10490924×rs10254116 67.7 rs10254116×rs2736911 67.7

Table 4.8: Three-factor interaction candidates of the AMD dataset using GE, PIA, and MDR, respectively.
GE CV Acc % PIA CV Acc % MDR CV Acc %

rs10272438×rs4723261 68.5 rs10272438×rs380390 59.8 rs10272438×rs380390 59.8
×rs964707 ×rs10486524 ×rs10486524
rs10272438×rs4723261 67.1 rs10272438×rs380390 61.2 rs10272438×rs380390 63.4
×rs2736911 ×Sex ×rs964707
rs10272438×rs380390 63.4 rs10272438×Sex 68.1 Y402H×rs10272438 60.7
×rs964707 ×rs1065489 ×rs964707
rs10490924×rs10272438 65.0 rs10272438×rs380390 66.6 rs10490924×rs10272438 63.4
×rs4723261 ×rs10254116 ×Sex
rs10272438×Sex 63.5 rs10272438×rs380390 59.4 rs10272438×Sex 65.7
×rs4723261 ×rs1420150 ×rs2736911
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Table4.9summarizes the factors involved in potential interactionsidentified by all

three different algorithms. Overall, the experimental results suggest that genes ofBB-

S9(Bardet-Biedl syndrome 9),CFH (complement factor H), andARMS2(age-related

maculopathy susceptibility 2) with the external factors ofAge and Sex, and the in-

teractions among them are strongly associated with the development of AMD. This

is essentially consistent with current knowledge of AMD development in the litera-

ture [63,77,103,175].

Table 4.9: SNPs and environmental factors that statistically associated with AMD.
Factor Chrom. Gene Location Effect Main effectp-value

rs10272438 7p14 BBS9 intron 5 A/G 1.4×10−6

rs1420150 7p14 BBS9 intron 9 C/G 2.1×10−2

rs380390 1q32 CFH intron 15 C/G 4.1×10−8

rs10490924 10q26 ARMS2 exon 1 Ser69Ala 1.8×10−3

Sex – – – – 1.4×10−2

Age – – – – 1.1×10−3

4.6 Summary

The advance of high-throughput genotyping technologies provides the opportunity to

elucidate the mechanism of gene-gene and gene-environmentinteraction via SNP mark-

ers. However, current algorithms have limited power in terms of identifying true SNP-

SNP interactions. Moreover, the simulation results indicate that factors such as heri-

tability, candidate SNP size, and the presence of imbalanced class distribution all have

profound impact on a given algorithm’s power in identifyingfunctional SNP interac-

tions. One practical way to improve the chance of identifying SNP-SNP interactions

is to combine different methods where each addresses the same problem from a dif-

ferent perspective. The rationale is that the consensus mayincrease the confidence of

identifications and complementary results may improve the power of identification.

Due to these considerations, we proposed a hybrid algorithmusing a genetic ensem-

ble approach. Using this approach, the problem of SNP-SNP interaction is converted

to a combinatorial feature selection problem. Our simulation study indicates that the

proposed GE algorithm is comparable to PIA and MDR in terms ofidentifying gene-

gene interaction for complex disease analysis. Furthermore, the experimental results
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demonstrate that the proposed algorithm has a high degree ofcomplementarity to PIA

and MDR, suggesting the combination of GE with PIA and MDR is likely to lead to

higher identification power.

For practical application of the GE algorithm, the experimental results from the

simulation datasets suggest that taking the top-ranked result generally gives a higher

sensitivity of identifying SNP-SNP interactions than using a frequency score cut-off.

However, if the detectability of the SNP-SNP interaction islow or no such interaction is

present in the dataset, the top-ranked result is likely to bea false positive identification.

A more conservative approach is to use an identification frequency cut-off of 0.75–0.8

which in our simulation study gives identification results with an FDR close to 0. For

any identified SNP pair with an identification frequency higher than 0.8, the confidence

is very high.

As a down-stream analysis, we can fit the identified SNP pairs using a logistic model

with interaction terms and calculate thep-values of their coefficients in order to quantify

the strength of the interaction. In particular, to test additive and dominant effects, we

can fit the reported SNP combinations using the model described by Cordell [41] and

analyse the coefficients associated with additive and dominant effects of each SNP.

Current GWA studies commonly produce several hundreds of thousands of SNPs,

yet the gene-gene interaction identification algorithms like MDR, PIA and the proposed

GE algorithm can only cope with a relatively small number of SNPs in a combinatorial

manner. Therefore, a filtering procedure is required to reduce the number of SNPs to

a “workable” amount before those combinatorial methods canbe applied to datasets

generated by GWA studies [71, 130]. More efforts are required to seamlessly connect

these two components to maximize the chance of detecting complex interactions among

multiple genes and environmental factors [191].

In conclusion, we proposed a GE algorithm for gene-gene and gene-environment

interaction identification. It is comparable to two other state-of-the-art algorithms (PIA

and MDR) in terms of SNP-SNP interaction identification. Theexperimental results al-

so demonstrated the effectiveness and the necessity of applying multiple methods each

with different strengths to the gene-gene and gene-environment interaction identifica-

tion for complex disease analysis.
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4.7 Software availability

The genetic ensemble package for gene-gene interaction identification is freely avail-

able from:

http://code.google.com/p/genetic-ensemble-snpx



Chapter 5

Gene Sets Selection From Microarray

This chapter is based on the following publication:

Pengyi Yang, Bing B. Zhou, Zili Zhang, Albert Y. Zomaya, A multi-filter enhanced

genetic ensemble system for gene selection and sample classification of microarray

data. BMC Bioinformatics, 11:S5, 2010

5.1 Microarray data from a computational viewpoint

In previous two chapters, we concentrated on processing genotype data generated from

genomic levels. In this section, we focus on processing transcriptomic data with en-

semble methods and hybrid algorithms.

One of the key technologies that has been predominately applied for high-throughput

transcriptome profiling since its development in the mid 90sis gene expression microar-

ray [49, 174]. Microarray technologies parallelize the finding of the disease/trait caus-

ing genes by simultaneously measuring tens of thousands of genes. For example, for

the studies that are designed to find genes associated with certain cancers, tissue sam-

ples from cancer patients and normal individuals can be collected and profiled using

microarrays.

Common steps in microarray data analysis include data normalization, disease/trait-

associated gene identification, sample classification, andgene enrichment analysis [4].

Following these analysis procedures, downstream validation may be performed in a

wetlab. It is clear that a successful downstream validationrelies heavily on the ini-

tial data analysis, yet the data analysis has been found to benontrivial. For example,

71
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the measured gene expressions from microarray experimentsare unavoidably affect-

ed by random variations and systematic variations that occur in different samples and

experimental effects. Therefore, a proper data normalization procedure is critical to en-

sure gene expressions are comparable within and between each sample and experiment

batch [205]. Similar to the SNP interaction filtering and identification, the identifica-

tion of disease/trait-associated genes is also hampered bythe problems such ascurse-

of-dimensionalityand thecurse-of-sparsitybecause the number of genes measured by

microarray is commonly several orders higher than the number of samples used for pro-

filing [182]. Therefore, an efficient and accurate gene selection approach that is capable

of identifying key genes and gene sets that are differentially expressed between differ-

ent treatments or diseases from a huge candidate set is crucial to ensure accurate sample

classification and followup biological validation.

In this chapter, we explore using hybrid approaches for disease associated gene set

selection and sample classification. Wrapper and filter algorithms are commonly treated

as different approaches for differentially expressed geneselection. The uniqueness of

the proposed approach is that filter and wrapper algorithms are combined as a hybrid al-

gorithm and the strengths of each approach are harnessed in an integrative way. We ap-

ply our hybrid approach to several benchmark microarray datasets and compare results

with those obtained from using either filter or wrapper feature selection approaches.

5.2 Hybrid approach for gene set selection and sample

classification of microarray data

Feature selection is a key technique for identifying disease/trait-associated genes from

high-dimensional microarray data. We categorized featureselection algorithms into

filter, wrapper, and embedded approaches in Section2.1.2. As mentioned earlier, a filter

approach separates feature selection from the sample classification component, thus,

they are generally computationally efficient. However, theeffects of the selected genes

in sample classification is useful information that may be used to improve classification

accuracy [104]. Therefore, the wrapper approach, which incorporates the classification

information for feature selection, may provide higher sample classification accuracy.

If the goal of the study is to accurately distinguish diseasesamples and controls, one

may prefer wrapper algorithms to filter algorithms. Yet, thecomputational complexity



5.2. HYBRID APPROACH FOR GENE SET SELECTION 73

of wrapper algorithms is generally much higher than filter algorithms since one needs

to iteratively classify samples, often in a cross-validation manner, so as to objectively

extract classification information for feature selection.

We argue that a good trade-off between filter and wrapper approaches can be achieved

by combining the two techniques in that the filter algorithm is used for a fast initial

screening and the wrapper algorithm is then applied to the reduced gene subset to ac-

curately identify the most important gene set in a computationally efficient manner.

Therefore we propose following procedure:

1. Split each dataset into external training sets and external test sets with an external

N-fold stratified cross validation.

2. Filter the external training sets by using a filter algorithm.

3. Split the filtered external training sets into internal training sets and internal test

sets with an internalN-fold stratified cross validation.

4. Identify gene set with a wrapper algorithm using internaltraining sets and internal

test sets.

5. Evaluate the selected gene set on sample classification using the external test set.

The above procedure embedded feature selection in an internal cross validation and

therefore provides an objective evaluation of the algorithm.

5.2.1 Multiple filter enhanced genetic ensemble

For the wrapper algorithm, we apply a similar genetic ensemble (GE) system as those

used for gene-gene interaction identification in Section4.2because this model is able to

evaluate genes as subsets, as opposed to individual genes, and could potentially identify

functional units. This is important because genes are commonly connected by pathways

and function as groups. Therefore, evaluating individual genes may miss important

biopathway information.

To increase the speed of convergence and to further improve the generalization prop-

erty of the selected genes and gene subsets on unseen data classification, we incorpo-

rate multiple filtering algorithms into the GE system. This hybrid system is named the

multi-filter enhanced genetic ensemblesystem, or MF-GE for short. The flow chart of
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the hybrid system is illustrated in Figure5.1. A novel mapping strategy for multiple

filtering information fusion is developed to fuse the evaluation scores from multiple

filters, and this information is incorporated into the GE system for gene selection and

classification. Thus, the system encompasses two components, i.e., “filtering process”

and “wrapper process”. In the filtering process, multiple filtering algorithms are applied

to score each candidate gene in the microarray dataset. The scores of each gene are then

integrated to the wrapper process. In the wrapper process, the GE system is used to s-

elect discriminative genes using the information providedby the filtering process. The

algorithm executes iteratively, collecting multiple genesubsets. The final collections

are ranked and the top genes are used for sample classification.

Multi-Filter Based 

Score Calculation

External

Train Set

Score Mapping

Filtering process

Genetic Ensemble

Based Gene Selection
Selected Genes

Gene Ranking

Internal

Test Set

Wrapper process

Internal 

Train Set

External 
Test Set

Iterative execution

Classification

Figure 5.1: Flow chart of the MF-GE hybrid system for gene selection and classification
of microarrays.
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5.2.2 Score mapping for information fusion of multiple filtering al-

gorithms

Traditionally, filtering algorithms select differential genes independently for the classi-

fication process. However, such information could be beneficial if appropriately inte-

grated into the wrapper procedure. As shown in Figure5.1, the intermediate step called

“score mapping” serves as the synergy between the filtering process and the wrapper

process.

The score mapping process starts by calculating scores for each candidate gene with

different filtering algorithms. One issue in integrating those scores is that different filter-

ing algorithms often provide evaluation scores with different scales. In order to combine

the evaluation results of multiple filters, we must transform the evaluation scores into a

common scale. Therefore, softmax scaling is adopted to normalize the gene evaluation

results of each filtering algorithm into the range of [0, 1]. The calculation is as follows:

x̂ik =
1

1+exp(−y)

in which

y=
xik − x̄k

rσk

wherex̄k is the average expression value of thekth gene among all samples,σk is the

standard deviation of thekth gene among all samples, and ˆxik is the transformed value

of xik which denotes the expression value of thekth gene in samplei.

After softmax scaling, the evaluation scores from different filtering algorithms are

summed up to a set of total scores that indicates the overall score of each gene under

the evaluation of multiple filtering algorithms. The total scores are then multiplied by

10 and rounded to an integer. Those with scores smaller than 1are set to 1 to make sure

all candidate genes are included in the wrapper selection process. The scores are then

converted into frequency. The genetic operations such as “chromosome” initialization

and mutation of the original GE system are conducted based onthis “gene frequency

map”. Figure5.2gives an example of creating a gene frequency map using two filters.

It is readily noticed that genes with higher overall evaluation scores will appear

in the gene frequency map more frequently, and thus, will have a better chance to be
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Softmax Scaling

Summing

10 & Rounding

Score mapping

22.2 88.6 9.4 … 6.8 13.3 5.4 …

g1 g2 g3 …

Score Calculation

(Filter1)

0.4 0.7 0.2 …

0.3 0.5 0.2 …

0.7 1.2 0.4 …

7 12 4 …

g1 g1 g1 g1 g1 g1 g1 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g3 g3 g3g3 …

(Filter1)

(Filter2)

(Gene Pool)

(Filter2)

(Total Score)

(Normalized Score)

(Gene Frequency Map)

Figure 5.2: An example of multiple filter score mapping strategy for information fusion.

chosen in the initialization step and the mutation step. In this way, multiple filter infor-

mation is fused into the gene selection process.

5.3 Filters and classifiers

The MF-GE system incorporated the evaluation scores of five filtering algorithms, name-

ly χ2-test, ReliefF, Symmetrical Uncertainty, Information Gain, and Gain Ratio. Fur-

thermore, we extend the GE system, introduced in Section4.2, for multiple class-

es datasets. We evaluate multiple classifier combinations using a multiagent frame-

work [216] and find that the combination of five classifiers, namely,decision tree, ran-

dom forests, 3-nearest neighbour, 7-nearest neighbour, andnaive bayesis the best in

terms of sample classification and feature selection stability.

In this section, we start by introducing the filtering algorithms incorporated in the

MF-GE hybrid system. The ReliefF algorithm is introduced inSection3.2.1, and there-

fore, is excluded from here. Then, we describe the extensionof the GE system for

multiple classes datasets.
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5.3.1 Filter algorithms

5.3.1.1 χ2-test

For gene selection,χ2-test can be considered to calculate the occurrence of a particular

value of a gene and the occurrence of a class associated with this value. Formally, the

merit of a gene is quantified as follows:

χ2(g) = ∑
v∈V

m

∑
i=1

(N(g= v,ci)−E(g= v,ci))
2

E(g= v,ci)

whereci , (i = 1, ...,m) denotes the possible classes of the samples from a dataset, while

g is the gene that has a set of possible values denoted asV. N(g= v,ci) andE(g= v,ci)

are the observed and the expected co-occurrence ofg= v with the classci , respectively.

5.3.1.2 Symmetrical uncertainty

Symmetrical uncertaintyevaluates the worth of a gene by measuring the symmetrical

uncertainty with respect to the sample class [198]. Each gene is evaluated as follows:

SymmU(g) =
2× ((H(class))−H(class|g))

H(class)+H(g)

whereH(.) is the information entropy function.H(class) andH(g) give the entropy

values of the class and a given gene, whileH(class|g) gives the entropy value of a gene

with respect to the class.

5.3.1.3 Information gain

Information gainis commonly used in nodes selection for decision tree construction. It

measures the number of bits of information provided in classprediction by knowing the

value of features [196]. Letci belong to a set of discrete classes (1, ..., m). LetV be the

set of possible values for a given geneg. The information gain of a geneg is defined as

follows:

In f oGain(g) =−
m

∑
i=1

P(ci) logP(ci)+ ∑
v∈V

m

∑
i=1

P(g= v)P(ci |g= v) logP(ci |g= v)
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5.3.1.4 Gain ratio

Gain ratio incorporates “split information” of features intoinformation gainstatistics.

The “split information” of a gene is obtained by measuring how broadly and uniformly

it splits the data [129]. Let us consider again that a microarray dataset has a set of classes

denoted asci , (i = 1, ...,m), and each geneg has a set of possible values denoted asV.

The discriminative power of a geneg is given as:

GainRatio(g) =
In f oGain(g)

Split(g)

in which:

Split(g) =− ∑
v∈V

m

∑
i=1

|Sv|

|S|
log

|Sv|

|S|

whereSv is the subset ofSof which geneg has valuev.

Each algorithm evaluates the worth of a candidate gene in a different way. The

hope is that genes of real biological relevance will show high scores in multiple criteria,

as opposed to the artifacts that may by chance show high scores in one criterion but

perform much worse according to the others.

5.3.2 Classification components

After fusing the filtering information from multiple filters, the aim is to apply the GE

system to identify a subset of key genes that can maximize theprediction accuracy on

diseases. We adopt the same architecture as described in Section 4.2, but extend the

system for dealing with datasets with multiple classes. Specifically, for blockingand

majority voting, we have the same equations as follows:

f itnessB(s) =
L

∑
i=1

BC(p(t|hs
i ,D),y) (5.1)

and
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f itnessV(s) = BC
(

Vk

(

t′|∑L
i=1 p(t|hs

i ,D)
)

,y
)

(5.2)

wherey is the class label vector of the test datasetD, function p(.) predicts/classifies

samples inD as t usinghs
i , andVk(.) is the decision function of majority voting that

combines multiple predictions into a consensus predictionof t′.

However, the calculation ofBC(.) is modified as:

BC(p(t|hs
i ,D),y) =

∑m
j=1Sej

m
(5.3)

and

Sej =
N j

TP

N j ×100 (5.4)

whereSej is the sensitivity value calculated as the percentage of thenumber of true pos-

itive classification (N j
TP) of samples in classj, N j denotes the total number of samples

in class j, andm is the total number of classes.

5.4 Experiment designs and results

In this section, we describe the dataset used for evaluation, the details of implementation

and the experimental results.

5.4.1 Datasets and data pre-processing

We gathered four benchmark microarray datasets for our algorithm evaluation. These

included binary class and multi-class classification problems. Table5.1 is a summary

of the datasets.

The “Leukemia” dataset [70] investigates the expression oftwo different subtypes

of leukemia (47 ALL and 25 AML), and the “Colon” dataset [5] contains expression

patterns of 22 normals (denoted as NOR) and 40 tumour (denoted as TUM) tissues. The

“Liver” dataset [33] has 82 samples labelled as Hepatocellular carcinoma (HCC) and

another 75 samples labelled as non-tumour (NON). The task for these three datasets

is to identify a small group of genes that can distinguish samples from two classes.

The “MLL” dataset [9] provides a multi-class classificationproblem. The task is to
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Table 5.1: Microarray datasets used for algorithm evaluation.
Dataset name Leukemia Colon Liver MLL
Reference [70] [5] [33] [9]
Number of Samples 72 62 157 72
Number of Genes 7129 2000 20983 12582
Number of Classes 2 2 2 3
Class1 ALL: 47 TUM: 40 HCC: 82 ALL: 24
Class2 AML: 25 NOR: 22 NON: 75 MLL: 20
Class3 AML: 28

discriminate each class using a selected gene profile. Thesefour datasets represent the

general scenarios in gene selection and sample classification of microarray datasets.

Each dataset is pre-processed by converting the raw expression value by logarithm

of 2 and normalizing the value to the range of [0, 1]. Then eachdataset is split into

external training sets and external test sets with a 3-fold stratified cross validation. A

pre-filtering procedure is applied to select the top 200 genes by using the between-

group to within-group sum of square ratio (BSS/WSS) [56]. Following that, the external

training sets are split into internal training sets and internal test sets with an internal 3-

fold stratified cross validation. The gene score calculation is conducted by using the

internal training sets while the wrapper selection is performed using internal training

sets and internal test sets collaboratively. The external test sets are reserved for the

evaluation of the selected genes on unseen data classification, and are excluded from

pre-filtering and the gene selection processes.

5.4.2 Implementation

The classification component in the genetic ensemble systemis determined by using a

multiagent approach as described in [216]. A set of initial tests is conducted to deter-

mine working parameter configurations. The best parameter settings in the initial test

are chosen and fixed for the later experiments. Specifically,the iteration of the genetic

ensemble procedure is set to 100. Within each iteration, thepopulation size of GA is

100. These 100 populations are divided into two niches each of 50, and are evolved

separately. After every 10 generations, the favourite chromosomes from the two nich-

es are exchanged with each other. The probability of crossover pc is 0.7. A novel

mutation strategy is implemented to allow multiple mutations; that is, when a single
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mutation happens (with the probability of 0.1) on a chromosome, another single point

mutation may happen on the same chromosome with the probability of 0.25 and so on.

The selection method is the tournament selection with the candidate size of 3, and the

contribution weights ofw1 andw2 are set to 0.5. Lastly, the termination condition for

each iteration is either that the termination generation of100 is reached or the similarity

of the population converges to 90%. Table5.2summarizes the parameter settings.

Table 5.2: Parameter setting for genetic ensemble.
Parameter Value

Fitness Function Multi-Objective
Iteration 100

Population Size 100
Niche 2

Chromosome Size 15
Termination Multiple Conditions

Selection Tournament Selection (3)
Crossover Single Point (0.7)
Mutation Multi-Point (0.1 & 0.25)

Contribution Weight w1 = 0.5, w2=0.5

In our parameter tuning experiments, the average gene subset size is within 2 to 10.

Thus, the GA chromosome is represented as a string of size 15.In chromosome coding,

each position is used to specify theid of a selected gene or assigned a “0” to denote

no gene is selected at the current position. This gives a population of gene subsets of

different sizes with a maximum of 15.

Classifiers and filters are created by using Waka API [78]. Specifically, J48 algo-

rithm is used to create a classification tree. The random forest algorithm with size of

7 trees is applied, whilek-nearest neighbour and naive bayes classifiers are adopted

with default parameters. Each filtering algorithm is provoked for evaluation of each

candidate gene and integrated from our main code through theclass API of Waka.

The GA/KNN code was downloaded from the author’s web site

(http://www.niehs.nih.gov/research/resources/software/gaknn). Chromosome length of

15, iteration of 1000, and majority voting withk=3 of thekNN were used. For each

dataset, GA/KNN requires a pre-specified selection threshold of cut-off. Therefore, dif-

ferent thresholds were used according to their classification power on different datasets.
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5.4.3 Results

The first set of experiments is focused on comparing the classification accuracy of the

selected gene sets from MF-GE hybrid with GE, GA/KNN, and Gain Ratio filter al-

gorithms. Instead of trying to achieve the highest classification accuracy, we aim to

differentiate the classification performance of differentgene selection algorithms. The

ranking and classification of each dataset are repeated 5 times and each time the top 5,

10, 15, and 20 genes are used for sample classification. We report the average of the

classification results.

The evaluation results obtained from the different microarray datasets are depicted

in Tables5.3-5.6. In each table, the classification results using each individual classifier

as well as the mean and their majority voting are listed. It iseasy to see that the MF-

GE system has a higher average classification accuracy for all datasets. For example,

1.20%, 1.33%, 0.75%, and 1.85% improvements of mean over theoriginal GE (which

is the second best in average over all datasets) are obtainedusing the MF-GE system

for Leukemia, Colon, Breast, and MLL, respectively. Given the fact that the GE part

of these two algorithms is the same, the natural explanationof the improvement is the

fusion of multiple filter information.
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Table 5.3: Classification comparison of different gene ranking algorithms using Leukemia dataset.
Dataset Classifier Algorithm

Gain Ratio GA/KNN GE MF-GE

Leukemia C4.5 87.41 78.55±2.96 83.04±1.56 84.51±2.53
Random Forests 92.59 91.75±0.99 90.82±1.87 92.35±0.70

3-Nearest Neighbour 91.16 93.74±1.27 94.30±1.73 95.48±0.95
7-Nearest Neighbour 83.10 89.43±1.10 90.45±2.04 90.86±1.26

Naive Bayes 92.78 90.28±1.33 96.20±0.93 96.27±1.65
Mean 89.41 88.75 90.69 91.89

Majority Voting 92.45 93.29±1.29 95.33±0.96 96.23±1.26

Table 5.4: Classification comparison of different gene ranking algorithms using Colon dataset.
Dataset Classifier Algorithm

Gain Ratio GA/KNN GE MF-GE

Colon C4.5 71.49 62.43±2.78 73.08±2.77 76.64±1.53
Random Forests 63.66 73.48±2.09 71.86±2.02 74.35±2.01

3-Nearest Neighbour 68.02 73.83±1.57 75.43±0.92 77.01±2.09
7-Nearest Neighbour 65.43 67.62±1.45 68.39±1.76 68.78±2.32

Naive Bayes 70.61 72.12±1.68 76.46±2.14 75.07±2.38
Mean 68.84 69.90 73.04 74.37

Majority Voting 70.56 73.37±1.84 75.81±2.00 76.98±1.06
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Table 5.5: Classification comparison of different gene ranking algorithms using Liver dataset.
Dataset Classifier Algorithm

Gain Ratio GA/KNN GE MF-GE

Liver C4.5 84.88 88.33±0.94 87.09±0.79 88.19±0.56
Random Forests 89.65 90.31±1.11 91.87±0.94 93.13±1.18

3-Nearest Neighbour 87.76 90.46±0.65 93.57±0.57 93.39±0.79
7-Nearest Neighbour 87.65 89.53±0.56 91.91±0.69 92.54±0.57

Naive Bayes 89.05 90.85±0.51 92.70±0.67 93.63±0.64
Mean 87.80 89.90 91.43 92.18

Majority Voting 89.02 91.60±0.36 93.37±0.46 93.80±0.47

Table 5.6: Classification comparison of different gene ranking algorithms using MLL dataset.
Dataset Classifier Algorithm

Gain Ratio GA/KNN GE MF-GE

MLL C4.5 81.87 72.89±2.08 78.27±3.10 81.54±1.67
Random Forests 83.02 88.07±1.05 88.20±1.41 89.74±0.60

3-Nearest Neighbour 79.63 88.22±1.30 86.18±1.39 88.14±1.09
7-Nearest Neighbour 79.63 86.72±1.03 85.02±1.49 86.69±1.98

Naive Bayes 83.95 89.62±0.67 90.68±1.28 91.50±0.67
Mean 81.62 85.10 85.67 87.52

Majority Voting 83.88 88.38±0.97 89.02±1.71 91.08±0.96
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An apparent question is whether such improvements with multiple filters justify the

additional computational expenses? This question can be answered from two aspects.

Firstly, the multi-filter score calculation in the MF-GE system is done only once at the

start of the algorithm. This step will not be involved in the genetic iteration and opti-

mization processes. Therefore, it is computationally efficient to incorporate this initial

information. Secondly, by closely observing the classification results produced by in-

dividual classifiers, we can see that the MF-GE system achieved better classification

results in almost all cases than those alternative methods,regardless of which inductive

algorithm is used for evaluation. Moreover, such improvement is consistent throughout

all datasets used for evaluation. This demonstrates that the gene subsets selected by the

MF-GE system have a better generalization property and thusare more informative for

unseen data classification. From the biological perspective, the selected genes and gene

subsets are more likely to have genuine association with thedisease of interest. Hence,

they are more valuable for future biological analysis.
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Figure 5.3: The comparison of average classification and majority voting classification
of the five classifiers with different gene selection methodsin each microarray dataset.

Figure5.3gives the comparison of the mean classification accuracy andthe major-

ity voting accuracy of these five classifiers with different gene ranking methods in each

microarray dataset. In all cases, integrating classifiers with majority voting gives better

classification results than the average of individuals. Therefore, majority voting can be

considered as a useful classifier integration method for improving the overall classifi-

cation accuracy. Figure5.4 depicts the multi-filter scores of the 200 genes pre-filtered
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Figure 5.4: The multi-filter consensus scores of the 200 pre-filtered genes.

by BSS/WSS. It is evident that many genes with relatively lowBSS/WSS ranking have

shown very high multi-filter scores. Interestingly, in the Colon dataset, genes are frac-

tured into two groups with respect to the multi-filter scores. It would be interesting to

conduct further study on finding the causality of such inconsistency.

Table 5.7: Generation of convergence & subset size for each dataset using MF-GE and
GE.

Dataset Comparison Criterion MF-GE GE p-value∗

Leukemia Mean Generation of Convergence 21.2 23.4 1×10−2

Mean Subset Size 4.7 5.4 4×10−3

Colon Mean Generation of Convergence 25.5 27.1 5×10−2

Mean Subset Size 6.0 6.6 3×10−3

Liver Mean Generation of Convergence 27.1 27.4 1×10−1

Mean Subset Size 7.2 7.7 1×10−3

MLL Mean Generation of Convergence 25.0 26.1 8×10−2

Mean Subset Size 6.8 7.2 3×10−2

∗p-values are calculated using studentt-test with one tail.

The second set of experiments is conducted to compare the mean generation of

convergence (termination generation), and the mean gene subset size collected in each

iteration of the MF-GE and the original GE hybrid. We formulate these two criteria for

comparison because the biological relationship with the target disease is more easily

identified when the number of the selected genes is small [55], and a shorter termination

generation implies that the method is more computationallyefficient.
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Figure 5.5: Mean gene subset size selected by GE and MF-GE, and mean generation of
convergence of GE and MF-GE from each microarray dataset.

As illustrated in Table5.7, it is clear that the MF-GE system is capable of converg-

ing with fewer generations while also generating smaller gene subsets. Specifically, the

mean gene subset size given by MF-GE is about 0.4 to 0.7 of a gene less than those

of GE, while the mean generation of convergence is about 1 to 2generations fewer.

Essentially, the improvement on producing more compact gene subsets is more signif-

icant as demonstrated by thep-value of the one-tail Studentt-test. The results are also

shown in a boxplot in Figure5.5. One interesting finding is that these figures indicate

a dataset-dependent relationship, that is, the optimal subset size and the convergence

of the genetic component is partially determined by the given dataset. Nevertheless,

significant improvements can be achieved by fusion of prior data information into the

system.

Lastly, in Table5.8, we list the top 5 genes with the highest selection frequencyof

each microarray dataset respectively.
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Table 5.8: Top 5 genes with the highest selection frequency from each microarray data.
Dataset Identifier Gene Description

Leukemia X95735at Zyxin
M31523at TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)
Y07604at Nucleoside-diphosphate kinase
M92287at CCND3 Cyclin D3
M27891at CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)

Colon Hsa.549 P03001 TRANSCRIPTION FACTOR IIIA
Hsa.3016 S-100P PROTEIN (HUMAN)
Hsa.8147 Human desmin gene, complete cds
Hsa.36689 H.sapiens mRNA for GCAP-II/uroguanylin precursor
Hsa.6814 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)

Liver AA232837 Plasmalemma vesicle associated protein (PLVAP)
AA464192 PDZ domain containing 11 (PDZD11)
AA486817 Shisa homolog 5 (Xenopus laevis) (SHISA5)

R43576 Basic leucine zipper nuclear factor 1 (BLZF1)
H62781 Ficolin (collagen/fibrinogen domain containing lectin) 2 (hucolin) (FCN2)

MLL 33412at vicpro2.D07.r Homo sapiens cDNA, 5’ end
1389at Human common acute lymphoblastic leukemia antigen (CALLA)mRNA, complete cds
32847at Homo sapiens myosin light chain kinase (MLCK) mRNA, complete cds
39318at H.sapiens mRNA for Tcell leukemia
40763at Human leukemogenic homolog protein (MEIS1) mRNA, completecds
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5.5 Summary

Traditionally, filter and wrapper algorithms are treated ascompetitors in gene selection

for data classification. In this study, we embrace an alternative view and attempt to

combine them as the building blocks of a more advanced hybridsystem. The proposed

MF-GE system applied several novel integration ideas to strengthen the advantages of

each component while avoiding their weaknesses. The experimental results indicate the

following:

• By fusing evaluation feedbacks of multiple filtering algorithms, the system not

only seeks for high classification accuracy of training datasets greedily, but takes

into consideration other characteristics of the data. The overfitting problem can

then be circumvented and a better generalization of the selected gene and gene

subsets can be achieved.

• By weighing the goodness of each candidate gene from multiple aspects, we re-

duce the chance of identifying false-positive genes while producing a more com-

pact gene subset. This is useful since future biological experiments can be more

easily conducted to validate the importance of the selectedgenes.

• With the use of multiple filtering information, the MF-GE is able to converge

more quickly without sacrificing the sample classification accuracy and thus saves

computational expense.

The MF-GE system provides an effective measure for incorporating different algo-

rithm components. It allows any filters or classifiers with new or special capabilities to

be added to the system and those no longer useful or inappropriate to be removed from

the system, based on the data requirements or user preferences.



Chapter 6

A Self-boosted Semi-supervised

Learning Algorithm for

Post-processing Mass

Spectrometry-based Proteomics Data

This chapter is based on the following manuscript:

Pengyi Yang, Jie Ma, Penghao Wang, Yunping Zhu, Bing B. Zhou,Yee Hwa Yang,

Improving X!Tandem on peptide identification from mass spectrometry by self-boosted

Percolator, IEEE/ACM Transactions on Computational Biology and Bioinformatics, ac-

cepted.

6.1 Peptide-spectrum match post-processing

In previous chapters, we have looked at different computational approaches for ana-

lyzing large-scale genomic data and transcriptomic data. From this chapter, we turn

our attention to the mass spectrometry (MS)-based proteomics , and study proteins–the

functional products of genes and transcripts.

One of the main computational challenges in MS-based proteomics is the identi-

fication of peptides from the spectra produced by the mass spectrometer. There are

three main approaches for peptide identification, the database search approach [62]: the

spectral library search approach [45, 109], and thede novosequencing approach [64].

90
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Thede novosequencing approach is often only applicable to very high precision mass

spectrometry [64] and the remaining two approaches are morecommon. The library

search approach relies on the initial results from the database search, and thede novo

sequencing approach can benefit from incorporating database search results [14]. Thus,

improvement on the database search approach will also enhance the library search ap-

proach and thede novosequencing approach. This suggests that it is important that our

initial focus for improving peptide identification resultsis to concentrate on achieving

better and more efficient database search results.

In the database search approach, a search algorithm is applied to produce a list

of peptide-spectrum matches (PSMs) , in which the peptides and proteins are inferred.

Popular database search algorithms include SEQUEST [62], MASCOT [150], X!Tandem

[44], OMSSA [66], and Paragon [179]. Several studies have reviewed and compared

their performance on different datasets [10,97].

All these algorithms involve comparing observed spectra toa list of theoretical en-

zymatic digested peptides from a specified protein database. The comparison is based

on a “search score” measuring the degree of agreement between the observed spectra

to a theoretical spectrum generated from enzymatic digested peptide. Each pair of ob-

served spectra and a theoretical peptide is known as a peptide spectrum match (PSM).

Each PSM is assigned a search score and different algorithmsvary in their definition of

the score. For example, SEQUEST calculates an Xcorr score for each PSM by evaluat-

ing the correlation between the experimental spectrum and the theoretically constructed

spectrum from the database [62]; X!Tandem [44] counts the number of matched peaks

and then calculates a score using the matched ions and their intensities.

Each search score is an indication of the quality of match between the theoreti-

cal peptides and the observed spectra. One typically expects that the higher the score,

the more likely that the PSM is a correct match, that is, the observed spectrum is cor-

rectly identified as the corresponding peptide of the PSM. Due to the varying quality

of the spectra, the characteristics of the search algorithmand scoring metrics, and the

incompleteness of the protein database, typically, only a fraction of the PSMs are cor-

rect [141]. Moreover, the search scores are often not directly interpretable in terms

of statistical significance [95]. Therefore, it is necessary to determine a critical value

above which ranking scores are to be considered significant.This filtering process is

also seen as an independent validation of the PSM and thus thewhole process is often

known as PSM post-processing.
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For PSM post-processing, algorithms such as PeptideProphet [101] and Percola-

tor [94] are probably the most popular ones. PeptideProphetlearns a linear discrimi-

nant analysis (LDA) classifier from database search resultsand fits an expectation max-

imization (EM) model from which a posterior probability foreach PSM being a correct

peptide identification is generated. Percolator uses a semi-supervised learning (SSL)

algorithm for training a support vector machine (SVM) iteratively. The training data

is filtered subsequently with a predefined false discovery rate (FDR) threshold, and the

SVM model from the last iteration is used for classifying PSMs.

Both Percolator and PeptideProphet were originally designed for SEQUEST [94,

101]. Recent extensions to PeptideProphet include the incorporation of more flexible

models (e.g. variable component mixture model) [35] and other database search algo-

rithms [51]. In comparison, the extensions of Percolator include a wrapper interface for

MASCOT [23], and the reformulation of the learning algorithm [183].

While these validation and filtering algorithms have been found to be very use-

ful, they are predominantly designed for commercial database search algorithms i.e.

SEQUEST and MASCOT. So far, there has been no extension of Percolator for open

source search algorithms such as X!Tandem. Therefore, it ishighly desirable to extend

and optimize these PSM post-processing algorithms for opensource algorithms, given

their increasing popularity in the proteomics community [51].

In this chapter, we describe a self-boosted Percolator for post-processing X!Tandem

search results. We discover that the current Percolator algorithm relies heavily on decoy

PSMs and their rankings in the initial PSM list [23]. The iterative FDR filtering of

PSMs is the key to enhance the discriminant ability of the final SVM model. If the

decoy PSMs are poorly ranked in the initial PSM list, the performance of the algorithm

may degrade, resulting in a suboptimal SVM model and reducedPSM classification

accuracy. One potential solution could be to apply the SVM model from Percolator to

re-rank the PSM list and re-run Percolator on the re-ranked PSM list.

We implement such a cascade learning procedure for the original Percolator algo-

rithm. By repeating the learning and re-ranking process a few times, the algorithm

“boosts” itself to a stable state, overcoming the poor initial PSM ranking and identify

more PSMs which translate into more protein identifications. We integrated the self-

boosted Percolator with ProteinProphet [140] in Trans-Proteomic Pipeline (TPP) [51]

by generating PSM filtering results in a ProteinProphet readable format. With such an

integration, the proposed algorithm can be used conveniently as a key component in
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large-scale protein identification.

6.2 Experiment settings and implementations

6.2.1 Evaluation datasets

Several large-scale proteomics datasets generated by massspectrometry experiments

are publicly available and commonly used for algorithmic validations [126]. The first is

a Universal Proteomics Standard (UPS) Set (UPS1). This dataset contains the tandem

MS spectra of 48 known proteins generated by the LTQ mass spectrometer. The corre-

sponding target database for database searching is the human specific protein sequences

extracted from the SWISS-PROT sequence library (release-2010 05), and the decoy

database is generated by reversing the sequences of the entries in the target database.

Another two complex sample datasets [94] are also included for evaluation and they

are known as theYeastdataset and theWorm dataset (refer to Supplement of [94] for

details). Specifically, we utilize the datasets generated from trypsin digestion. The cor-

responding target databases are obtained from the authors

(http://noble.gs.washington.edu/proj/percolator) andthe decoy databases are built by

reversing the sequences in the target databases, respectively.

6.2.2 Database searching

We use the concatenated target-decoy database search approach, in which the reverse

protein sequences are combined with the target database [61]. The estimated false dis-

covery rate (FDR) is calculated as follows:

FDR= 2×
ND

ND +NT
(6.1)

whereND andNT are the number of decoy and target matches from the concatenated

database, respectively, which pass the predetermined filtering threshold. Theq-value

is defined as the minimal FDR at which a PSM is accepted. For thecontrol dataset of

UPS1, the actual FDR is defined as follows and can be directly calculated using known

proteins [23]:
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FDRActual =
NFP

NT
(6.2)

whereNFP is the number of false positive identifications from the total target assign-

mentsNT that do not match to the control proteins.

Raw spectra files were searched against the concatenated database using X!Tandem

(2009.10.01.1 from TPP v4.4). The average mass was used for both peptide and frag-

ment ions, with fixed modification (Carbamidomethyl, +57.02Da) on Cys and variable

modification (Oxidation, +15.99 Da) on Met. Tryptic cleavage at Lys or Arg only was

selected and up to two missed cleavage sites were allowed. The mass tolerance for

precursor ions and fragments were 3.0 Da and 1.0 Da for all datasets.

6.2.3 Percolator for X!Tandem search results

We extend Percolator for filtering X!Tandem search results.Specifically, Percolator

extracts a set of discriminant features from the data and each PSM is represented as a

vectorxi and a class labelyi(i = 1, ...,M) whereM is the total number of PSMs. Each

component inxi is a featurexi j ( j = 1, ...,N) interpreted as theith feature of thejth PSM,

where N is the dimension of the feature space.

A linear SVM with a soft margin is trained to generate a credibility score for each

PSM. Linear SVMs with a soft margin are robust tools for data classification [13].

The hyperplane in SVM is formed by optimizing the following objective function with

constraints:

min
w,b,ξ

1
2
‖w‖2+C

M

∑
i=1

ξi

subject to :yi(〈w,xi〉)+b> 1−ξi

wherew is the weight vector,ξi are slack variables that allow misclassification,C

determines the penalty of misclassification, andb is the bias.

The key component in Percolator is to label each PSM so as to train a SVM. Since

we do not knowa priori which PSMs are correct/incorrect identifications, a target-

decoy approach is used to construct positive and negative PSMs for SVM training. Par-

ticularly, a subset of PSMs regarded as “correct identifications” from the target database



6.2. EXPERIMENT SETTINGS AND IMPLEMENTATIONS 95

are used as positive training examples while all PSMs from the decoy database are used

as the negative examples. In order to build a high-quality training dataset, the Percolator

algorithm attempts to iteratively remove potential false positive identifications from the

target database (Algorithm 3). This is done by calculating a FDR in each iteration and

removing the target hits that appear below the expected FDR threshold (Algorithm 4).

Algorithm 3 Percolator
1: Input: PSM listL
2: Output: PSM probability listL′

3: while number of removed target PSMs> 0 do
4: D = getTrainSet(L);
5: svm= trainSVM(D);
6: L = probability(svm, L);
7: end while
8: // use the SVM model from the last iteration to re-classify PSM list
9: L′ = probability(svm, L);

10: return L′;

From X!Tandem’s search results, we extract 14 features for training SVM in Perco-

lator. Table6.1 summarizes the features used by our Percolator for X!Tandem. These

features are selected according to previous studies on Percolator for SEQUEST and

MASCOT [23, 94]. Particularly, these features are evaluated and well supported by

Käll et al. (see Supplementary Table 1 in [94] for details).

Table 6.1: Summary of features used by Percolator for X!Tandem search results.
Feature Description

Hyperscore the first Hyperscore reported by X!Tandem
∆score the difference between the first Hyperscore and the second score
expect the expectation reported by X!Tandem

ln(rHyper) the natural logarithm of the rank of the match based on the Hyperscore
mass the observed monoisotopic mass of the identified peptide

∆mass the difference in calculated and observed mass
abs(∆mass) the absolute value of the difference in calculated andobserved mass

ionFrac the fraction of matched b and y ions
enzN a Boolean value indicating if the peptide is preceded bya tryptic site
enzC a Boolean value indicating if the peptide has a tryptic C-terminus
enzInt the number of missed internal tryptic sites
pepLen the length of the matched peptide, in residues
charge the predicted charge state of the peptide

ln(numProt) number of times the matched protein matches other PSMs
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Algorithm 4 getTrainSet
1: Input: PSM listL
2: Output: train setD
3: positives= /0;
4: negatives= /0;
5: p= 0; // a pointer that go through the PSM list
6: while FDR< 0.01do
7: p= p+1;
8: if L[p] ∈ targetsthen
9: // PSM is from target database, collect it as positive examples

10: positives= positives∪L[p];
11: else
12: // PSM is from decoy database, collect it as negative examples
13: negatives= negatives∪L[p];
14: end if
15: FDR= getCurrentFDR(positives, negatives);
16: end while
17: // collect the rest of decoy matches as negative examples
18: while L[p] 6= null do
19: p= p+1;
20: if L[p] ∈ decoysthen
21: negatives= negatives∪L[p];
22: end if
23: end while
24: D = createTrainSet(positives, negatives);
25: return D;

Following the same configuration as in Percolator for SEQUEST and MASCOT

[23, 94], we implemented the iterative PSM filtering procedure (Algorithm 3 and4).

The result of Percolator is a list of PSM scores reported by the trained SVM model from

the last iteration.

6.2.4 Semi-supervised learning on creating training dataset

In Percolator, the training set is built by removing ambiguous PSMs from the target

database using a FDR threshold (Algorithm 4). However, since the FDR is estimated

by using PSMs from the decoy database, the rankings of the decoy PSMs determine

how many PSMs from the target database will be removed and which of them will be

used as positive training examples in each iteration.

As an example, assume that the PSM list in Figure6.1a is the initial ranking using
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(a) Initial PSM list (b) Re-ranked PSM list

Figure 6.1: Schematic illustration of PSM rank effect on creating training dataset. (a)
Initial PSM list ranked by search score from database searchalgorithm. (b) A re-ranked
PSM list by, e.g. PeptideProphet. Tt and Tf are true positive and false positive iden-
tifications from target database. D denotes identification from decoy database. Empty
rectangles indicate that the corresponding PSM is removed after FDR filtering.

PSM search scores of a database search algorithm whereas thePSM list in Figure6.1b

is the re-ranking after further processing. Identifications from the target database are

denoted as “T”, from which true positive identifications andfalse positive identifications

are denoted as “Tt” and “Tf”, respectively. Any identification from the decoy database

is denoted as “D” . In both cases (Figure6.1a,b), by estimating FDR (Equation6.2.2)

and using any threshold smaller than 0.5, we will remove any PSMs from the target

database that appear below one or more PSMs from the decoy database. Therefore,

the resulting training set from Figure6.1a includes only two positive training examples

where one of them is a false positive identification that willbe treated incorrectly by

SVM as a positive example. In contrast, the resulting training set from Figure6.1b

includes three positive training examples and all of them are true identifications.

In this study, we evaluate the number of PSMs included for SVMtraining using the

control dataset of UPS1 and two complex proteomics datasetsof Yeast and Worm. The

FDR threshold of 0.01 is used for PSM filtering in each iteration.

6.2.5 Self-boosted Percolator

As described above, the SSL algorithm used by Percolator forSVM training is sensitive

to the initial PSM ranking list. That is, a poor initial ranking will have a reduced number
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of target PSMs passing the predefined FDR filtering threshold, causing an under repre-

sentation of positive training examples. This under representation of positive training

examples persists through the iteration of the training process since once a target PSM

is removed by FDR filtering, it will not be considered in follow up interactions.

One way to overcome this inefficiency is to repeat the Percolator training and filter-

ing process multiple times each on the PSM ranking list generated in its previous runs.

The assumption is that if Percolator could improve the ranking of PSMs, then by each

time repeating the Percolator training on the PSM ranking list generated in its previous

run, we can obtain more target PSMs with potentially less false positives. We call this

cascade learning procedure “self-boosting” and the algorithm “self-boosted Percolator”

(Algorithm 5).

Algorithm 5 Self-boosted Percolator
1: Input: Initial PSM listL, number of boost runsb
2: Output: PSM probability listL′

3: while b> 0 do
4: L = Percolator(L);
5: b = b - 1;
6: end while
7: // record the ranking list from the last boost run
8: L′ = L
9: return L′;

6.2.6 Performance comparison on PSM post-processing

For PSM filtering, we compare the performanceof self-boosted Percolator with Pep-

tideProphet and the original Percolator algorithm. The results from the database search

algorithms (without further processing) are used as the baselines. Specifically, we cal-

culate the number of accepted PSMs reported by each PSM filtering algorithm with

respect to the estimated FDR (denoted asq-value) threshold ranging from (0, 0.2]. S-

ince the proteins are known beforehand in UPS1 dataset, we used it to verify whether

the q-value reported by each PSM filtering algorithm resembles the actual FDR. This

is done by directly calculating the actual FDR (Equation6.2.2) for the UPS1 dataset

using the known proteins and comparing it with theq-value. For PeptideProphet, we

used TPP v4.4 [100]. The database search outputs from X!Tandem are preprocessed
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by msconvert.exe to generate mzXML files for running PeptideProphet. For Percola-

tor, the self-boosted Percolator is run with the boost runs set to 1. This, in essence, is

equivalent to the original implementation of the Percolator algorithm in MASCOT and

SEQUENT.

For protein identification, we compared the combinations of(1) self-boosted Per-

colator + ProteinProphet, and (2) PeptideProphet + ProteinProphet. We only included

PSMs that passed FDR of 0.01 filtering for protein inference,and the FDR is recalcu-

lated on the protein level using the same equation as for PSM filtering.

6.3 Results and discussion

6.3.1 Percolator is sensitive to PSM ranking

We evaluate the number of target PSMs included in each boost run of Percolator. Figure

6.2a shows the result from the UPS1 dataset. As can be seen, in thefirst boost run, very

few target PSMs are included as positive training examples.The number increases to

∼2000 in the second boost run and plateaus at∼2500 in the third, fourth, and fifth boost

runs. For the Yeast dataset (Figure6.2b), Percolator starts with less than 4000 target

PSMs and plateaus at∼11,000 target PSMs. A similar pattern is observed from the

Worm dataset (Figure6.2c), where less than 2000 target PSMs are included for training

in the first boost run and more than 10,000 target PSMs are included for training in

the last boost run. Notice that FDR is controlled at the same level (i.e. 1%) among

each boost run. These results suggest that the original Percolator algorithm is sensitive

to the initial PSM ranking, and the self-boosted Percolatoris able to overcome this

inefficiency by extracting increasingly more target PSMs from each boost run for SVM

model training and PSM re-ranking.

In Figure6.2, multiple iterations of filtering within each boost run are denoted by

points with the same shape. Within each boost run, target PSMs are filtered iteratively

by a predefined FDR threshold (1% in our experiments). It is clear that within each

boost run, the SSL algorithm of Percolator generally converges after a few iterations.

Note that the iterative filtering of SSL does not increase thenumber of target PSMs for

SVM training.
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(a) Self-boosting on UPS1 dataset (b) Self-boosting on Yeast dataset
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(c) Self-boosting on Worm dataset

Figure 6.2: Self-boosting of Percolator on (a) UPS1 dataset, (b) Yeast dataset, and (c)
Worm dataset. For each dataset, 5 boost runs are conducted. Within a boost run, FDR
filtering iterations are denoted by points with the same shape. For each dataset, a locally
weight regression line is fitted to all points.

6.3.2 Determining the number of boost runs

We investigate the number of boost runs required for self-boosted Percolator to produce

stable PSM filtering results. This is done by calculating a Spearman correlation of the

PSM rankings from each boost run with its previous boost run.Figure6.3 shows the

results. By linear extrapolation, the Spearman correlation appears to plateau after the
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Figure 6.3: Spearman correlations of PSM rankings from eachboost run with its previ-
ous boost run for (a) UPS1 dataset, (b) Yeast dataset, and (c)Worm dataset. For each
dataset, a linear extrapolation line is fitted to the points.

fifth boost run in all three datasets. Therefore, it is evident that five boost runs are suffi-

cient for self-boosted Percolator to reach the stable state. The subsequent experiments

are conducted with boost runs set to 5.
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Figure 6.4: The number of accepted PSMs is determined at eachq-value threshold
on X!Tandem search results using X!Tandem modified Hyperscore, PeptideProphet,
Percolator without self-boosting, and self-boosted Percolator. (a) UPS1 dataset. (b)
The estimatedq-value is plotted against the FDR as reported by the UPS1 dataset. (c)
Yeast dataset. (d) Worm dataset.

6.3.3 PSM post-processing

The motivation of extracting more target PSMs through self-boosting is to create a

more robust and accurate PSM filtering model which could leadto the identification of

more PSMs without sacrificing FDR. Figure6.4shows the performance of self-boosted

Percolator in comparison with PeptideProphet and Peculator without self-boosting. We

observe that in all three datasets self-boosted Percolatoridentifies consistently more
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PSMs at any givenq-value thresholds. The improvement is significant comparedto

PeptideProphet and Percolator without self-boosting. In general, the performance of

Percolator (without self-boosting) is better than PeptideProphet. This is consistent with

the result obtained by Kället al. [94]. In all cases, using the raw score of X!Tandem

for PSM filtering gives low sensitivity. This implies that the self-boosted Percolator

is robust to the noise of initial PSM ranking and can fully recover the performance of

Percolator without self-boosting.

To verify whether the estimated FDR (q-value) reported by each PSM filtering al-

gorithm resembles the actual FDR, the FDRActual is calculated using the UPS1 dataset

with known proteins and plotted against theq-value (Figure6.4b). All lines after PSM

validation and filtering are approximately straight along the 45-degree lines; this indi-

cates that PeptideProphet, Percolator, and self-boosted Percolator can provide a fairly

accurate FDR estimation. The FDR estimated directly based on X!Tandem Hyperscore

alone deviated from the actual FDR substantially.

6.3.4 Protein identification

The post-processing results from PeptideProphet and self-boosted Percolator are filtered

by controlling PSM level FDR at 0.01. Then ProteinProphet from TPP is used to infer

proteins using the PSMs that passed FDR filtering. Figure6.5 compare the results

from using PeptideProphet with ProteinProphet for proteinidentification with using

self-boosted Percolator with ProteinProphet for protein identification. It is clear that in

most cases, the combination of self-boosted Percolator andProteinProphet gives more

protein identifications, and the proteins identified by using results from self-boosted

Percolator have many more PSMs assigned to.

6.4 Summary

Database searching is a key step in protein identification from MS-based proteomics.

The post-processing of database search results is criticalfor quality control where spu-

rious identifications are removed, while only informative PSMs are reserved for protein

inference. In this chapter, we look at the post-processing of X!Tandem database search

results. X!Tandem is an open source database search algorithm. However, unlike com-

mercial database search softwares, X!Tandem is not well supported by sophisticated
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Figure 6.5: The number of accepted proteins is determined atdifferent FDR thresh-
olds on X!Tandem search results using the combination of PeptideProphet + Protein-
Prophet (or “PeptideProphet + PP”) and self-boosted Percolator + ProteinProphet (or
“SB-Percolator + PP”). The Boxplot on the right hand side show the number of PSMs
assigned to each protein.
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post-processing algorithms such as Percolator. For this reason, we extend the Percola-

tor algorithm for post-processing X!Tandem search results.

In addition, we found that the learning procedure used by Percolator relies heavily

on the guidance of the decoy PSMs and their ranking among target PSMs. The itera-

tive FDR filtering of PSMs is the key to enhance the discriminant ability of final SVM

models. If the decoy PSMs are poorly ranked in the initial PSMlist, the performance of

the SVM model may degenerate. We propose to overcome the inefficiency of the orig-

inal Percolator algorithm by using a cascade learning approach where the performance

is boosted by using the PSM ranking from the previous boost run as the input of the

next boost run. The consistent improvement of performance on a benchmark dataset

and two complex sample datasets indicates that the proposedself-boosted Percolator is

effective for improving X!Tandem on peptide and protein identification from tandem

mass spectrometry.

In conclusion, we proposed a self-boosted Percolator algorithm for post-processing

X!Tandem search results and intergraded it with ProteinProphet in TPP. X!Tandem is

open source software, but not originally supported by either PeptideProphet or Perco-

lator. With our new self-boosted Percolator package freelyprovided to the research

community, proteomics researchers can now set up a completecommercial free soft-

ware pipeline for mass spectrometry analysis.

6.5 Software availability

The self-boosted Percolator package is freely available from:

http://code.google.com/p/self-boosted-percolator



Chapter 7

A Clustering-Based Hybrid Algorithm

for Extracting Complementary

Biomarkers From Proteomics Data

This chapter is based on the following publication:

Pengyi Yang, Zili Zhang, Bing B. Zhou, Albert Y. Zomaya, A clustering based hybrid

system for biomarker selection and sample classification ofmass spectrometry data.

Neurocomputing, 73:2317-2331, 2010

7.1 Biomarker discovery from MS-based proteomics da-

ta

In the previous chapter, we described the post-processing of PSMs for quality control of

mass spectrometry search results. In this chapter, we look at the method for extracting

key protein sets that will be used for disease and control classification.

Compared to gene profiling using microarray technologies, MS-based proteomics

enables a more direct proteome-level view of the cellular functionality and pathogen-

esis. According to the types of the data, a biomarker could bedefined as a protein, a

peptide, or a mass-to-charge (m/z) ion ratio. Here we refer to them collectively as pro-

teomic biomarkers. The quantification of a proteomic biomarker could be performed

by using isotopic or isobaric labelling such as stable isotope labeling with amino acids

106



7.2. FEATURE CORRELATION AND COMPLEMENTARY FEATURE SELECTION107

in cell culture (SILAC) [144] and isobaric tag for relative and absolute quantitation (i-

TRAQ) [167], or by a label-free approach where the spectrum counts [119] or spectrum

intensity [143] can be used as the estimation of abundance. The goal is to select a set

of proteomic biomarkers that jointly distinguish disease and normal samples.

Similar to microarrays in case-control studies, MS-based proteomics datasets are

plagued by the curse-of-dimensionality and curse-of-data-sparsity [182]. Without in-

tensive feature filtering or dimension reduction, standardsupervised classification al-

gorithms cannot be properly employed [114]. Clearly, most of the common feature

selection approaches that are used in microarray data analysis could also be applied to

MS data. This is reviewed by Hilario and Kalousis [84].

7.2 Feature correlation and complementary feature se-

lection

One of the key findings in previous experience with microarray data analysis is that

aggressive feature reduction using a filter-based approachmay lead to the selection of

highly correlated features [90]. This is because filter-based algorithms commonly eval-

uate each feature individually, and features selected in this way often have high correla-

tion with each other, limiting the extraction of complementary information. Under the

assumption that genes with high correlations could potentially belong to the same bio-

logical pathway, if a disease-associated pathway has a large number of genes involved,

the gene selection results may be dominated by such a pathway, while other informative

pathways will be ignored [28].

As the central dogma indicates, proteins are the functionalproducts of genes ex-

pressed in certain time and conditions. Therefore, MS datasets may have similar proper-

ties as microarray datasets with many correlated m/z features could possibly come from

several dominated pathways. If this assumption is true, theselection of m/z biomark-

ers may also be hampered by issues such as highly correlated features. In order to

take other informative pathways into account, special strategies must be employed to

generate a redundancy-reduced and information-enriched feature selection result. Such

procedures are aimed at facilitating the followup sample classification and biomarker

validation.

Clustering algorithms has been demonstrated to be useful for reducing correlation
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in feature sets. Specifically, Hanczaret al. [80] proposed a prototype-based feature

extraction procedure for microarray data analysis. In their algorithm, ak-means clus-

tering procedure is applied to the initial microarray dataset to cluster the genes with

similar expressions. Then the mean expression level of a group of genes is calculated

and used as the “prototype” gene for the followup classification process. However, the

“prototype” genes are the transformed feature vectors thatcompounded the biological

interpretation. Furthermore, the algorithm uses all “prototype” genes, each from a dif-

ferent cluster, for sample classification, but it is most unlikely that all “prototype” genes

are relevant to the disease of interest. This inevitably introduces undesired redundancy,

and potentially affects the classification results.

Wanget al. [196] applied a hierarchial clustering hybrid algorithm for gene selec-

tion from microarrays. Their method firstly ranks 50 to 100 genes using a given filter

algorithm and then uses a hierarchial clustering algorithmto produce a dendrogram

with these top-ranked genes. Key genes are selected by cutting the dendrogram into

pieces at different levels and selecting a representative for each piece. This procedure

is exhaustively investigated from the bottom to the top of the dendrogram to select the

best feature subset in a wrapper manner. Due to the intensivecomputations, this hybrid

algorithm suffers from scalability problem. A prefilteringof 50 to 100 genes potentially

restricts its ability to include as much pathway information as possible.

Another recent study applied a similar idea for selecting discriminative genes for

multi-class microarray data analysis [28]. The gene ranking and gene clustering pro-

cesses are conducted independently, and the final gene sets are determined by using

gene ranking and clustering information collaboratively.However, the experimental

results across four datasets illustrated that the classification accuracy increases almost

monotonically with the increase of the gene size used for classification. In order to

achieve the highest classification accuracy, the number of genes used for classification

has to be very large. These results indicate that the essential pattern of the datasets is

still not well captured.

Built on previous studies on microarray data analysis, we proposed ak-means clustering-

based hybrid system for MS data analysis [204]. Our hybrid algorithm utilizes ak-

means clustering-based feature extraction and selection procedure to bridge the filter

selection algorithm and the genetic ensemble algorithm, asused in our SNP and mi-

croarray data analyses in Chapter4 and Chapter5. We named this hybrid algorithm

FCGE short for “filtering, clustering, and genetic ensembleselection”. It combines
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the advantages of both filter and wrapper algorithms while also incorporating the extra

benefits from clustering-based correlation reduction and information enrichment. By

implementing an iterative procedure, the proposed system is robust to random initial-

ization and able to automatically stabilize the feature selection results.

7.3 A clustering-based hybrid approach

Here we define a m/z ion ratio as a proteomic feature from MS data, and the goal is to

select a set of m/z features that jointly distinguishes disease and normal samples. The

selected m/z features are the potential biomarkers for the disease of interest. Neverthe-

less, the system could also be applied to MS/MS data where thedefinition of feature

could be a peptide or protein.

Figure7.1 illustrates the proposed system. It executes the followingsteps:

• A filter-based m/z feature ranking algorithm is utilized to prefilter the potential

m/z biomarkers, by ranking m/z features according to their goodness in sample

discrimination.

• After the prefiltering step,k-means clustering is conducted on the prefiltered sets

to group the m/z features with similar intensity across different samples into clus-

ters; m/z features within the same cluster will have higher correlation to those in

a different cluster.

• The mean intensity pattern of each cluster is calculated, and a m/z feature with

the most similar intensity pattern to the mean intensity pattern, as well as a m/z

feature with the most different intensity pattern to the mean intensity pattern, are

selected as the representatives of each cluster.

• The genetic ensemble wrapper is then invoked to further minimize feature redun-

dancy by identifying the most informative representativeswhile discarding the

uninformative ones, guided by the sample classification accuracy of an internal

cross-validation.

• Steps 2-4 are repeated multiple times (30 in our experiments) and the selected

highly differential m/z features are collected and ranked by their selection fre-

quency.
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• Finally, a ranking list of m/z features is obtained and the top ranked m/z features

that are regarded as the most informative biomarkers to the essential pattern of

the underlying dataset are evaluated in unseen data classification.

Filter based m/z

feature pre-filtering

MS

selection set
Top-ranked

m/z features

k-means clustering Dissimilar clusters 

Mean intensity calculation 

and representative 

m/z feature selection

Representative 

m/z features
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m/z feature selection

Highly differential 

m/z features
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Evaluating m/z features 

by performing sample 

classification

MS
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Evaluation accuracy

iteration

m/z feature collection

and frequency ranking

m/z feature
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Figure 7.1: The overall work flow of the FCGE hybrid system.

Particularly, the iterative procedure of FCGE overcomes the instability of thek-

means clustering and genetic ensemble selection because the clustering procedure is

repeated with different initialization and the selection results are not determined by a

single run of the system but averaged and ranked by their relative importance to the

sample classification in multiple runs.Algorithm 6 summarizes the above steps in

pseudocode; m/z feature evaluation is excluded from the main loop since it is indepen-

dent from the feature selection procedure.
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Algorithm 6 FCGE main loop
1: Input: selectionData
2: Output: rankList
3: preSet= /0;
4: for i=1 tonumFeaturedo
5: f ilteringScorei = filterEvaluation(selectionData, i);
6: if f ilteringScorei > cuto f f then
7: preSet= preSet∪ i;
8: end if
9: end for

10: k = setClusterSize();
11: resultSet= /0;
12: for i=1 to iterationdo
13: clusterSet= clustering(preSet, k);
14: representativeSet= /0;
15: for j=1 tok do
16: representativej = selectClusterRepresentative(clusterSet, j);
17: representativeSet= representativeSet∪ representativej;
18: end for
19: selectSeti = geneticEnsembleSelect(representativeSet);
20: resultSet= resultSet∪selectSeti

21: end for
22: rankList= rank(resultSet);
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7.3.1 Filter-based prefiltering

It is widely agreed that, of the several tens of thousands of candidates in MS dataset, on-

ly a small portion of m/z features are disease-related biomarkers [172]. Thus, a prefilter-

ing process can help us to eliminate the unrelated features that will exert considerable

computational burden if included. However, the main concern here is to ensure that the

reduction is carried out without sacrificing any critical information. Here we evaluate

two filtering algorithms for our hybrid composition: the between-group to within-group

sum of square (BWSS) algorithm [56] and theχ2-test.

Given a data matrix withm samples,n m/z features, andc classes, the goodness of

a m/z featurej is evaluated as follows using BWSS:

BWSS( j) =
m

∑
i=1

c

∑
l=1

I(yi = l)(x̄(l). j − x̄. j)2

I(yi = l)(xi j − x̄(l). j )
2
, (x∈ R

m×n) (7.1)

whereI(.) is the indicator function,i is the sample index, andyi is the class label of

samplei. xi j is the value of thejth m/z feature in theith sample, while ¯x. j andx̄(l). j are

the average value of m/z featurej across all samples and across samples belonging to

classl only, respectively.

When used for feature evaluation,χ2-test can be considered to calculate the occur-

rence of a particular value of a feature and the occurrence ofa class associated with this

value. Formally, the discriminative power of a m/z featurej is quantified as follows:

χ2( j) = ∑
v∈V

m

∑
i=1

c

∑
l=1

I(yi = l)(O(xi j = v)−E(xi j = v))2

I(yi = l)E( j = v)
, (x∈ R

m×n) (7.2)

where j has a set of possible values denoted asv∈V, andO(xi j = v) andE(xi j = v) are

the observed and the expected co-occurrence ofxi j = v, respectively. Other notations

are as those defined above.

Initial tests find that the prefiltering size of one fifth of thetotal feature size (around

3000 for typical low-resolution MS datasets) is large enough to capture most differential

features while also suitable for thek-means algorithm to work with [204]. Therefore,

we apply the above two filtering algorithms to prefilter each dataset with one fifth of the

total m/z features, respectively.
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7.3.2 k-means clustering

Thek-means clustering algorithm is an important component in our hybrid system. The

main purpose of applyingk-means clustering is to reduce the feature correlation and

redundancy. This goal is achieved by clustering m/z features with similar intensity pat-

terns, while also increasing the dissimilarity among different clusters by using a given

measure of similarity and cluster mean. In our hybrid system, a k-means clustering

with Euclidean distance is employed to compute the similarity. Formally, given two

m/z featuresj andk, the distance value ofd( j,k) is computed as follows:

d( j,k) =
m

∑
i=1

√

(xi j −xik)2 , (x∈ R
m×n) (7.3)

wherei is the sample index,xi j is the value of thejth m/z marker of theith sample, and

xik is the value ofkth m/z marker of theith sample.

The first challenge of applying thek-means clustering algorithm is that differen-

t initial partitions of the dataset can result in different clustering outcomes. This can

be overcome by clustering the given dataset multiple times with different initialization.

The second challenge is that the number of the clustersk must be determined before

conducting the clustering process [28]. Therefore, a set ofexperiments is conducted to

evaluate the effects of differentk values on the feature selection and sample classifica-

tion.

7.3.3 Cluster feature extraction and representative selection

Followed byk-means clustering, we calculate the mean intensity patternof each cluster

by averaging the intensity value of m/z features within the same cluster. After obtaining

the mean intensity pattern of each cluster, we choose a m/z feature with the most similar

pattern to the mean pattern and a m/z feature with the most divergent pattern from the

mean pattern for each cluster as the representatives of the cluster. This process can be

formulated as follows:

rkmin = min
xi∈Ck

d(xi ,meank) , (rkmin ∈ R
m) (7.4)

rkmax = max
xi∈Ck

d(xi ,meank) , (rkmin ∈ R
m) (7.5)
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whered(.) is the Euclidean distance defined in Equation (7.3), Ck is thekth cluster,

while rkmin and rkmax are the two representatives with the most similar and the most

divergent expression patterns to the mean of thekth clustermeank which is calculated

as follows:

meank =
∑n

i=1 I(xi ∈Ck)xi

Sk
, (xi, meank ∈ R

m) (7.6)

whereI(.) is the indicator function,n is the number of m/z features, andSk is the size

of thekth cluster.

With the above extraction and selection process, our methodselects two represen-

tative features per cluster, and the representative m/z features of each cluster are then

combined into the clustering processed set for further selection with genetic ensemble.

7.3.4 Using genetic ensemble for m/z biomarker identification

The clustering and representative selection procedures provide us with a set of dissim-

ilar m/z features that potentially represent different biopathway information. However,

it is worth noting that not all biological pathway information in the dataset is related

to the disease or the biological trait of interest. Therefore, an extra step is required to

remove those unrelated representatives, which could causenegative effect on sample

classification and biomarker identification if included. The genetic ensemble used for

gene set selection from microarray data (Section5.3.2) is incorporated in FCGE to fur-

ther minimize the feature size by selecting those highly discriminative m/z features in a

combinatorial way.

7.4 Evaluation datasets and experiment designs

This section describes the MS datasets used for algorithm evaluation, the data prepro-

cessing details, and the evaluation methods.

7.4.1 Datasets

We use four low-resolution MS datasets for evaluation. We named each dataset by the

type of disease it investigated, the protein chip type, and the mass spectrometer type if

available.
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7.4.1.1 OC-WCX2

This is an ovarian cancer discriminating dataset generatedby study [153]. It includes

100 disease and 100 healthy samples. Unlike the dataset reported in [153] that was

generated by using the H4 protein chip, this dataset was generated by using the WCX2

protein chip to cope with the discontinuation of the H4 chip.Each sample in the dataset

was processed (washing, incubation, etc.) by hand and represented by 15,154 m/z fea-

tures.

7.4.1.2 OC-WCX2-PBSII-a

This dataset was also generated by the WCX2 protein chip (dated as 8-7-02). Unlike

the samples of OC-WCX2 dataset that were processed by hand, the samples in this

dataset were processed by a robotic sample-handling instrument to explore the impact of

robotic sample-handling on the spectral quality. In addition, an upgraded PBSII SELDI-

TOF mass spectrometer was employed to generate the spectra.The dataset contains 91

control and 162 ovarian cancer samples, which were not randomized so that the effect

of robotic automation on the spectral variance within each phenotypic group could be

evaluated. Samples in the dataset are represented by 15,154m/z features.

7.4.1.3 OC-WCX2-PBSII-b

This dataset (dated as 6-19-02) is an initial version of OC-WCX2-PBSII-a dataset. It

contains the same 91 control and 162 ovarian cancer samples,and the total number of

m/z features is again 15,154. However, the intensity valueswere normalized according

to the formula:

NV = (V −Min)/(Max−Min) (7.7)

whereNV is the normalized value,V the raw value,Min the minimum intensity and

Max the maximum intensity [151]. This equation linearly normalizes the peak intensi-

ties to the range of [0, 1], and the normalization is done overall the 253 samples for all

15,154 m/z features.
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7.4.1.4 PC-H4-PBS1

The last dataset was generated from the study of prostate cancer [152]. This dataset

was collected using the H4 protein chip and a Ciphergen PBS1 SELDI-TOF mass spec-

trometer. The samples were prepared by hand and each sample is represented by 14,321

m/z features. There are a total of 322 serum samples, which are categorized into four

classes. The first class contains 190 serum samples that havebeen diagnosed as benign

prostate hyperplasia with serum prostate-specific antigen(PSA) level greater than or

equal to 4 ng/ml. The second class has 63 serum samples diagnosed as no evidence

of disease with serum PSA level less than 1 ng/ml. The third class contains 26 serum

samples diagnosed as prostate cancer with serum PSA level between 4 and 10 ng/ml.

The last 43 serum samples were categorized as the fourth class with serum PSA level

greater than 10 ng/ml.

Table7.1summarizes each dataset used in evaluation.

Table 7.1: MS datasets used in evaluation.

Dataset # Features # Samples # Class
OC-WCX2 15,154 200 2

disease: 100
healthy: 100

OC-WCX2-PBSII-a 15,154 253 2
control: 91
cancer: 162

OC-WCX2-PBSII-b 15,154 253 2
control: 91
cancer: 162

PC-H4-PBS1 14,321 322 4
no evidence: 63

benign: 190
cancer(4-10): 26
cancer(10+): 43

The study of OC-WCX2-PBSII-a and OC-WCX2-PBSII-b datasetswill show us the

effects of the different pre-processing and normalizationprocedures upon the biomarker

identification and sample classification. The study of OC-WCX2 and the two OC-

WCX2-PBSII datasets will demonstrate the reproducibilityof the MS-based profiling,

while the study of the PC-H4-PBS1 dataset will reveal the capability of the evaluated
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algorithms on multi-class MS data analysis.

7.4.2 Data pre-processing

Datasets OC-WCX2, OC-WCX2-PBSII-a, and PC-H4-PBS1 are obtained from:

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

while OC-WCX2-PBSII-b is obtained from:

http://sdmc.lit.org.sg/GEDatasets/index.html

All datasets have been processed with baseline correction,peak detection, and peak

quantification. Therefore, we used a simplified pre-processing procedure that applies

the following two steps to each dataset (except OC-WCX2-PBSII-b, which is processed

by Equation7.7):

• Standardize each m/z feature to zero mean and unit variance.

• Normalize the value of each m/z feature to the range of [0, 1].

After the pre-processing step, each dataset is split into selection and test sets with

an external stratified 3-fold cross validation. The selection sets are then further split

into training and evaluation sets with an internal stratified 3-fold cross validation for

m/z feature selection. The selection sets from external cross validation are subject to

prefiltering, clustering, and m/z selection, while the testsets are excluded from these

processes and reserved for final m/z feature evaluation in order to provide unbiased

results.

7.4.3 Results evaluation

In the m/z selection phase, the fitness of each m/z subsets is evaluated by the average

score of blocking fitness (Equation5.1) and voting fitness (Equation5.2). The score of

blocking fitness is also used as the indicator for finding optimalk of k-means clustering

algorithm. In the sample classification phase, the classification accuracy of a classifier

with a given m/z subsets is calculated using the balanced accuracy (Equation5.3).

In order to compare the correlation of m/z features selectedby FCGE and other

alternative algorithms, we quantify the correlation of m/zfeatures by calculating their

averaged pairwise Pearson correlation coefficient:
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avgCorr=
t−1

∑
i=1

t

∑
j=i+1

2
√

r( j,k)2

t(t−1)
(7.8)

wheret is the number of m/z features from the ranking result andr( j,k) is the Pearson

correlation of a pair of m/z features which is computed as follows:

r( j,k) =
∑i(xi j − x̄. j)(xik − x̄.k)

√

∑i(xi j − x̄. j)2
√

∑i(xik − x̄.k)2
; (x∈ R

m×n) (7.9)

wherei is the sample index, ¯x. j is the average value of m/z featurej across all samples,

andx̄.k is the average value of m/z featurek across all samples.

The value of average correlation varies from 0 to 1. A large value (close or equal

to 1) indicates a high correlation of the selection results,while a small value (close or

equal to 0) indicates a low correlation of the selection results.

7.5 Experimental results

7.5.1 Evaluatingk value of k-means clustering

Thek value of 50, 100, 200, 300, and 400 is tested for thek-means clustering algorithm.

The size of the top ranked m/z features used in evaluation ranges from 5 to 100. The

blocking accuracy of the ensemble classifier is used as the performance indicator, and

the results with respect to each dataset are summarized in Figure7.2. As can be seen,

the k-means clustering algorithm with thek value of 200 and 300 seems to give the

highest accuracy with the ensemble classifier. This is clarified by averaging the results

of different sizes of m/z subsets according to the value ofk (Figure7.3). However, it is

also realized that the change of thek value had only a limited impact on the classifica-

tion results. Therefore, thek value of 200 is considered a good trade-off between the

accuracy and the computation, and subsequently used in our followup feature selection

and sample classification experiments.

By viewing the results of each MS dataset individually, we find that the overall

blocking accuracy of the OC-WCX2 dataset is relatively steady with only a few m/z

features reaching a very high classification accuracy (Figure7.2a). The overall blocking

accuracy of the OC-WCX2-PBSII-a (Figure7.2b) and the OC-WCX2-PBSII-b (Figure

7.2c) datasets are similar in that the highest accuracy is achieved using only 10 to 20
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Figure 7.2: k value evaluation of FCGE hybrid system. Thek value of thek-means
clustering component ranging from 50 to 400 is evaluated using m/z subset with size
ranging from 5 to 100.

high ranked m/z features, and both figures show a notable decline with large fluctuation

when more m/z features are included. The trend of the PC-H4-PBS1 (Figure7.2d)

dataset indicates a sharp increase of blocking accuracy from subset size of 5 to size of

10, and it remains relatively stable when more m/z features are included.

A careful observation of Figure7.2 also reveals that, in most cases, the highest fit-

ness is achieved by using less than 40 m/z features, and the performance declines when

extra m/z features are added. These results indicate that the FCGE hybrid algorithm

is able to group the most differential m/z features into a relatively small and compact

feature subset for sample classification.

7.5.2 Sample classification

The sample classification accuracy of the proposed FCGE hybrid system is compared

with those achieved by using univariate Information Gain [69], ReliefF [157], BWSS
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Figure 7.3: Average blocking accuracy according to different k values.

[56], and the GA/kNN algorithm [116], all of which have been applied to m/z feature

selection and classification of MS datasets previously.

Since the highest classification accuracy of all four MS datasets can be achieved

within the size of 40 top ranked m/z features, we compare different feature selection

algorithms using the m/z subsets with size of 5, 10, 20, 30, and 40, respectively. Ten

different supervised classification algorithms are used for classification accuracy com-

parison. They are trained using the top ranked m/z features obtained by each selec-

tion algorithm. These 10 classification algorithms aredecision tree(J4.8), 1-nearest

neighbour(1-NN), 3-nearest neighbour(3-NN), 7-nearest neighbour(7-NN), naive

bayes(NB), support vector machine(SVM) , multi-layer perceptron(MLP), random

forests(RF), multinomial logistic regression(Logistic), andradial basis function net-

work (RBFnet). The default parameters of Weka for each classification algorithm are

used [78]. The purpose of using such a wide range of classifiers is to obtain an unbi-

ased and general evaluation of the m/z feature selection algorithms that play the role of

identifying informative m/z biomarkers that help the classification algorithm to achieve

high classification accuracy.

The detailed classification results (shown as classification error rates) of the 10 clas-

sifiers by using the m/z features ranked by FCGE with BWSS (FCGE(BWSS)), FCGE
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Table 7.2: OC-WCX2 dataset. Error rate comparison of six different m/z feature se-
lection algorithms using 10 different classifiers with sizeof the top ranked m/z features
from 5 to 40

Classifier FCGE(BWSS) FCGE(χ2)
5 10 20 30 40 C avg 5 10 20 30 40 C avg

J4.8 10.02 9.09 9.01 8.50 9.01 9.13 9.09 9.09 10.02 10.02 10.02 9.65
1-NN 6.99 2.53 2.02 2.02 2.02 3.12 2.53 3.54 2.53 4.04 2.02 2.93
3-NN 4.02 3.03 3.03 2.53 3.03 3.13 3.54 3.03 2.02 3.03 3.54 3.03
7-NN 4.97 4.51 3.54 3.54 3.54 4.02 4.97 4.97 2.02 3.54 3.54 3.81
NB 5.07 4.57 2.53 2.48 2.53 3.44 4.04 3.03 3.03 2.53 4.55 3.44

SVM 4.51 3.03 2.53 2.53 2.53 3.03† 4.50 3.03 2.02 2.53 2.53 2.92†

MLP 4.49 1.52 4.04 2.53 4.04 3.32 3.54 3.54 2.53 2.53 2.53 2.93
RF 5.49 6.02 5.05 3.03 5.05 4.93 5.05 5.01 4.55 3.54 6.48 4.93

Logistic 4.50 5.05 2.53 3.03 3.03 3.63 3.03 3.99 2.53 3.03 2.53 3.02
RBFnet 3.98 4.05 2.53 2.53 2.53 3.12 3.03 4.55 2.02 3.03 5.56 3.64
Savg 5.40 4.34 3.68 3.27⋆ 3.73 4.09 4.33 4.38 3.32⋆ 3.78 4.33 4.03

Classifier BWSS GA/kNN
5 10 20 30 40 C avg 5 10 20 30 40 C avg

J4.8 9.01 10.02 10.52 10.52 10.52 10.1210.02 10.02 10.52 10.52 10.52 10.32
1-NN 4.04 5.01 4.04 4.04 3.54 4.13 5.05 4.04 4.04 3.54 4.04 4.14
3-NN 3.54 3.54 3.03 3.03 3.54 3.37 3.54 2.53 3.03 3.03 3.54 3.13
7-NN 4.50 3.54 3.54 4.04 4.04 3.93 5.51 3.03 3.54 3.03 4.04 3.83
NB 4.00 4.04 3.03 3.03 3.03 3.43 5.01 3.54 3.03 2.53 3.49 3.52

SVM 4.00 3.03 2.53 3.03 2.53 3.02† 3.49 2.53 2.53 2.53 2.53 2.72†

MLP 4.04 6.06 3.03 3.54 2.53 3.84 4.55 4.55 5.05 3.03 2.53 3.94
RF 6.02 6.48 5.51 6.57 6.02 6.12 6.02 3.53 5.05 5.51 5.93 5.21

Logistic 8.59 8.08 7.53 7.53 4.00 7.15 7.58 5.51 5.56 4.04 3.03 5.14
RBFnet 3.49 3.03 4.00 6.02 5.51 4.41 4.00 3.03 4.04 4.00 6.02 4.22
Savg 5.12 5.28 4.68 5.13 4.52⋆ 4.95 5.48 4.23 4.64 4.18⋆ 4.57 4.62

Classifier Information Gain ReliefF
5 10 20 30 40 C avg 5 10 20 30 40 C avg

J4.8 9.01 9.01 10.52 10.52 10.52 9.92 8.00 10.02 10.52 10.52 10.52 9.92
1-NN 4.04 4.04 5.56 5.56 3.54 4.55 6.57 5.51 4.50 3.54 3.03 4.63
3-NN 3.54 2.53 3.54 3.03 3.03 3.13 5.05 4.00 3.54 4.04 3.54 4.03
7-NN 3.99 3.54 3.54 3.54 5.05 3.93 4.04 4.50 4.55 4.04 5.05 4.44
NB 3.03 3.54 4.50 4.04 4.50 3.92 3.54 2.99 2.99 4.00 4.50 3.60

SVM 3.03 2.53 2.53 2.53 2.53 2.63† 3.54 3.03 3.03 3.03 3.54 3.23†

MLP 3.54 4.55 3.03 4.04 2.53 3.54 4.04 5.01 4.04 4.04 4.04 4.23
RF 7.53 5.05 7.03 7.03 6.52 6.63 7.03 6.02 7.53 5.56 9.05 7.04

Logistic 5.56 6.99 6.52 7.07 5.01 6.23 9.09 11.57 5.56 6.02 5.01 7.45
RBFnet 4.04 2.53 3.03 4.50 5.51 3.92 4.04 4.50 6.52 5.01 7.03 5.42
Savg 4.73 4.43⋆ 4.98 5.19 4.87 4.84 5.49 5.72 5.28 4.98⋆ 5.53 5.40

† classifier with the lowest classification error rate across different m/z subset sizes.
⋆ m/z subset size with the lowest classification error rate across all classification algorithms.

with χ2 (FCGE(χ2)), GA/kNN, BWSS, Information Gain, and ReliefF are presented

in Tables7.2-7.5. The column of “C avg” shows the average error rates with a given

classifier using different m/z feature sizes, while the row of “ Savg” shows the average

error rates with a given size of m/z set across different classifiers. The first value gives

an average indication of a specific classifier’s power on sample classification while the

second value gives an average indication of the effect of them/z subset size on MS data

classification. The grand mean error rates across all m/z feature sizes and all classifiers

are marked in bold. As can be seen, the proposed FCGE hybrid algorithm is able to
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Table 7.3: OC-WCX2-PBSII-a dataset. Error rate comparisonof four different m/z
feature selection algorithms using 10 different classifiers with size of the top ranked
m/z features from 5 to 40

Classifier FCGE(BWSS) FCGE(χ2)
5 10 20 30 40 C avg 5 10 20 30 40 C avg

J4.8 4.09 4.39 4.39 3.53 3.53 3.99 2.96 5.06 5.06 5.57 5.57 4.84
1-NN 1.73 1.67 0.56 1.11 0.56 1.13 2.22 1.67 0.00 1.67 1.67 1.45
3-NN 0.86 1.67 0.56 1.11 1.11 1.06 2.22 1.67 0.56 2.22 1.11 1.56
7-NN 1.67 1.67 0.56 1.67 1.67 1.45 2.78 1.67 1.67 1.11 1.11 1.67
NB 0.86 0.56 0.86 1.42 1.67 1.11 1.79 0.62 0.86 1.42 0.86 1.11

SVM 1.67 1.11 0.00 0.00 1.11 0.78† 1.11 1.11 0.00 0.00 0.00 0.44†

MLP 1.73 1.42 0.56 1.11 0.56 1.08 1.11 0.56 0.00 0.56 0.56 0.56
RF 4.02 3.47 2.91 3.71 3.15 3.45 3.65 3.47 4.01 2.59 3.15 3.37

Logistic 2.35 0.00 0.86 0.56 0.56 0.87 0.00 0.31 0.31 1.17 1.17 0.59
RBFnet 2.23 2.04 0.31 0.86 1.48 1.38 1.48 1.42 1.11 1.67 1.11 1.36
Savg 2.12 1.80 1.16⋆ 1.51 1.54 1.63 1.93 1.76 1.36⋆ 1.80 1.63 1.69

Classifier BWSS GA/kNN
5 10 20 30 40 C avg 5 10 20 30 40 C avg

J4.8 4.83 6.37 5.01 5.01 5.01 5.25 4.83 5.01 5.01 5.01 5.01 4.97
1-NN 5.13 4.58 2.59 3.46 2.28 3.61 3.77 4.07 0.56 0.56 2.22 2.24
3-NN 3.34 3.15 1.98 2.28 2.53 2.66 3.34 2.59 0.56 1.11 1.67 1.85
7-NN 3.34 3.70 1.98 1.98 2.22 2.64 2.53 2.90 1.67 2.22 2.22 2.31
NB 4.02 4.27 2.28 2.28 1.98 2.97 2.90 3.52 2.35 2.28 2.28 2.67

SVM 3.34 2.53 1.73 2.59 0.56 2.15† 2.53 2.35 0.56 0.00 0.56 1.20†

MLP 4.83 4.63 2.04 2.28 1.42 3.04 3.46 2.35 2.35 1.11 1.11 2.08
RF 4.52 4.27 3.96 3.47 3.71 3.99 5.99 2.85 3.47 2.54 1.48 3.27

Logistic 6.12 5.62 3.77 3.52 1.42 4.09 4.75 4.75 1.85 0.62 0.62 2.52
RBFnet 4.33 5.44 3.90 3.04 2.48 3.84 4.02 4.27 2.53 1.42 1.42 2.73
Savg 4.38 4.46 2.92 2.99 2.36⋆ 3.42 3.81 3.47 2.09 1.69⋆ 1.86 2.58

Classifier Information Gain ReliefF
5 10 20 30 40 C avg 5 10 20 30 40 C avg

J4.8 5.44 5.01 5.01 5.01 5.01 5.10 4.83 6.37 5.01 5.01 5.01 5.25
1-NN 7.17 4.58 3.52 2.91 2.84 4.20 5.13 6.31 3.10 4.01 3.28 4.37
3-NN 4.21 3.65 2.91 2.79 2.53 3.22 3.34 4.46 3.34 2.84 3.40 3.48
7-NN 4.21 3.65 2.59 1.98 2.53 2.99 3.34 3.90 2.53 2.53 2.78 3.02
NB 4.02 3.71 2.91 2.91 1.98 3.11 4.02 4.27 2.28 2.59 2.28 3.09

SVM 4.46 2.59 2.91 2.59 2.28 2.97† 3.34 3.34 1.98 1.98 1.67 2.46†

MLP 5.69 3.21 2.91 2.28 1.98 3.21 4.83 4.58 2.59 1.98 1.42 3.08
RF 6.06 3.71 4.09 4.02 4.95 4.57 4.52 4.58 3.41 4.27 3.71 4.10

Logistic 5.75 4.58 3.52 2.91 2.28 3.81 6.12 7.48 4.38 3.15 2.65 4.76
RBFnet 3.71 2.79 3.96 3.34 2.79 3.32 4.33 4.89 3.90 3.70 4.01 4.17
Savg 5.07 3.75 3.43 3.07 2.92⋆ 3.65 4.38 5.02 3.25 3.21 3.02⋆ 3.78

achieve the lowest grand mean error rates (which is the highest classification accura-

cy) in all four MS datasets. Specifically, grand mean error rates of FCGE(BWSS) and

FCGE(χ2) in OC-WCX2, OC-WCX2-PBSII-a, and OC-WCX2-PBSII-b datasets clas-

sification are 4.09, 1.63, 1.10, and 4.03, 1.69, 1.34, respectively, which are consistently

better than those obtained by GA/kNN, BWSS, Information Gain, and ReliefF. As for

the PC-H4-PBS1 dataset, the improvement is about 3% to GA/kNN, 5-6% to BWSS

and ReliefF algorithms, and a significant 16% over Information Gain.

It is also clear that the classification results of FCGE(BWSS) and FCGE(χ2) are

very similar. The results indicate that the effect of different filter algorithms is similar
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Table 7.4: OC-WCX2-PBSII-b dataset. Error rate comparisonof six different m/z fea-
ture selection algorithms using 10 different classifiers with size of the top ranked m/z
features from 5 to 40

Classifier FCGE(BWSS) FCGE(χ2)
5 10 20 30 40 C avg 5 10 20 30 40 C avg

J4.8 4.27 4.27 3.46 3.46 3.46 3.78 5.86 3.46 3.46 3.45 3.46 3.94
1-NN 1.68 0.56 0.00 0.56 0.56 0.67 1.68 0.56 0.56 1.11 1.11 1.00
3-NN 1.42 1.11 0.56 0.00 0.00 0.62 1.68 0.00 0.56 0.56 0.56 0.67
7-NN 1.11 1.11 0.56 0.00 0.56 0.67 1.68 1.11 0.56 0.56 0.56 0.89
NB 2.65 0.56 0.31 0.31 0.31 0.83 1.79 0.62 0.86 1.17 1.17 1.12

SVM 1.67 0.56 0.00 0.00 0.00 0.45 1.68 0.00 0.56 0.56 0.56 0.67
MLP 1.42 0.56 0.00 0.00 0.00 0.40† 0.62 0.00 0.56 0.56 0.56 0.46†

RF 4.48 1.11 3.70 1.98 1.62 2.58 3.77 2.53 2.53 2.22 2.28 2.67
Logistic 2.04 0.00 0.31 0.00 0.00 0.47 1.23 0.31 0.31 0.86 1.17 0.78
RBFnet 1.17 0.00 0.31 0.31 0.62 0.48 1.17 0.56 1.11 1.67 1.73 1.25
Savg 2.19 0.98 0.92 0.66⋆ 0.71 1.10 2.12 0.91⋆ 1.10 1.27 1.31 1.34

Classifier BWSS GA/kNN
5 10 20 30 40 C avg 5 10 20 30 40 C avg

J4.8 3.41 3.41 4.14 4.14 4.14 3.85 3.10 3.83 3.83 3.83 3.83 3.68
1-NN 4.27 2.68 1.11 2.17 0.56 2.16 3.29 2.79 1.11 1.11 1.11 1.88
3-NN 3.80 2.68 1.11 1.11 1.11 1.96 2.79 1.73 1.11 1.11 1.11 1.57
7-NN 3.54 2.99 1.11 1.62 2.73 2.40 2.79 2.23 1.11 1.11 1.67 1.78
NB 3.71 3.71 1.42 1.42 1.42 2.34 3.41 2.35 1.48 1.42 1.98 2.13

SVM 4.05 2.99 1.11 1.11 0.56 1.96 3.10 1.73 1.11 1.11 0.56 1.52
MLP 3.54 1.73 0.86 0.86 0.56 1.51† 2.68 0.86 0.00 0.56 0.56 0.93†

RF 3.49 2.99 4.15 4.44 2.22 3.46 3.74 4.21 4.20 4.52 1.98 3.73
Logistic 4.47 3.77 2.35 2.04 1.17 2.76 6.11 2.35 1.23 0.62 0.31 2.12
RBFnet 3.10 3.21 1.42 1.98 1.98 2.34 3.10 1.73 0.86 1.67 1.11 1.69
Savg 3.74 2.99 1.88 2.09 1.64⋆ 2.47 3.41 2.38 1.60 1.70 1.48⋆ 2.11

Classifier Information Gain ReliefF
5 10 20 30 40 C avg 5 10 20 30 40 C avg

J4.8 3.10 2.59 3.83 3.83 3.83 3.44 3.15 3.15 4.38 4.38 4.38 3.89
1-NN 3.10 2.54 1.73 1.11 1.67 2.03 4.27 1.98 1.67 1.67 1.67 2.25
3-NN 5.03 2.23 2.23 1.11 1.11 2.34 3.80 1.42 3.79 2.73 2.72 2.89
7-NN 4.16 3.85 2.74 2.12 2.17 3.01 3.54 2.48 3.79 2.73 2.72 3.05
NB 4.64 3.16 1.73 1.98 1.98 2.70 3.71 2.59 3.46 2.28 2.53 2.91

SVM 4.91 2.79 1.73 1.11 1.11 2.33 3.74 1.92 1.11 0.56 0.56 1.58
MLP 2.68 1.42 1.42 0.86 0.56 1.39† 3.54 0.56 1.11 1.11 1.11 1.49†

RF 3.71 3.15 4.20 5.01 3.33 3.88 3.49 2.48 4.75 3.04 3.09 3.37
Logistic 5.95 2.90 2.35 2.04 2.04 3.06 4.47 2.10 0.86 0.86 1.17 1.89
RBFnet 3.41 3.21 2.23 1.42 2.28 2.51 3.10 1.42 1.67 2.53 2.53 2.25
Savg 4.07 2.78 2.42 2.06 2.01⋆ 2.67 3.68 2.01⋆ 2.66 2.19 2.25 2.56

for the purpose of prefiltering, and obtaining a size of one fifth of m/z features in pre-

filtering is large enough to preserve most useful m/z features for followup classification

processing.

We marked the lowestC value for finding the best classifier and the lowestSvalue

for finding the best m/z feature size for each MS dataset, respectively. One interest-

ing finding is that an association seems to exist between the type of the classifier and

the dataset. In OC-WCX2 dataset and OC-WCX2-PBSII-a dataset classification, SVM

classifier is identified as the best classifier consistently with all six m/z feature selec-

tion algorithms, while MLP is identified as the best classifier consistently for the OC-

WCX2-PBSII-b dataset. As for the PC-H4-PBS1 dataset, the best classifier is 1-NN
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Table 7.5: PC-H4-PBS1 dataset. Error rate comparison of sixdifferent m/z feature se-
lection algorithms using 10 different classifiers with sizeof the top ranked m/z features
from 5 to 40

Classifier FCGE(BWSS) FCGE(χ2)
5 10 20 30 40 C avg 5 10 20 30 40 C avg

J4.8 31.49 33.94 35.17 33.71 33.77 33.62 39.57 32.90 29.41 31.42 35.23 33.71
1-NN 30.43 27.75 19.29 16.28 16.26 22.00† 39.58 25.59 22.03 20.19 18.27 25.13†

3-NN 29.49 26.08 23.65 19.52 21.67 24.08 38.81 27.34 23.21 24.39 23.30 27.41
7-NN 36.03 31.01 27.94 31.51 31.75 31.65 42.73 33.15 30.42 30.73 29.69 33.34
NB 28.69 27.85 25.18 24.15 23.97 25.97 37.66 28.44 26.87 21.21 20.81 26.99

SVM 44.82 43.09 24.11 18.67 20.50 30.24 42.69 43.57 25.44 20.44 21.12 30.65
MLP 29.27 25.11 20.08 27.92 21.98 24.87 37.09 31.61 24.85 19.75 20.66 26.79
RF 28.98 28.45 29.80 29.40 30.57 29.44 39.84 28.57 34.05 36.81 29.95 33.84

Logistic 35.54 34.56 32.95 34.89 33.69 34.33 37.91 32.21 35.61 31.09 28.26 33.02
RBFnet 40.15 37.24 26.69 28.27 35.41 33.55 39.14 35.01 25.48 29.39 25.65 30.93
Savg 33.49 31.51 26.48 26.43⋆ 26.96 28.97 39.50 31.84 27.74 26.54 25.29⋆ 30.18

Classifier BWSS GA/kNN
5 10 20 30 40 C avg 5 10 20 30 40 C avg

J4.8 33.68 33.18 35.19 35.09 35.22 34.47 36.42 41.72 35.22 35.90 33.72 36.60
1-NN 35.11 32.26 34.46 34.07 30.29 33.24 36.36 23.15 17.43 17.35 16.92 22.24†

3-NN 33.59 29.93 34.42 35.11 37.59 34.13 37.74 33.78 26.61 24.36 21.74 28.85
7-NN 38.74 35.73 40.60 39.73 42.19 39.40 42.82 45.60 37.51 32.03 32.19 38.03
NB 33.02 35.95 37.06 33.79 34.71 34.91 41.74 37.74 33.08 30.81 25.17 33.71

SVM 55.76 45.27 42.86 35.60 30.28 41.95 55.25 41.43 31.88 25.42 22.45 35.29
MLP 31.57 26.94 34.57 29.06 27.10 29.85† 35.63 29.38 27.23 25.81 26.18 28.85
RF 33.98 32.19 32.53 35.83 34.78 33.86 42.98 33.80 31.30 30.99 34.44 34.70

Logistic 34.20 34.06 37.21 30.43 32.48 33.68 42.22 40.51 30.65 35.70 31.15 36.05
RBFnet 33.72 39.74 38.03 37.77 41.58 38.17 45.29 39.90 32.98 31.37 28.15 35.54
Savg 36.34 34.53⋆ 36.69 34.65 34.62 35.37 41.64 36.70 30.39 28.97 27.21⋆ 32.98

Classifier Information Gain ReliefF
5 10 20 30 40 C avg 5 10 20 30 40 C avg

J4.8 48.22 44.88 44.70 42.39 42.16 44.47 30.23 35.06 34.12 33.01 32.74 33.03
1-NN 50.04 42.54 46.27 46.91 44.48 46.05 34.89 24.64 25.96 29.11 28.75 28.67
3-NN 50.16 41.68 46.07 44.68 45.21 45.56 35.51 32.32 38.45 37.51 35.29 35.82
7-NN 49.22 43.39 48.81 49.76 45.76 47.39 34.95 41.28 43.34 42.09 41.67 40.67
NB 45.53 45.02 44.84 45.51 46.25 45.43 33.59 35.25 37.34 39.80 39.54 37.10

SVM 56.75 56.06 53.94 49.74 47.79 52.86 48.51 41.32 38.07 38.60 38.34 40.97
MLP 48.49 39.37 44.47 43.18 37.17 42.54† 32.01 30.51 26.67 25.87 23.44 27.70†

RF 50.03 46.12 43.43 44.65 46.68 46.18 40.39 41.18 36.83 39.56 33.63 38.32
Logistic 48.19 44.85 51.07 41.87 41.66 45.53 34.37 41.99 36.20 32.38 31.50 35.29
RBFnet 47.89 46.94 47.11 46.93 46.07 46.99 37.75 42.15 39.15 37.14 40.77 39.39
Savg 49.45 45.09 47.07 45.56 44.32⋆ 46.30 36.22 36.57 35.61 35.51 34.57⋆ 35.70

when using FCGE(BWSS), FCGE(χ2) and GA/kNN, while the classifier of MLP is the

most successful when using BWSS, Information Gain, and ReliefF algorithms. Since

the number of datasets is limited, it is hard to interpret whether there is a classifier-

dataset specific relationship. Nonetheless, it is arguablethat SVM and MLP are the

most competitive classifiers for MS data classification. ForFCGE hybrid algorithm, the

lowest error rates are achieved in all three ovarian cancer datasets using only 10 to 30

top ranked m/z features. This indicates that the FCGE hybridalgorithm is capable of

selecting the most important m/z features that can effectively represent the underlying

patterns.
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Lastly, we applied a pairwiset-test to calculatep-values for BWSS, GA/kNN, Infor-

mation Gain, and ReliefF against FCGE(BWSS) and FCGE(χ2), respectively. Suppose

the error rates given by a feature selection algorithmF i using classifiers< Li
1...L

i
n > are

< ei
1...e

i
n >. Then, the difference between two feature selection algorithms with respect

to sample classification can be represented asDi f f =< ei
1−ej

1...e
i
n−ej

n >. Given the

null hypothesisH0 : Di f f = 0 and the alternative hypothesisH1 : Di f f > 0, we can

evaluate whether the error rates given by a feature selection algorithmF i are significant-

ly higher thanF j . Table7.6 shows thep-values for each pairwise test. It is clear that

in most cases the error rates given by FCGE(BWSS) and FCGE(χ2) are significantly

lower than those given by alternative methods (p< 0.05).
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Table 7.6: Significance test of error rate for feature selection algorithms in terms of sample classification using each MS dataset,
respectively. The calculations are performed using 5-40 selected m/z features, respectively. Each number is ap-value calculated
using a pairwise one-tail Studentt-test to 3 decimal places.

OC-WCX2 5 10 20 30 40
BWSS vs FCGE(BWSS); FCGE(χ2) 0.686; 0.097 0.070; 0.062 0.046; 0.007 0.001; 0.011 0.029; 0.251

GA/kNN vs FCGE(BWSS); FCGE(χ2) 0.431; 0.018 0.582; 0.644 0.008; 0.001 0.007; 0.069 0.039; 0.189
Information Gain vs FCGE(BWSS); FCGE(χ2) 0.911; 0.200 0.427; 0.453 0.015; 0.000 0.001; 0.006 0.010; 0.053

ReliefF vs FCGE(BWSS); FCGE(χ2) 0.442; 0.077 0.047; 0.050 0.002; 0.000 0.000; 0.002 0.001; 0.001
OC-WCX2-PBSII-a 5 10 20 30 40

BWSS vs FCGE(BWSS); FCGE(χ2) 0.000; 0.000 0.000; 0.000 0.000; 0.001 0.000; 0.001 0.001; 0.001
GA/kNN vs FCGE(BWSS); FCGE(χ2) 0.000; 0.000 0.003; 0.002 0.001; 0.016 0.231; 0.671 0.160; 0.224

Information Gain vs FCGE(BWSS); FCGE(χ2) 0.000; 0.000 0.000; 0.000 0.000; 0.000 0.000; 0.000 0.000; 0.000
ReliefF vs FCGE(BWSS); FCGE(χ2) 0.000; 0.000 0.000; 0.000 0.001; 0.000 0.000; 0.000 0.000; 0.000

OC-WCX2-PBSII-b 5 10 20 30 40
BWSS vs FCGE(BWSS); FCGE(χ2) 0.003; 0.007 0.000; 0.000 0.000; 0.001 0.000; 0.000 0.000; 0.094

GA/kNN vs FCGE(BWSS); FCGE(χ2) 0.012; 0.029 0.001; 0.000 0.000; 0.014 0.000; 0.000 0.000; 0.300
Information Gain vs FCGE(BWSS); FCGE(χ2) 0.003; 0.007 0.001; 0.000 0.000; 0.000 0.000; 0.009 0.000; 0.000

ReliefF vs FCGE(BWSS); FCGE(χ2) 0.004; 0.010 0.005; 0.000 0.000; 0.001 0.000; 0.001 0.000; 0.001
PC-H4-PBS1 5 10 20 30 40

BWSS vs FCGE(BWSS); FCGE(χ2) 0.037; 0.942 0.002; 0.017 0.000; 0.003 0.000; 0.000 0.000; 0.000
GA/kNN vs FCGE(BWSS); FCGE(χ2) 0.000; 0.101 0.007; 0.009 0.010; 0.009 0.061; 0.000 0.406; 0.023

Information Gain vs FCGE(BWSS); FCGE(χ2) 0.000; 0.000 0.000; 0.000 0.000; 0.000 0.000; 0.000 0.000; 0.000
ReliefF vs FCGE(BWSS); FCGE(χ2) 0.037; 0.981 0.005; 0.000 0.000; 0.003 0.000; 0.000 0.004; 0.001
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7.5.3 Correlation reduction

In our previous work, thek-means clustering component was employed in the hope that

the correlation of the selected m/z features would be reduced for redundancy control.

However, no measure has been proposed to assess the level of correlations of the select-

ed m/z features. In order to compare the correlation level ofthe top ranked m/z features

with each m/z ranking algorithm, in this study, we quantify the correlation among m/z

features by calculating the Pearson correlation coefficient in a pairwise manner using

each selection algorithm. The ranking size of the m/z features, again, ranges from 5 to

40, and the correlation values of each pair of m/z features are averaged for comparison

using Equation7.8. This value ranges from 0 to 1 with the low value indicating low

overall correlation and the high value indicating high overall correlation. The results

grouped by selection algorithms and m/z feature size are presented in Table7.7. Figure

7.4is the visualization of the results.

It is easily observed that the proposed FCGE system is able toreduce the overall cor-

relation among the selected m/z features considerably. In three ovarian cancer datasets

classification, essentially, the correlation decreases with the increase of the m/z feature

size. As for the prostate dataset, no significant changes of correlation with respect to

different m/z feature sizes are observed.

Table 7.7: Correlation evaluation details. Pearson correlation of the m/z feature selec-
tion results are calculated in a pairwise manner and groupedby the type of selection
algorithm and the feature size.

OC-WCX2 OC-WCX2-PBSII-a
5 10 20 30 40 5 10 20 30 40

FCGE (BWSS) 0.235 0.295 0.283 0.279 0.2430.532 0.517 0.464 0.408 0.363
FCGE (χ2) 0.404 0.357 0.274 0.254 0.2350.462 0.435 0.377 0.363 0.349
GA/kNN 0.659 0.598 0.510 0.461 0.4380.906 0.811 0.700 0.635 0.577
BWSS 0.688 0.609 0.580 0.549 0.5220.968 0.903 0.777 0.742 0.684
ReliefF 0.582 0.543 0.518 0.512 0.5090.973 0.888 0.765 0.698 0.658

InfoGain 0.612 0.604 0.581 0.546 0.5180.964 0.852 0.776 0.730 0.683
OC-WCX2-PBSII-b PC-H4-PBS1

5 10 20 30 40 5 10 20 30 40
FCGE (BWSS) 0.451 0.473 0.438 0.394 0.3570.163 0.241 0.244 0.245 0.219

FCGE (χ2) 0.540 0.443 0.401 0.362 0.3470.184 0.229 0.221 0.234 0.243
GA/kNN 0.905 0.825 0.698 0.638 0.5560.349 0.292 0.295 0.285 0.273
BWSS 0.948 0.911 0.754 0.752 0.6670.379 0.423 0.416 0.402 0.422
ReliefF 0.973 0.852 0.778 0.695 0.6580.276 0.420 0.450 0.427 0.441

InfoGain 0.957 0.876 0.782 0.729 0.6870.781 0.793 0.778 0.776 0.760
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Figure 7.4: Correlation evaluation. Different correlation levels are plotted by m/z subset
size and selection algorithms in a pairwise manner.

Comparing the correlation of the selection results and the error rate in sample clas-

sification according to m/z feature ranking algorithms, we find that there is a positive

association in that the increase of the correlation goes with the increase of the error rate.

That is, the ranking algorithm that generates lower correlation results can often achieve

higher sample classification accuracy. Although most datasets reveal a decrease of the

correlation with the increase of the m/z feature size, as observed in Tables7.2-7.5the in-

crease of the m/z feature size does not always bring higher classification accuracy. This

implies that the decrease of the correlation does not alwaysaccompany the increase of

the classification accuracy within a given m/z feature ranking algorithm. This is natural

because not all m/z features are informative/useful in sample classification. Although,

including those low correlated m/z features will decrease the overall correlation of the

selection results, they will not bring any gain in sample classification because they lack
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relevance to the trait we are investigating.

7.6 Discussion and summary

In PC-H4-PBS1 dataset analysis, we see that that Information Gain algorithm performs

much worse than the other ranking algorithms. This result suggests a lack of power for

univariate methods in multi-classes data classification. The BWSS algorithm and the

multivariate ReliefF algorithm are able to improve the result by 11%, and the wrapper-

based GA/kNN algorithm gives an improvement of nearly 13%. However, our FCGE

algorithm provides an even better result with another 3-4% percent improvement over

GA/kNN. This could be attributed to the use ofk-means clustering for correlation re-

duction and the use of ensemble of classifiers for m/z featureselection and ranking.

The advantage of using ensemble classifier for feature selection can be justified by

the assumption that different classification models tend tomisclassify a different portion

of samples if the proper integration strategies are employed. These model combination

and model averaging strategies have long been known in the machine learning commu-

nity [53,199], and determining which attributes should be used as the input is important

for improvement of overall classification accuracy [145]. While genetic ensemble hy-

brid aims to select useful m/z features to improve the overall classification accuracy, it

provides a natural way to identify biologically significantm/z biomarkers. As a con-

sequence, since the m/z feature selection and evaluation are accomplished by using

multiple classifiers, they are less subject to the bias of certain inductive algorithms but

more likely to reflect the genuine association with the disease of interest.

By viewing the sample classification results and the correlation reduction results, we

have the following conclusion: correlation reduction may be the key to promote sam-

ple classification and the identification of disease associated biomarkers from the bio-

pathway level, but evidently not all pathway information isassociated with the disease

of interest. Therefore, algorithms that use all representatives the that together minimize

the correlation to the minimum may not only include redundancy but could also exert

negative effects on the selection and classification results. The FCGE hybrid system

provides a framework to incorporate correlation minimization as an intermediate step,

which circumvents the disadvantage of relying solely on thecorrelation reduction by

using it as an information enrichment and pattern enhancement measure.
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In summary, we proposed ak-means clustering-based feature extraction and selec-

tion approach for the analysis of MS dataset. This hybrid system incorporated filter-

based prefiltering,k-means clustering-based correlation reduction and representative

selection, and genetic ensemble-based wrapper selection procedures. Thek-means clus-

tering process serves as the bridge between filter-based pre-selection and wrapper-based

feature selection processes. It helps to decrease the dimensionality of the pre-filtered

dataset while also reducing the correlation of the selectedm/z features, outputting

a noise-reduced and information-enriched dataset. The experimental results suggest

that the proposed FCGE system has good capability in sample classification and m/z

biomarker identification for MS dataset analysis.



Chapter 8

Conclusions and Future Work

In this chapter, we summarize the thesis and propose potential future research directions

that could be extended from this thesis.

8.1 Conclusions of the thesis

Computational and systems biology is a fast growing research field, driven by the con-

tinuous development in both high-throughput technologiesand computational methods.

This thesis focuses in particular on ensemble learning methods and hybrid algorithms

and their application to some of the most representative research topics in computation-

al and systems biology.

• In Chapter3, we studied the reproducibility and success rate in functional SNP

and SNP pair filtering from GWA studies using both simulationand real-world

datasets. We demonstrated that some of the most popular SNP filtering algorithms

such as ReliefF and TuRF are sensitive to the order of the samples in the dataset,

causing a significant change of SNP rankings when the order ofthe samples are

changed. Such an undesirable artifact originated from thek-nearest neighbour

algorithm employed by ReliefF and TuRF for choosing learning examples. By

harnessing this artificial effect as the diversity of the ensemble learning models,

we proposed an ensemble of filters that is capable of overcoming the low repro-

ducibility of the original filter algorithms while also improving the success rate

on functional SNP and SNP interaction pair filtering.

131
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• In Chapter4, we developed a genetic ensemble (GE) algorithm for identifying

gene-gene interaction and gene-environmental factor interaction. The GE algo-

rithm incorporates multiple classification algorithms in agenetic framework using

three integration functions, namely blocking, majority voting, and double fault di-

versity. Blocking and majority voting were used to combine the prediction from

multiple classifiers, whereas double fault diversity was used to promote diversities

among these classifiers. We showed that the GE algorithm has much higher power

in terms of identifying interactions compared to any singleclassifiers. Further-

more, we proposed a novel function for evaluating the degreeof complementarity

of results generated by different gene-gene interaction identification algorithms.

We demonstrated that the proposed GE algorithm gives complementary results to

other algorithms such as MDR and PIA whereas the results fromMDR and PIA

are very similar to each other. Therefore, the proposed GE algorithm provides a

unique means to identify many more gene-gene interactions when used together

with other identification algorithms.

• We moved to the transcriptomic level in Chapter5 where the focus is on select-

ing gene sets from microarray-based expression profiling for disease and normal

sample classification. In this chapter, we introduced a score mapping method for

combining multiple filter algorithms with the GE algorithm.The system, called

“MF-GE”, is able to fuse the pre-filtering scores of each genecomputed by each

filter algorithm to the initialization and mutation operations of the genetic algo-

rithms. MF-GE is therefore fast in terms of convergence and is able to identify s-

maller gene subsets that give higher prediction power. Thisindicates that MF-GE

is capable of selecting the most discriminative genes whilealso reducing the re-

dundant ones. The selected gene subsets may contain key biomarkers for disease

diagnosis and prevention, and are potential candidates forfollowup validation.

• Chapter6 focused on post-processing spectrum-peptide matches (PSMs) gener-

ated from MS-based proteomics studies. In this chapter, we showed that a semi-

supervised learning algorithm called “Percolator” is sensitive to the initial PSM

ranking in PSM filtering. It performs suboptimally when the initial PSMs are

ranked poorly. We extended Percolator for X!Tandem (an opensource search

algorithm) and proposed a cascade ensemble learning approach for Percolator in

PSM filtering. We named this algorithm “self-boosted” Percolator because the
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algorithm boosts its performance by repeatedly learning the filtering model using

the outputs from its previous iterations. By comparing the proposed algorith-

m with the state-of-the-art algorithms such as an empiricalmodelling algorithm

called “PeptideProphet” and the original Percolator algorithm on a ground truth

dataset and two complex sample datasets, we demonstrated that self-boosted Per-

colator identifies many more PSMs at the same level of false discovery rate.

• Chapter7 dealt with feature selection and sample classification fromMS-based

proteomics studies. Specifically, we described that highlycorrelated genes and

proteins may dominate the feature selection result when using conventional fea-

ture selection algorithms. By introducing ak-means clustering procedure, we

can bridge filter and wrapper algorithms and at the same time reduce the corre-

lation of features by selecting dissimilar features from each feature cluster. This

hybrid system is called “FCGE” because it combines filtering, clustering, and

genetic ensemble learning components. We demonstrated that FCGE enhances

the biological signal in the dataset by extracting dissimilar m/z markers, and per-

forms consistently better than several other feature selection algorithms across a

large number of classification algorithms in all four testedMS-based proteomics

datasets.

8.2 Future directions

While this thesis has presented a number of novel ensemble methods and hybrid al-

gorithms for a variety of applications in computational andsystems biology, it also

indicates promising research directions that can be extended for our future work.

• It is widely accepted that diversity among the individual models is the key driving

force for ensemble learning. For example, in ensemble classification, different

classifiers are encouraged to give different predictions ofa given sample, provided

the classification accuracy is maintained at a relatively high level [108]. While

there are several studies on model diversity in ensemble classification [24, 30,

108], the effect of diversity in ensemble feature selectionhas not been explored

and warrants further studies.

• Ensemble size is a key parameter in any ensemble learning. Itdetermines the
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number of base models used to form the ensemble model, and therefore, may

significantly affect the performance of the ensemble model.There are several

approaches for determining ensemble size. One approach is to predefine the en-

semble size based on some prior knowledge. Another solutionis to test different

ensemble sizes and select the size that appears to be the bestaccording to certain

criteria. While the first approach is inflexible and is unlikely to be optimal in all

cases and studies, the second trial and error approach is often computationally

intensive and subject to the evaluation criteria used for optimization. Therefore,

finding a computationally efficient approach that optimizesthe ensemble size in a

case-by-case manner could be a key to improve the performance of the ensemble

model.

• Beside measuring and analysing gene expressions and protein quantitations, in-

creasingly more studies have been done on global profiling other biological molecules

such as phosphorylation of proteins [211] and microRNA regulations [176]. These

added layers introduce complexity and new challenges in data analysis. Nov-

el computational algorithms are required to fully utilize and integrate those new

high-throughput datasets with large-scale gene expression and proteomics data to

reveal the connections and regulations of biological systems and signalling.

• Numerous studies have generated the gene, transcript, and protein profiles of var-

ious biological systems and diseases. Those studies and thecomputational anal-

ysis associated with them are often performed separately. There is a strong need

for combining multiple data types generated from two or moresystems for in-

tegrative analysis. We saw a fast growth in this research direction as evidenced

by several recent publications [47, 163, 185]. However, thedesign of effective

computational approaches for general integrative analysis is still at its infancy.

Research effort in this direction is critical to understandthe biological systems at

their full scale.
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