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Abstract

Modern molecular biology increasingly relies on the apgtlien of high-throughput
technologies for studying the function, interaction, antégration of genes, protein-
s, and a variety of other molecules on a large scale. Theagtigh of those high-
throughput technologies has led to the exponential growthiadogical data, making
modern molecular biology a data-intensive science. Hufypatdias been directed to
the development of robust and efficient computational agms in order to make
sense of these extremely large and complex biological datiag rise to several inter-
disciplinary fields, such as computational and system®sgiol

Machine learning and data mining are disciplines dealirth Wmowledge discovery
from large data, and their application to computational sygtems biology has been
extremely fruitful. However, the ever-increasing size aonthplexity of the biological
data require novel computational solutions to be developb thesis attempts to con-
tribute to these inter-disciplinary fields by developingl@pplying different ensemble
learning methods and hybrid algorithms for solving a varadtproblems in computa-
tional and systems biology. Through the study of differgpes of data generated from
a variety of biological systems using different high-thgbput approaches, we demon-
strate that ensemble learning methods and hybrid algosigma general, flexible, and
highly effective tools for computational and systems bgglo
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Chapter 1
Introduction

Central dogma is the classic framework for studying and tstdeding biological sys-
tems and their functions [46]. It loosely divides the infation in biological systems
into three levels, i.e. genes, transcripts, and protemsyhich the information flows
from gene to transcript by transcription and from trandctgpprotein by translation
(Figurel.1). Although there are many other information flows in a vgrtbiological
systems, the studies of genes, transcripts, and protedrthamformation flows among
them have been the most fundamental subjects in molecukrgyi research.

Cytoplasm

MDNA

criptionll

mRNA

! Protein

Tranm

Figure 1.1: The biological system of the cell. The informaatilows from genes (DNA)
to transcripts (RNA and mRNA) and to proteins through traipsion and translation.



2 CHAPTER 1. INTRODUCTION

The collections of all the genes, transcripts, and proteirns cell, tissue, or or-
ganism at a given time or state are commonly referred to asmgentranscriptome,
and proteome [6], respectively. With the development ardabplication of various
high-throughput technologies, we are in the era of profilngl interrogating the en-
tire genome, transcriptome, and proteome of a cell, tisstganism, or even multiple
organisms, giving rise to new emerging research fields saapeaomics [39], tran-
scriptomics [16], and proteomics [147] among numerousrdtmenics” science. The
explosion of the biological data generated from -omics isidnd the attempt to un-
derstand tens of thousands of genes, proteins, and otHegigial molecules in a sys-
tematic way transformed molecular biology into an inforimatbased science that is
best exemplified by the rise of inter-disciplinary fields s@s computational biology
and systems biology. The key characteristic of computatiand systems biology is
the application of computational techniques and staéistirodels for the analysis and
interpretation of the huge amount of biological data. Thevwedge discovered from
these data and systems could have significant impact ongyialod human welfare.

Machine learning and data mining are intelligent compatedl approaches used to
extract information from large datasets and discoverimgahips. Their application
to computational and systems biology have been extremeitfur [L111]. Ensemble
learning and hybrid algorithms are intensive studies teghes in machine learning
and data mining. The goal of this thesis is to contribute ® fdst-growing field of
computational and systems biology by designing ensemhlailey methods and hy-
brid algorithms and applying them to solve biological anthpatational challenges in
genomics, transcriptomics, and proteomics.

1.1 Methods in computational and systems biology

Systems biology aims to study and understand biologicaéesysin its full scale and
complexity. It is characterized by using high-throughmahnologies to identify and
profile biological systems in high speed and large scaleseliks on computational
methods for effective data analysis and interpretationcelhee provide a brief intro-
duction on some of the key high-throughput technologidzat for studying genomic-
s, transcriptomics, and proteomics and the main questi@tsassociated with each of
them. Specifically, at the genomic level, we introduce gesavide association (GWA)
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studies, at the transcriptomic level, we focus on micrgalrased gene expression pro-
filing, and at the proteomic level, we describe mass spe&angniMS)-based protein
identification. These topics are the main focus of our reseand are the subjects that
this thesis is devoted to. They span across genomics argttiptomics to proteomics,
capturing the main aspects of systems biology.

1.1.1 Genome-wide association studies

Single nucleotide polymorphisms (SNPs) are single-basey@ariants on DNA se-
guences that contribute to the genotype difference amatigiduals. Genome-wide
association (GWA) studies are designed to specificallyagpENP genotypes to un-
derstand the genetic basis of many common complex dise88edhe studies rely on
screening common SNPs and comparing the variations betindemduals who have
a certain disease (case) from a control population of iddiis (control) by adopting
a case-control study design [88]. The rationale is that @img the SNP genotype-
s of case and control samples can provide critical insiglléogenetic basis and the
hereditary aspects of complex diseases. One of the keydbxdias that enables the
genome-wide screening of SNPs is known as SNP chips [72]. &3 interrogate
alleles by hybridizing the target DNA to the allele-spectigonucleotide probes on
the chips [188]. Since a DNA sequence containing a SNP maghmarfectly to a
probe-producing a stable hybridization, or be a mismatt¢hdgrobe-producing an un-
stable hybridization, the amount of DNA that could be foumthie stable hybridization
is relatively much more abundant than what could be founchstable hybridization.
Based on the amount of hybridization of the target DNA to eaictihhose probes, one
can determine if an allele is homozygous or heterozygougurEil.2 is a schematic
illustration of SNP chips. On the SNP chip, each spot coordp to a SNP site on the
genome. The data obtained from SNP chips is a matrix with asftion providing
a profiling of the genotype of a SNP as homozygous or hetemgyglleles inherited
from the parents [148]. Each row represents a sample thdtdesgenotyped, and the
last column is the class label for the disease status of eanpls.

GWA studies have been proven to be extremely useful for ilngalisease associat-
ed genes in complex diseases. Some of the most cited stadlade the identification
of genesTCF7L2and SLC30A98 which contribute to the risk of developing type 2
diabetes [180], and the identification of gert&sH and ARMS2as the risk factors for
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SNP chip

Class label

N samples

“Heat map”

YRR (VP tnm Cn

Figure 1.2: A schematic illustration of SNP chip and the ddtacture. A SNP chip
is applied for genotyping and the data matrix obtained istegmaical data matrix with
each variable taking a genotype AR, AB, or BB corresponding to homozygous or
heterozygous alleles. The SNP-disease associations @i@NR-SNP interactions can
be represented as a “heat map” with brighter colours ingigattronger associations.

developing age-related macular degeneration [103]. Sdntgeamain computational
challenges in GWA data analysis include data normalizgBdh, SNP calling [161],
disease-associated SNP identification [87, 142], and gene-interaction identifica-
tion [42,59]. In particular, the analysis of the huge amapinfENP data has been the
bottleneck. That is, the number of SNPs considered in a &ay@VA study is very
large compared to the number of samples, giving an extremglySNP-to-sample ra-
tio. Furthermore, given the large number and the high dgr$iSNPs in a genome,
the SNP genotyping process is subject to errors [155]. Toerethe development of
computational algorithms that are robust to data noise gyiddata dimensionality, and
can efficiently process several hundreds of thousands ot $\fPe key to successful
GWA studies [122].

1.1.2 Gene expression microarray

Developed in the mid-90s, a microarray-based hybridimasipproach [49, 174] has
served as the key high-throughput technology for quamtifythe expression of genes
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at the transcript level for more than a decade. Althouglethes a few types of microar-
rays, they utilize essentially the same principle for meagugene expressions [184].
Essentially, gene expression microarray relies on hymaiehn to capture mRNA ex-

pressed in the cells, tissues, and organisms with the congpitary probes manufac-
tured on the glass slides. Using the intensities of fluoroghtabelled on mMRNAs as
the surrogate of gene expression levels, we are able to centipa relative changes
between cells and tissues from different treatments (EifjL8). Following a decade of

development, microarray has become a highly effectivestnaptome profiling technol-

ogy for model organisms where the genomes are relativelyptsts Tens of thousands
of genes can be measured simultaneously, which providekséi©bimeasurement of bi-

ological systems under various treatments and conditions.

) . M genes Class label
Microarray chips — A — A
[ 911 921 Iv1 €4
912 Y22 Iuz2 ©C;
—— N samples <
L 9in 92N 9un  Cn

Figure 1.3: A schematic illustration of gene expressionro@oay data. From the
computational viewpoint, microarray data can be viewedds a M matrix. Each row
represents a sample while each column represents a gern# theést column which
represents the class label of each samgleis a numeric value representing the gene
expression level of thB" gene in thgj™ samplecj in the last column is the class label
of the j" sample

The analysis of microarray data has been an extensivelyestsdbject. The fun-
damental issues include how to (1) normalize data so as teceedata noise and en-
hance biological signal [160, 205], (2) group samples antkegento clusters based
on their expression profiles [68, 186], (3) identify genesmhthe expression are up-
and down-regulated (collectively known as differentiaipressed (DE) genes ) with
respect to the treatments or disease status [57, 181], ¢yifgd enriched biological
pathways [187], (5) computationally select key genes ame geibsets that are asso-
ciated with the treatments or disease status [55, 74], ancld6sify samples based on
their gene expression profiles [56, 70].
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1.1.3 Mass spectrometry-based proteomics

The study of the global protein translation in the cell, dsr organism is known
as proteomics [2]. The goal of proteomic research is to itleand quantify all the

proteins present in a cell, tissue or organism at a specHie sir moment. Liquid

chromatography-mass spectrometry (LC-MS)-based highitfhput proteomics is the
key technology for such a large-scale profiling. With thedam design (LC-MS/MS),

increased sensitivity and specificity can be achieved [79].

inferred

proteins 5
proteins
protein protein
digestion inference
peptides identified
peptides
MS/MS database

search

s mmmmmmmmm

B unicuepeptide [ sharedpeptide [l peptide that fail to be identified

. deterministically identified protein . ambiguous protein

Figure 1.4: A schematic illustration of experimental prahaees and computational pro-
cedures in protein identification using mass spectrometry.

In a typical MS-based experiment, cell or tissue samplessdracted and the pro-
tein mixture from the samples is purified and digested witkemzyme such as trypsin.
The digested protein mixture is then injected into liquidachatography and captured
by a mass spectrometer or tandem mass spectrometer (LC-$)Sibtording to the
mass/charge (m/z) of the generated peptide and peptidadratgons. The output from
the mass spectrometer is spectra, each corresponding ftidgper peptide fragment.

LC-MS/MS-based proteomics relies highly on the computati@nalysis. Typical-
ly, the raw spectra files are processed by a denoising awgoifit95], and from those
spectra, the peptides are identified [38]. This is commooatpmplished by comparing
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the observed spectra with theoretical spectra generatsilico from a given protein
database (database searching) [43, 62], or with an andosaetral library (library
searching) [45, 109]. The identified peptides are then éurgiost-processed for filter-
ing potential false positive identifications [101, 141]dahe filtered peptides are then
used to infer the proteins that may present in the sampld.[E§ure 1.4 summarizes
the experimental procedures and computational procedures

After determining the protein identifies and abundancessample, the data can be
analysed in a similar fashion to microarray-based geneesspon profiling. Specifical-
ly, similar questions are commonly asked, such as disesszei@mted protein identifica-
tion [84], and sample classification based on the proteim@dce [200, 215].

1.1.4 Ensemble methods and hybrid algorithms

Ensemble methods and hybrid algorithms are fast develdpoimiques in the field of
data mining and pattern recognition. These techniques Ibese increasingly applied
to processing the large amount of biological data geneffaded using aforementioned
high-throughput technologies. The strength of ensemblhods mainly reside in the
robustness to the data noise. This is commonly achievedghrearious types of mod-
el averaging techniques which are one of the most importamponents in ensemble
methods. For hybrid algorithms, they are, by definition, pased of multiple algo-
rithms and therefore are highly specialized for solving ptar biology problems that
are often modular and require the application of a diversefsalgorithmic tools. In
Chapter2, we will briefly review some of the most popular ensemble radthand
hybrid algorithms. Those techniques will serve as the kelirigues from which the
followup chapters build on and extend to specific biologouastions and systems.

1.2 Contributions and organization of the thesis

In this thesis, we present our research on designing enselednining methods and
hybrid algorithms for addressing some of the key biologigadstions in computational
and systems biology. Specifically, the organization andctiveributions of the thesis
are as follows:
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e In Chapter2, we introduce some of the most popular ensemble methodsyand h
brid algorithms and review their applications in computasil and systems biol-
ogy. We start by describing the rationale behind ensembtaaeds. Then, based
on the applications, we categorize the ensemble methotsses tor sample clas-
sification and those for feature selection. The rest of ttatdr mainly focuses
on reviewing some of the most representative applicatibesisemble methods
and hybrid algorithms in dealing with some of the key quewim computational
and systems biology. These literature reviews will servia@snotivation and the
building blocks for the subsequent chapters of this thesis.

e Chapter3 describes using the ensemble feature selection approadittdang
gene-gene interactions in complex diseases. In this chapéepropose a novel
ensemble of filters using the ReliefF algorithm and its veésa By permutating
the samples in the GWA dataset, we can create multiple filesxsh built on a
permuted version of the original dataset. We demonstraiiettins permutation
and ensemble of filter approach is advantageous in that @mmpitary informa-
tion in the dataset can be extracted. We show that the otifgteaalgorithms are
unstable in terms of SNP ranking. A low reproducibility issebved with the Re-
liefF algorithm and its variants in SNP filtering. By usingthroposed ensemble
of filters, not only can we largely improve the reproductlilof SNP rankings
but also we can significantly increase the success rate &mgafunctional S-
NPs and interaction pairs. This is critical for the follow ggne-gene interaction
identification.

e Chapter4 is about gene-gene interaction and gene-environmentaiction i-
dentification. It takes the SNP filtering results from Cha@tand utilizes a much
more computationally intensive procedure to jointly eeddumultiple SNPs and
environmental factors for potential gene-gene interaciod gene-environmental
interaction identification in complex disease. Our conitiin here is in develop-
ing an effective algorithm for gene-gene interaction idfemation. Specifically,
we propose a novelenetic ensembl@pproach that incorporates multiple classi-
fication algorithms in a genetic algorithm. By using thregegration functions
in a novel way to combine the results from multiple classtfaaalgorithms, we
observe a large increase of power on identifying SNP intenagairs, signifi-
cantly better than using any single classifier. Moreovernntreduce an equation
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for evaluating the degree of complementarity of resultsegated by different
gene-gene interaction identification algorithms. We shioat the proposed ge-
netic ensemble algorithm generates complementary retsutither algorithms
and is therefore useful even when other algorithms are safidéy applied for

data analysis.

e In Chapter5, we move on to the transcriptome level by analysing geneesxpr
sion data generated from microarray. In particular, wegteaihybrid algorithm
for gene set selection for accurate classification of des@asl control samples.
Given the small sample size and the large number of genesuneeidsy microar-
ray, traditional approaches either use computationdligient filter algorithms to
evaluate each gene separately, or evaluate a subset ofipeigenes in combi-
nations using computationally intensive wrapper algongh Different from the
traditional approach, we propose a score-mapping stravegymbine the advan-
tages of filter and wrapper algorithms in that multiple fildgorithms are used to
pre-evaluate each gene from microarray data in a compuotdlyoefficient way,
and the pre-evaluation scores are combined and fused tetigensemble-based
wrapper algorithm for gene set selection. We named thisithgorithm “MF-
GE” and demonstrate that (1) MF-GE converges faster thaetgeansemble
without the multiple-filter component; (2) the size of thengesubset selected by
MF-GE is smaller than the original genetic ensemble; andB)GE is supe-
rior to several other filter and wrapper feature selectigo@ihms in terms of
identifying discriminative genes in sample classification

e From Chapte, we turn to the proteome level. In this chapter, we address on
of the key computational challenges, known as post-praogss peptide identi-
fications, in processing and analysing mass spectromet8)-{ddsed proteomic-
s data. In MS-based proteomics, proteins are digested tidpsyprior to the
MS analysis and the proteins that are present in the samelenfarred from
the identified peptides after the MS analysis. Prioritizinge peptide identi-
fications while removing false positive identifications ikey post-processing
step for eliminating false positive protein identificattonWe model this post-
processing step as a semi-supervised learning (SSL) proeechd propose a
cascade-ensemble learning approach to improve peptidifidation results.
The proposed method is considered as an ensemble appro#uét imultiple
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learning models are built in a cascade manner; each attémtgprove the re-
sult for its next model. By using the cascade-ensemble ilegr@pproach, the
SSL algorithm boosts itself to a stable state, producingymaore peptide iden-
tifications at a controlled level of false discovery rate.

Chapter7 focuses on protein set selection for normal and diseaselsanassi-

fication. Here we propose a novel clustering-based hybgdrahm to extract
complementary protein sets. Those protein sets are furaljodistinctive units

and represent potential biological pathways that are eaablvied in a unique
biological process. By selecting proteins from those digeiunctional units,
the proposed hybrid algorithm can reduce the dominanceroéamiversal bio-
logical pathways and extract much more useful informatromfthe proteomics
dataset for accurate sample classification and diseasendisation. \We compare
the hybrid algorithm with four other competitive algoriteran protein selection
and sample classification. The proposed hybrid algorithable to give signif-

icantly lower error rate on sample classification acrossifférdnt classification
algorithms. Furthermore, we show that the proteins seddayethe hybrid algo-
rithm are highly complementary, providing useful extreoimation on potential
biomarker identification.

In the final chapter (Chaptd), we summarize the thesis and propose potential

directions for future work.



Chapter 2

Ensemble and Hybrid Algorithms in
Computational Biology: Methods and
Reviews

This chapter is partially based on the following publicatio

Pengyi Yang, Yee Hwa Yang, Bing B. Zhou, Albert Y. Zomayajidwef ensemble
methods in bioinformatics. Current Bioinformatics, 5B6—-308, 2010

One key component in computational and systems biologiapiplication of com-
putational techniques for analysing and integrating cgffi biological data sources and
types. Various computational techniques, especially imadearning and data mining
algorithms, are applied, for example, (1) to select bioreexlsuch as genes or proteins
that are associated with the traits of interest, (2) to diaskiferent types of samples
based on genomic, transcriptomic, and proteomic profilingialogical systems, and
(3) for the integration of data from multiple levels such las integrative analysis of
transcriptomic and proteomic data.

These tasks are data intensive in nature and often involvenganultiple subtasks
in a modular or parallel fashion in achieving the final restitorder to analyse these
complex biological systems, multiple models and multipéeathms may be combined
to solve the problem in an efficient and effective wepsemble methodsfer to com-
bining multiple models to improve performance [81]. For myde, in classification,

11
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an ensemble of decision tree models, each generated froratsttap of the original
dataset, may perform in a superior fashion to a single detisee model on the same
dataset. In contrashybrid algorithmsefer to combining multiple algorithms for solv-
ing tasks that are modular in nature [8]. In particular, thginal problems are often
subdivided to smaller and functionally unique subproblearsl each subproblem is
solved by an algorithmic component in the hybrid algorithm.

In this chapter, we briefly introduce some of the most popete@emble methods
and hybrid algorithms that have been successfully apphedmputational and systems
biology. We also review some of the most representativeegipins in gene expression
microarray, MS-based proteomics, and gene-gene interaictentification from GWA
studies. They will serve as the motivation and the buildifegks for the rest of the
thesis.

2.1 Ensemble methods

Based on their applications, we categorize ensemble methtm(1) ensemble method-
s for classification, and (2) ensemble methods for featuexen. Ensemble methods
for classification have been established as a useful agpfoagnproving sample clas-
sification accuracy [145]. For classification, ensembleho@s are effective in extract-
ing limited information, which is critical for bioinformats applications where only a
small sample size is available. In contrast to classificagmsemble feature selection is
a fast-developing technique where the main focus has baerptove feature selection
stability [82]. Yet, several recent studies have found,tbasides improving feature
selection stability, many other aspects such as samplsifotasion accuracy can also
benefit from the ensemble feature selection approach [1].

2.1.1 Ensemble methods for classification
2.1.1.1 The rationale

Ensemble methods for classification have been intensivetiiesd in machine learning
and pattern recognition. They are effective ways for imprg\classification accuracy
and model stability [53]. In bioinformatics, ensemble noeth provide the advantage of
alleviating the small sample size problem by averaging aondrporating over multiple



2.1. ENSEMBLE METHODS 13

models to reduce the potential on overfitting [54]. In thiganel, the training data are
used in a more efficient way, which is critical to many biolegiapplications with lim-
ited sample size. Some ensemble methods sucinaom forestg21] are particularly
useful for high-dimensional datasets because increassdifitation accuracy can be
achieved by generating multiple prediction models, eac¢h svdifferentfeaturesubset.
These properties have a major impact on many different fmoimatics applications.

For the task of classification, increased accuracy is ofteained by aggregating
a group of classifiers (referred to base classifiejsas an ensemble committee and
making the prediction for unseen data in a consensus wayaifmef designing/using
ensemble methods is to achieve more accurate classifiqatiomaining data) as well
as better generalization (on unseen data). However, tbfteis achieved at the expense
of increased model complexity (decreased model interpildig [107]. A better gen-
eralization property of the ensemble approach is oftenagxet by using the classic
bias-variance decomposition analysis [197]. Here we pie@gn intuitive interpretation
of the advantage of ensemble approach.

Let the best classification rule (callbégpothesig hpest Of @ given induction algo-
rithm for certain kind of data be the circle in Figukel. Suppose the training data
is free from noise, without any missing values, and suffityelarge to represent the
underneath pattern. Then, we expect the classifier traindbdeodataset to capture the
best classification hypothesis represented as the cimclptalctice, however, the train-
ing datasets are often confounded by small sample size dmgénsionality, and high
noise-to-signal ratio, etc. Therefore, obtaining the bkssification hypothesis is often
nontrivial because there are a large number of suboptin@dthgses in the hypothesis
space (denoted a&$ in Figure2.1a) that can fit the training data but do not generalize
well on unseen data.

Creating multiple classifiers by manipulating the traindada in an intelligent way
allows one to obtain a different hypothesis space with edasitier {1, Ho, ..., Hi;
whereL is the number of classifiers), which may lead to a narrowedapdypothesis
space Ky) as shown in Figur@.1b. By combining the classification rules of multiple
classifiers using integration methods that take advanteiie @verlapped region (such
as averaging and majority voting), we are approaching tls¢ dlassification rule by
using multiple rules as an approximation. As a result, treeprble composed in such
a manner often appears to be more accurate.

To aggregate the base classifiers in a consensus mann@egissasuch asajority
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(a) Hypothesis space of a single classifier (b) Hypothesis space of an ensemble classifier

Figure 2.1: A schematic illustration of hypothesis spaagifi@ning with ensemble of
classifiers. By combining moderately accurate base classifive can approximate the
best classification rulle,es;With the increase of model complexity. This can be achieved
by combining base classifiers with averaging or majoritynggtwhich takes advantage
of the overlapped region.

votingor simple averaging are commonly used. Assuming the piedioutputs of the
base classifiers are independent of each other (which, atipeais partially achieved
by promoting diversity among the base classifiers), the ntgjgoting error rategyy
can be expressed as follows [110]:

L L . )
Emy = ; ] E@a-et (2.1)
i=[L/2)+1 \ |

wherelL is the number of base classifiers in the ensemble. Given théitean that

€ < &andom fOr &andom being the error rate of a random guess and all base classifiers
have identical error rate, the majority voting error rates,,, monotonically decreases
and approaches 0 whén— co.

Figure2.2 shows an ideal scenario in which the dataset has two claasésngth
the same number of samples, the prediction of base classgiandependent of each
other, and all base classifiers have an identical error Hatan be seen from the figure
that, when the error rate of the base classifiers is smaléer @5, which is a random
guess for a binary dataset with equal numbers of positiveragative samples, the
ensemble error rate quickly gets smaller than the errorofatee base classifiers. If we
add more base classifiers, the improvement becomes morécgigh In this example,
we used odd numbers of base classifiers where the consensuslésby(L + 1)/2
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Figure 2.2: Majority Voting. The relationship of error ratef base classifiers and error
rates of the ensemble classifier in majority voting. The dre line represents the case
in which the base classifiers are identical to each otherdewhe three curved lines
represent combining different numbers of base classifietsare independent of each
other.

classifiers. When using an even number of base classifiergaifisensus is made by
L/2+ 1 classifiers.

From the above analysis, it is clear that in order to obtaimgrovement the base
classifiers need to be accurate (better than chance) andgelfrem each other [193].
The need for diversity originates from the assumption thatdlassifier makes a mis-
classification, there may be another classifier that comgesnit by correctly classi-
fying the misclassified sample. Ideally, each classifier @sakcorrect classifications
independently. Popular ensemble methodshi&gging [20] (Figure2.3a) andrandom
subspacg86] (Figure2.3c) harness the diversity by using different perturbed dets s
and different feature sets for training base classifieispeetively. That is, each base
classifier is trained on a subset of samples/features tonoatslightly different clas-
sification hypothesis, and then combined to form the ensemlte difference is that
bagging relies on bootstrap sampling of the original datageereas random subspace
uses randomly selected samples without replacement teeamnadtiple subsets. Ran-
dom forests [21] (Figur.3d) is a combination of boosting on samples and random
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subspace on features. As fboosting [173] (Figure2.3b), diversity is obtained by
increasing the weights of misclassified samples in an iteratanner. Each base clas-
sifier is trained and combined from the samples with diffexdassification weights,
and therefore, different hypotheses. By default, thessetmethods uséecision tree
as base classifiers because decision trees are sensitimallachanges on the training
set [53], and are thus suited for the perturbation procedppéied to the training data.
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Figure 2.3: Schematic illustration of the four most popwasemble methods. They
are known as (a) bagging, (b) boosting, (c) random subspacdgd) random forests.

2.1.1.2 Related literatures

Ben-Doret al. [12] and Dudoitet al. [56] pioneered the application of bagging and
boosting algorithms for classifying tumour and normal skE®spISing gene expression
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profiles. Both studies compared the ensemble methods whr addividual classi-
fiers such as-nearest neighboukiIN), clustering based classifiers, support vector
machines (SVM), linear discriminant analysis (LDA), andsdification trees. The con-
clusion was that ensemble methods of bagging and boostirigrped similarly to
other single classification algorithms included in the cangon.

In contrast to the results obtained by Dudeital. and Ben-Doret al., the fol-
low up studies revealed that much better results can beathterough minor tuning
and modification. For instance, Dettling and Buhlmann [p@posed an algorithm
called LogitBoost that replaces the exponential loss fonaised in AdaBoost with a
log-likelihood loss function. They demonstrated that ltBgiost is more accurate in
classification of gene expression data compared with tlggnadi AdaBoost algorithm.
Long [120] argued that the performance of AdaBoost can bamedd by improving the
base classifiers. He then proposed several customizedtgpakjorithms for microar-
ray data classification. The experimental results indit@déthe customized boosting
algorithms performed favourably compared with SVM-basigdéthms. In compari-
son to the single tree classifier, Tan and Gilbert [189] destrated that, overall, en-
semble methods of bagging and boosting are more robust auade in microarray
data classification using seven publicly available dasaset

In MS-based proteomics, Qet al. [159] conducted the first study using boosting
ensembles for classifying mass spectra serum profiles. gsifileation accuracy of
100% was estimated using the standard AdaBoost algorittmie & simpler ensemble
called “boosted decision stump feature selection” (BDS$f®)wed slightly lower clas-
sification accuracy (97%) but gives more interpretablesifi@sition rules. A thorough
comparison study was conducted by @tal.[200], who compared the ensemble meth-
ods of bagging, boosting, and random forests to individiaaisifiers of LDA, quadratic
discriminant analysikNN, and SVM for MALDI-TOF (matrix assisted laser desorp-
tion/ionization with time-of-flight) data classificatiomhe study found that among all
methods, on average, random forests gives the lowest atenith the smallest vari-
ance. Another recent study by Gertheiss and Tutz [67] dedigrblock-wise boosting
algorithm to integrate feature selection and sample dlea8on of mass spectrome-
try data. Based on LogitBoost, their method addresses thedmbal variability of the
m/z values by dividing the m/z values into small subsetsedalilocks. Finally, the
boosting ensemble has also been adopted as the classifiaatiddiomarker discovery
component in the proteomic data analysis framework prapbgerasuiet al.[207].
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In comparison to bagging and boosting ensemble methoddpmarfiorests holds
a unique advantage because its use of multiple feature tsubseell suited for high-
dimensional data such as those generated by microarray &daged proteomics s-
tudies. This is demonstrated by several studies such a$ §ht?[52]. In [112], Lee
et al. compared the ensemble of bagging, boosting and randontsarsisg the same
experimental settings and found random forests was the sogsessful. In [52], the
experimental results through ten microarray datasetsesigbat random forests are
able to preserve predictive accuracy while yielding smajlene sets compared with
diagonal linear discriminant analysis (DLDANN, SVM, shrunken centroides (SC),
andkNN with feature selection. Other advantages of random fersch as robustness
to noise, lack of dependence upon tuning parameters, ansptexl of computation
have been demonstrated by Izmirlian [89] in classifying BETOF proteomic data.

Giving the good performance of random forests in high-disn@mal data classifi-
cation, the development of random forests variants is a &etiye research topic. For
instance, Zhangt al. [213] proposed a deterministic procedure to form a forest of
classification trees. Their results indicate that the perémce of the proposed deter-
ministic forest is similar to that of random forests, buthwitetter reproducibility and
interpretability. Geurtet al.[69] proposed a tree ensemble method called “extra-trees”
which selects at each node the best amongndomly generated splits. This method
is an improvement on random forests because unlike randoestfy which are grown
with multiple subsets, the base trees of extra-trees amgirom the complete learning
set and by explicitly randomizing the cut-points.

2.1.2 Ensemble methods for feature selection

Feature selection is a key technique originating from tHddief artificial intelligence
and machine learning [17,73] in which the main motivatios haen to improve sample
classification accuracy [48]. Since the focus is mainly oprioving classification out-
come, the design of feature selection algorithms seldonsiders specifically which
features are selected. Due to the exponential growth obgichl data in recent years,
many feature selection algorithms have been found to belyeapblicable, or only
require minor modification [172], for example, to identifgtpntial disease-associated
genes from microarray studies [201], proteins from MS-Haseteomics studies [114],
or SNP from GWA studies [214]. While sample classificatioowacy is an important
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aspect in many of those biological studies such as discatimg cancer and normal
tissues, the emphasis is also on the selected featuresyaginesent interesting genes,
proteins, or SNPs. These biological features are oftemresféo as biomarkers and they
frequently determine how further validation studies shdag designed and conducted.

One unique issue arising from the application of featurecrn algorithms in i-
dentifying potential disease-associated biomarkerdyas those algorithms may give
unstable selection results [96]. That is, a minor pertuoban the data such as a dif-
ferent partition of data samples, removing a few samplegyen reordering the data
samples may cause a feature selection algorithm to seleffieeedt set of features.
For instance, typical microarray-based gene profilingistidroduce high-dimensional
datasets with several thousand genes and a few dozen sangfdesmonly, at-test
may be used to rank the importance of the genes in discrimgnaisease and con-
trols, tumours and normals, etc. It is possible that a snfehge in the dataset, such
as removing a few samples, may cause ttbest to rank the genes differently. For
those algorithms with stochastic components, simply réneralgorithm with a differ-
ent random seeding may give a different feature selectisultreThe ternstability and
its counterpartnstability are used to describe whether a feature selection algorghm i
sensitive or insensitive to small changes in the data andetiegs of algorithmic pa-
rameters. The stability of a feature selection algorithrrolpees an important property
in many biological studies because biologists may be monédent about the feature
selection results that do not change much with a small geation in the data or a re-
run of the algorithm. While this subject has been relativedglected in the past, we
saw a fast-growing interest in recent years where diffea@prroaches to improve the
stability of feature selection algorithms and differentirices for measuring them have
been proposed. It has been demonstrated that ensembledsethdd be used to im-
prove feature selection stability and data classificatmueacy [1]. In this chapter, we
categorize different feature selection algorithms, idtrce two common approaches for
creating ensemble feature selection, and review receel@awent and applications of
ensemble feature selection algorithms in computationélksgstems biology.

2.1.2.1 Categories of feature selection algorithms

From a computational perspective, feature selection délgos can be broadly divided
into three categories dfiter , wrapper, andembeddedpproaches according to their
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selection manners [73]. FiguB4 shows the schematic view according to the catego-
rization.

Optimization [
Filtering or Ranking
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Figure 2.4: Categorization of feature selection algorghrta) Filter approach where
feature selection is independent from the classificatidm).\Nrapper approach where
feature selection is explicitly performed by an inductigagithm for sample classifi-

cation in an iterative manner. (c) Embedded approach wleateife selection is per-
formed implicitly by an inductive algorithm during sampleassification.

Filter algorithms commonly rank/select features by euvahgacertain types of as-
sociation or correlation with class label, etc. They do natiroize the classification
accuracy of a given inductive algorithm directly. For thésson, filter algorithms are
often computationally more efficient compared with wrapgakgorithms. For numer-
ic data analysis such as differentially expressed (DE) getection from microarray
data or DE protein selection from mass spectrometry dagambst popular method-
s are probably thé-test and its variants [181]. As for categorical data typsshsas
disease-associated SNP selection from GWA studies, thencoiy used methods are
X?-test or odds ratio while increasingly popular methods beeReliefF algorithm and
its variants [130].

Although filtering algorithms often show good generaliaatand extend well on
unseen data, they suffer from several problems. Firsttgriilg algorithms commonly
ignore the effects of the selected features on sample titadsn of a given inductive
algorithm. Yet the performance of the inductive algorithauld be useful for accu-
rate phenotype classification [104]. Secondly, many fillgo@thms are univariate and
greedy based. They assume that each feature contributespbénotype independent-
ly and evaluate each feature separately. The feature siersaetermined by ranking
the features according to certain scores calculated by dilg@rithms and selecting the



2.1. ENSEMBLE METHODS 21

topk candidates. Those assumptions are most likely invalidofogical systems, and
the selection results produced in this way are often sutyabti

Compared with filter algorithms, wrapper algorithms haweesa advantages. First-
ly, wrapper algorithms incorporate the performance of @uative algorithm in feature
evaluation, and are therefore likely to perform well in sé&ngassification. Second-
ly, most wrapper algorithms are multivariate and treat ipldtfeatures as a unit for
evaluation. This property preserves the biological inetigtion of genes and proteins
since they are linked by pathways and function in groups. r§danumber of wrap-
per algorithms have been applied to gene selection of m@pand protein selection
of mass spectrometry. Those include evaluation approasiesas genetic algorithm
(GA)-based selection [92,116,117], and greedy approastiwgsas incremental forward
selection [168], and incremental backward eliminatiorg]15

Despite their common advantages, wrapper approachessaftiem from problems
such as overfitting, since the feature selection procedwgaided by an inductive algo-
rithm that fitted on training data. Therefore, the featusdscted by a wrapper approach
may generalize poorly on new datasets if overfitting is net/pnted. Other than that,
wrapper algorithms are often much slower compared withr fdtgorithms (by several
orders of magnitude), due to their iterative training anale&ting procedures.

An embedded approach is somewhat between the filter apperatthe wrapper
approach, where an inductive algorithm implicitly seldeistures during sample clas-
sification. As opposed to filter and wrapper approaches, dddgkapproaches rely
on certain types of inductive algorithms and are therefess beneric. The most pop-
ular ones that apply for gene and protein selection are suppotor machine-based
recursive feature elimination (SVM-RFE) [74] and randome&i-based feature evalu-
ation [52].

2.1.2.2 Ensemble feature selection algorithms

Ensemble feature selection algorithms are composed foy measons. Generally, the
goals are to improve feature selection stability, or sanctdssification accuracy, or
both simultaneously, as demonstrated in numerous stutj@3]118]. In many cas-

es, other aspects such as identifying important featuregtoacting feature interaction
relationships could also be achieved with higher accurayguensemble feature se-
lection algorithms as compared with the single approaches.
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Depending on the type of feature selection algorithm, tineag be many different
ways to create an ensemble feature selection algorithme tterdescribe two most
commonly used approaches for creating ensemble filters mseh&le wrappers, re-
spectively.

Ensemble based on data perturbationThe first class of methods is based on data
perturbation. This approach has been extensively utibzretistudied as can be viewed
in the literature [1, 19, 203]. The idea is built on the susb@lsexperience in ensemble
classification [53] and it has been found to be able to stabthe feature selection re-
sult. For example, a bootstrap sampling procedure can luefasereating an ensemble
of filter algorithms, each of which may give a different ramiiof genes. The consen-
sus is then obtained through combining those ranking Iasurally, besides bootstrap
sampling many other data perturbation methods (such asmasgacing, etc.) can al-
S0 be used to create multiple versions of original datasetisd same framework. A
schematic illustration of this class of methods is shownigufe 2.5.

Perturbing data with bootstrapping;
re-ordering; or random spacing

}
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Figure 2.5: Schematic illustration of an ensemble of filiesisg data perturbation ap-
proach.

Ensemble based on different data partitioning.The second approach is based on
partitioning the training and testing data differently,iethis specifically for wrapper-
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based feature selection algorithms. That is, data thatseé for building the classifi-
cation model and data that are used for feature evaluatepatitioned using multiple
cross validations (or any other random partitioning pracesd). The final feature subset
is determined by calculating the frequency of each genetseldrom each partitioning.
If a gene is selected more than a given threshold, it is thended into the final feature
set.

A schematic illustration of this method is shown in Fig@ré. This method is firstly
described in [58] where a forward feature selection (FFSpwper and a backward
feature elimination (BFE) wrapper are shown to benefit froirm €nsemble approach.

‘ﬂ

Pl ™

Model, Model, Model,

Optimization |«

Classification

!

£y 2y
i il

Combining and selecting

Optimization

A

L R

Optimization

Classification

}

I |
(P,

Blie

Classification

Figure 2.6: Schematic illustration of an ensemble of wrappsing different partitions
of an internal cross validation for feature evaluation.

Besides using a different data partitioning, for stocltagpitimization algorithms
such as GA or particle swarm optimization (PSO), ensemhiécso be achieved by
using different initializations or different parametettseys. For wrappers such as FFS
or BFE, a different starting point in the feature space coeddlt in a different selection
result. Generally, bootstrap sampling or other randomisgaapproaches can also be
applied to wrapper algorithms for creating ensembles.
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2.1.2.3 Related literatures

In computational and systems biology, ensemble featusxteh originated from the
use of multiple filters for evaluating genes and proteins ioroarray and MS-based
proteomics data [172]. This is due to the fact that no singédure selection algorith-
m can perform optimally on all datasets or under all crit¢2@6] and the potential
existence of multiple subsets of features that have simitriminant power [112].

The most straightforward approach for creating an ensenfliéers is to borrow
the idea of bagging by generating multiple bootstrap sasy@ach is then used for
building a filter. This approach is first adopted by Yu and Cloemm/z feature selection
from MS-based proteomics data [210] and then extended bys®aal. for gene selec-
tion from microarray data [1,171]. Particularly, Saeysl. also considered the stability
of the feature selection algorithms and found that an enkeamproach based on boot-
strap sampling can significantly improve the stability ¢ feature selection algorithm
and therefore reproducible feature selection results.tl@mwrapper feature selection
algorithm, Liet al. proposed a genetic algorithm (GA) based wrapper approatiedc
GA/KNN, for gene selection from microarray and combining theltebrough averag-
ing multiple runs with different initializations [115]. Ehpower and the parameters in
GA/KNN were further optimized [117] and the algorithm was exeshtbr m/z feature
selection from MS-based proteomics data [116] in their egbent studies.

Besides these data sampling-based approaches, a Bayesikeh aweraging ap-
proach has been applied for ensemble gene selection fronoamniay data [113, 209],
and a distance synthesis scheme for combining the geneisalezsults from multiple
statistics has been introduced by Yaetal. for gene selection [206].

Among different ensemble feature selection methods pexptos identifying gene-
gene interaction [208,217], random forests enjoyed thet pasularity [42]. This is
largely due to its intrinsic ability to take multiple SNPsrjty into consideration in a
nonlinear fashion [124]. In addition, random forests carubed easily as an embed-
ded feature evaluation algorithm [26], which is very uséfuldisease-associated SNP
selection.

The initial work of Bureauet al. [26] shows the advantage of the random forests
regression method in linkage data mapping. Several qa#méttrait loci have been
successfully identified. The same group [25] then applied@dmdom forests algorithm
in the context of the case-control association study. Alsinmethod was also used by
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Lunettaet al.[121] for complex interaction identification. However, feeearly studies
limited the SNPs under analysis to a relatively small nuniBér- 40 SNPs).

Recent studies focus on developing customized randomt$oaégorithms and ap-
plying them for gene-gene interaction identification to achmbigher data dimension,
containing several hundred thousands of candidate SNRsifisplly, Chenget al.[34]
investigated the statistical power of random forests in SiNBraction pair identifi-
cation. Their algorithm was then applied to analyse the Shifa fom the complex
disease of age-related macular degeneration (AMD) [103]ddyg a haplotype-based
method for dimension reduction. Mepgal.[128] modified random forests to take into
account the linkage disequilibrium (LD) information wherasuring the importance
of SNPs. Jianget al.[91] developed a sequential forward feature selectionguomre
to improve random forests in gene-gene interaction ideatibhn. The random forests
algorithm was first used to compute Géni indexfor a total of 116,204 SNPs from the
AMD dataset [103] and then used as a classifier to minimizeldmsification error by
selecting a subset of SNPs in a forward sequential mannarayiredefined window
size.

2.2 Hybrid algorithms

In artificial intelligence (Al), hybrid algorithms oftenfier to the effective combination
of multiple learning algorithms for solving complex profvie [40]. Hybrid algorithms
are flexible tools that could be very useful in many bioinfatios applications where
the solution involves solving multiple subtasks. Hybrigaithms could be categorized
into (1) tightly coupled in that both algorithms executesmintertwined way, (2) less
tightly coupled in that only the objective function linksethwo, or (3) loosely coupled
in that the algorithms do not have any direct interactiorhvaach other but rather
they execute in relative isolation [99]. However, sincer¢ha@re no hard rules dictating
which and how algorithms can be combined, one of the diffiesilis the discovery of
the most appropriate combinations of algorithms for a $pdwiological problem. One
approach is to select different combinations of hybrid athms using an agent-based
framework [216]. Utilizing domain knowledge has also beemdnstrated to be an
effective approach for designing specialized and highlgrad systems for answering
specific biological questions [137].
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Evolutionary-based algorithms [60], such as genetic dlgor (GA), genetic pro-
gramming, and particle swarm optimization (PSO) to namevadee popular building
blocks for creating hybrid algorithms. Classification aljoms such as support vector
machines (SVM) [27] an#-nearest neighbouklN) [3] are also commonly used as
algorithmic building blocks that when combined with evaiaa algorithms form one
of the most popular hybrid approach which can be used foufeatelection and sample
classification. The computation principle of this approbhel been validated by Yang
and Honavar [202] and it has been subsequently applied iousforms to numerous
biological studies. For instance, kt al’s study in combining GA withtkNN (called
GA/KkNN) has been very successful in simultaneously performergeget selection and
sample classification for microarray data [117]. This hgltaigorithm has then been
extended for protein marker selection and sample classificaf mass spectrometry
(MS)-based proteomic data [116]. Based on the same frankewany similar hybrid
algorithms have been proposed such as (1) the combinati@Aoivith SVM [149]
for gene selection and sample classification of microariag,d(2) the combination
of PSO with SVM (PSO/SVM) [178] for gene selection and sangbéessification of
microarray data, and (3) the combination of ant colony oation (ACO) with SVM
(ACO/SVM) for m/z feature selection and sample classifaratf MS-based proteomic
data [162].

Another commonly utilized hybrid component is neural nakgd75] which is one
of the key foundation algorithm in machine learning and dataing. For example,
in gene-gene interaction identification from GWA study, enbination of genetic pro-
gramming with neural networks has been demonstrated tdifgelisease associated
interactions among multiple genes [165]. In gene netwodksstruction, the combi-
nation of a neural-genetic hybrid has been successfullfieapfor reverse engineer-
ing from microarray data the gene networks relationshig.[9Beveral other neural
network-based hybrid approaches were also compared byindgetsReifet al. [135]
for identifying gene-gene interactions.

The optimization of feature space is a key component in desaasociated biomark-
er selection. Several researchers propose a hybrid agptoamprove optimization
performance and efficiency. For example, Skeal. proposed a hybrid algorithm that
combined PSO and tabu search to overcome local optimum & ggaction from mi-
croarray [177]. Chuangt al. embedded in a GA in PSO for gene selection so as to
perform local optimization in each PSO iteration [36].
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In contrast to ensemble algorithms, which typically focasrproving the perfor-
mance of a specific task (e.g. improving classification aaxyuof a single classifier),
hybrid algorithms can be composed in such a way that mulsipbgasks are solved in
a modular and parallel manner, and are thus multitaskingeftleeless, hybrid algo-
rithms can also be designed to improve the performance ofggesiask. The flexibility
and the numerous ways to integrate multiple algorithms bhaen the key characteris-
tics of hybrid algorithms and their successful applicasioncomputational and systems
biology.



Chapter 3

Gene-Gene Interaction Filtering Using
Genotype Data

This chapter is based on the following publication:

Pengyi Yang, Joshua W.K. Ho, Jean Yee-Hwa Yang, Bing B. BGeme-gene inter-
action filtering with ensemble of filters. BMC Bioinformatid@2:510, 2011

3.1 Gene-gene interaction in GWA studies

High-throughput genome-wide association (GWA) studiesghzecome the main ap-
proach in exploring the genetic basis of many common conmgiseases [190]. Under
the assumption that common diseases are associated withhaowariants, the goal
of GWA studies has been to identify a set of single nuclegbiolgmorphisms (SNPs)
that are associated with the complex disease of interespicaWy, this is achieved
by adopting a case-control study design that prospectidelytifies SNPs that distin-
guish individuals who have a certain disease (case) froomaa@gopulation of indi-
viduals (control) [88]. However, there are several pradtissues when achieving this
goal in terms of data analysis. First, to identify true deseassociated SNPs from a
massive set of candidate SNPs, an accurate SNP selectbegstis of critical impor-
tance. However, the accurate identification of diseasecagsd SNPs is hindered by
the curse-of-dimensionalitgnd thecurse-of-sparsity[182]. More importantly, it has

28



3.2. FILTERING GENE-GENE INTERACTIONS 29

become increasingly clear that gene-gene interactionggand-environment interac-
tions are ubiquitous and fundamental mechanisms for theldement of complex dis-
eases [42]. That is, complex diseases such as type 2 dialved&sheimer are unlikely
to be explained by any single SNP variant. In contrast, tteatdierization of gene-
gene interactions and gene-environment interactions raahdkey to understanding
the underlying pathogenesis of these complex diseaset§42191]. The explanations
from the biological perspective are as follows: (1) a SNP aoding region may cause
amino acid substitution, leading to the functional alterabdf the protein; (2) a SNP ina
promoter region can affect transcriptional regulatiomstag the change of the protein
expression abundance; and (3) a SNP in an intron region &eat aplicing and expres-
sion of the gene [192]. All these effects contribute quaiitiely and qualitatively to
the ubiquity of molecular interactions in biological syste

For this reason, several methods have been developed tly jeualuate SNP and
environmental factors with the aim of identifying gene-gemd gene-environment in-
teractions that have major implications for complex dissgd.36]. These methods
analyse genetic factors in a combinatorial manner wheriegp the SNP dataset with
case and control samples. Therefore, we shall refer to tlseromabinatorial methods
Combinatorial methods will be described in Chapter

The problem of applying combinatorial methods to GWA dakasethat they are
commonly computationally intensive and the computatioretincreases exponentially
with the number of SNPs considered. Therefore, itis comgnoetessary to perform a
filtering step prior to the combinatorial evaluation to remas many irrelevant SNPs as
possible [125]. This is commonly known as the two-step asialgpproach as described
in [191]. As discussed in a number of recent reviews [42,191], a good filtering
algorithm is of critical importance since, if functional 88l are removed by the filter,
the subsequent combinatorial analysis will be in vain.

3.2 Filtering gene-gene interactions

For categorical data such as genotypes of SNPs, univatiatény algorithms includ-

ing x?-test andodds ratioare commonly used. However, these methods consider the

association between each SNP and the class label indepgnadieother SNPs in the
dataset [87]. Therefore they may filter out SNP pairs thaélsérong interaction effects
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but display weak individual association with the phenoti4. Recently, new multi-
variate approaches known as “ReliefF-based” filtering iaflgms [123, 131] captured
much attention. This family of methods, including Relieff66], tuned ReliefF (TuR-
F) [130], and Spatially Uniform ReliefF (SURF) [71] takesaraccount dependencies
between attributes [166]. This is critical for preservimglgrioritizing potential gene-
gene interactions in SNP filtering [133].

Although ReliefF-based filtering algorithms have gainecchattention and have
been applied to several association studéeg,([7]; and [158]), we found that filtering
results produced by ReliefF and TuRF are sensitive to therafsamples presented in
the dataset and may produce unstable SNP ranking resultstivaerder of samples in
the dataset is changed.

In this section, we first introduce the ReliefF algorithm atsdvariant TURF algo-
rithm. Then we explain why ReliefF-based algorithms aresgime to the sample order
in the dataset and may generate inconsistent SNP ranking thbeorder of samples is
changed. Before we start, let us consider a GWA study cangisft N SNPs andM
samples. We denote each SNP in the study; @md each sample aswherej =1...N
andi =1...M. The aim of the filtering procedure is to produce a rankingecdefined
asW(gj), commonly referred to as weight. This score represents lifligyeof each
SNPg; to separate samples between the case and control grouptheafildering is
done by removing those with low ranking scores accordingpceadefined threshold.

3.2.1 ReliefF algorithm

In the ReliefF algorithm, the weight score of each SMHg;j), is updated at each
iteration as follows [123]:

W(g;) =W(g;) — D(gj,s.hk)/M + D(gj, s, m) /M (3.1)

wheres is theit" sample from the dataset amg is the ki nearest neighbouof s
with the same class label (called “hit”) whitg, is thek!" nearest neighbour & with

a different class label (called “miss”). This weight updatiprocess is repeated fiot
samples selected randomly or exhaustively. Thereforeidy by M keeps the value of
W(gj) in the interval [-1,1].D(.) is the difference function that calculates the difference
between any two samplsg ands, for a given gene:



3.2. FILTERING GENE-GENE INTERACTIONS 31

0 : ifG(g s)=0G(g,
D(g,s&sb){ if G(9,%a) = G(9, %) (3.2)

1 : otherwise

where G(.) denotes the genotype of SNPfor samples, which can take the value
of aa (homozygotes of recessive allele8g (heterozygotes), oAA (homozygotes of
dominant alleles). The nearest neighbours to a sample &eendeed by the distance
function, MD(.), between the pairs of samples (denoteds.aand s,) which is also
based on the difference function (Equat@g):

Using pseudocode, we can outline the ReliefF algorith@lgorithm 1.

Algorithm 1 ReliefF
1: for j=1toN do
initiate(W(gj));
3: end for
4: fori=1toM do
5. s =randomSelecsampleSize
6: = findHitNeighbours§,K); (hi...hx € 2)
7.
8
9

N

A = findMissNeighbours,K); (m...nmx € .#)
for j =1toN do
for k=1toK do

10: W(gj) =W(g;) —D(gj,s,hx)/M +D(gj,s,mc) /M
11: end for

12:  end for

13: end for

The ReliefF algorithm calculates the distance betweermdifft samples using the
genotype information of all SNPs. However, such a procedsensitive to noise in
the dataset.

3.2.2 Tuned ReliefF (TURF)

Tuned ReliefF (TuRF) [130] aims to improve the performanicéhe ReliefF algorithm
in SNP filtering by adding an iterative component. The sigoatoise ratio is enhanced
significantly by recursively removing the low-ranked SNRsach iteration. Specifi-
cally, if the number of iterations of this algorithm is seRpit removes thé\ /R lowest
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ranking {.e., least discriminative) SNPs in each iteration, whidres the total number
of SNPs. The pseudocode for TURF is showrigorithm 2.

Algorithm 2 TuRF
1: for i =1toRdo
2:  apply ReliefFM,K);
3:  sortSNP();
4:  removeLowSNR{/R);
5
6

: end for
- return last ReliefF estimate for each SNP

3.2.3 Instability of ReliefF-based algorithm

We found that the ReliefF algorithm is sensitive to the ommfesamples used to calcu-
late the SNP ranking score (E®.1). That is, running these algorithms on the same
dataset with the order of the samples permuted (while maintathe sample-class
label association), leads to different SNP ranking results

A close investigation of the ReliefF algorithm found thatlsa sample order depen-
dency is related to an intrinsic tie-breaking proceduresritbd in thek-nearest neigh-
bours kNN) routine. It causes a partial utilization of neighbouioimation, leading
ReliefF and TuRF to generate unstable results. Specificaligh a sample order de-
pendency is related to the assignment of “hit” and “miss’raseaneighbours of each
sample (lines 6 and 7 dAlgorithm 1). SinceK nearest neighbours are calculated by
comparing the distance between each sample in the datasej &ll the SNP attributes)
and the target samplg {n Algorithm 1), a tie occurs when more th&hsamples have a
distance equal or less than t&' nearest neighbour af. We can show that the sample
order dependency can be caused by using any tie breakingdanaxthat forces exactly
K samples out of all possible candidates to be the nearedthmigs ofs;, which causes
a different assignment of “hit” and “miss” of nearest neighlts when the sample order
IS permuted.
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3.3 Ensemble of filters for gene-gene interaction filter-
ing

As described in Sectio.1.2 the ensemble feature selection approach has been suc-
cessfully used to reduce instability. Here we perturb thgimal dataset by randomly
permuting the sample orders. The aim is to take advantadeedlifferent SNP rank-

ing results generated from the perturbed version of ther@iglataset by aggregating
multiple SNP rankings.

From our analysis of the aforementioned tie-breaking mohlit is clear that a
different set of samples may be assigned to be a samplesstemighbours. Therefore,
the result of a single run of ReliefF utilizes only partialarmation embedded in the
full set of the nearest neighbours. In other words, the tedudm multiple runs of
ReliefF using the dataset with permuted sample order shmarthin complementary
information about how well each set of SNPs can discrimibateveen the two classes
(case vs. control). In this sense, we can potentially harties “diversity” of ranking
results from multiple executions with permuted sample oudéng an ensemble-based
method to produce more stable and accurate SNP rankingsesul

Formally, our ensemble of ReliefF (called ReliefF-E) proésL copies of the in-
put SNP dataset by randomly permuting the order of the sappted invoking Reli-
efF to calculate a ranking score for each S§jHn each of these permuted datasets,
calledW(gj) for iterationl, (I =1,...,L). An ensemble ranking score of each gene
Wensembl€dj) is defined to be the mean of the individual ranking score of Gi¢P:

L .
Wensemblégj) = Zl:lfvw(g]) (3-4)

Similarly, the ensemble of TURF (called TuRF-E) performdtiple runs of TURF,
and aggregates the ranking scores of each SNP producedineation of TURF using
Equation3.4. Schematically, the ensemble of filters can be illustrateshdigure3.1,
where the original datasé& is randomly re-ordered times to create multiple copies
of perturbed datasets. Then, each perturbed dataset i$ardéekring (F, (i =1...L))
and a corresponding ranking is obtairigd The final ranking is obtained by combining
each individual ranking, and re-ranking the SNPs using Eou&.4.
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Figure 3.1: A schematic illustration of ensemble of filtessng random sample re-
ordering.

3.4 Experiment on simulation and real-world GWA da-

ta

To illustrate this effect, we used both a set of simulatiotasiets generated by [132]
and a real world GWA dataset for our demonstration. Theselsion datasets were
generated using different genetic models (different hbiiity and sample size) and
each model randomly simulated the genotype of 1000 SNPsaaib the samples
except for one functional SNP-SNP interaction pair dena®dX0” and “X1” in the
dataset. These datasets are summarized in Bable

Table 3.1: Summary of simulation datasets. Each model oen1®0 datasets.
Model SNP size Sample size Heritability
Epistatic4000.05 1000  case: 200; control: 200 0.05
Epistatic400.0.1 1000  case: 200; control: 200 0.1
Epistatic400.0.2 1000 case: 200; control: 200 0.2
Epistatic400.0.3 1000 case: 200; control: 200 0.3
Epistatic800.0.05 1000 case: 400; control: 400 0.05
Epistatic800.0.1 1000 case: 400; control: 400 0.1
Epistatic800.0.2 1000  case: 400; control: 400 0.2
Epistatic800.0.3 1000  case: 400; control: 400 0.3
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A GWA dataset generated from case-control design of ageeimacular degen-
eration (AMD) samples [103] is also used to illustrate thegie order dependency of
ReliefF and TuRF when applied to real SNP datasets. The AMBseé&acontains 96
cases and 50 controls, with the genotype of 116,212 SNPsaibbr gample.

3.4.1 The effect of the sample order dependency

Figure 3.2a shows the Pearson correlation of the ranking of the SNRsdrseparate
runs of ReliefF and TuRF using a dataset containing 1000 &iB<00 samples (200
controls and 200 cases), respectively. Figdi@b is the result of the same analysis ap-
plied to a simulation dataset containing 800 samples. lteiarahat both ReliefF and
TuRF algorithms are sensitive to the order of samples pteden datasets, causing
the rank of each SNP to be inconsistent between the origatakdt and the randomly
re-ordered dataset. While such an inconsistency is relgtamall for the ReliefF al-
gorithm, the problem is much more severe in TURF. The Pearswelation coefficient
of two runs of TURF ig = 0.43 for the dataset with 400 samples and 0.36 for the
dataset with 800 samples.

By using the aggregation procedure (by aggregating rardgéoges from 50 runs of
the algorithms; see Secti@¥.3for details), we are able to stabilize the ranking results
of both ReliefF and TuRF. Especially, TURF-E can signifigaimicrease the stability of
the SNP ranking results of TURF, with= 0.97 for the dataset with 400 samples and
r = 0.95 for the dataset with 800 samples.

Similar results were obtained when the AMD dataset was aedlyFigure3.2c).
The results illustrate that the sample order instabilitpdeed a problem in analysing
real biological datasets with ReliefF and TuRF. The use s€erble of filters increases
stability and this is evident from the increase of the raglgorrelation tar = 0.99 for
ReliefF andr = 0.98 for TuRF.
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3.4.2 The origin of the sample order dependency

To verify whether the sample order dependency is indeedechlyg tie-breaking, we
modified and recompiled the source codenalfr - 2. 0_bet a 6. zi p (downloaded
fromhtt p: // sour cef orge. net/ proj ect s/ ndr/ )toreport when atie-breaking
happens. Figurd.3shows how many times a tie-breaking case happens when using R
liefF and TuRF for filtering SNPs in the AMD dataset, respesii. It is evident that
when using TuRF for SNP filtering, many more tie-breakingesasappen. This ex-
plains why the SNP ranking results from re-ordered datasstyy TURF is far more
unstable compared to those using ReliefF.

14000
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12000 B TuRF
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Number of Tie Cases
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2000 1,224

Age-related Macular Degeneration (AMD)

Figure 3.3: The number of times a tie breaking case happees wing ReliefF and
TuRF for filtering SNPs in the AMD dataset.

We also modified the source code mfir - 2. 0_bet a_6. zi p to report the tie-
causing samples and remove them from the dataset. Afterviagiall tie-causing
samples, we were able to obtain completely reproduciblkimgrresults (e., r = 1)
with both ReliefF and TuRF (Figurd.4). Hence, we pinpoint the origin of sample
order dependency in ReliefF and TuRF algorithms. Howeesolving sample order
dependency using this approach requires aggressive réof@akarge number of sam-
ples, which inevitably reduces the algorithms’ power t@fifunctional SNP pairs.

One tempting way to solve such a sample order dependencyuieta randomize
procedure to select a sample randomly when a tie occurs. Voyweur experiments
indicate that such a procedure does not increase the doyreldata not shown). In fact,
any tie-breaking procedure that chooses one sample oult\wlal candidate samples
will necessarily produce instability in its resulting ramg score.
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Figure 3.4: The correlation between the SNP rankings, gltgnsformed) of two sep-
arate runs using datasets with tie-causing samples removed

Another way to solve such a sample order dependency can vedtby defining
nearest neighbours to a sample as the ones that are withmeanagistance threshold
of the target sample. A recently developed variant algoritf ReliefF called SURF
(Spatially Uniform ReliefF; [71]) employed this idea. Hoves, by doing so, the al-
gorithm will rely directly on a predefined threshold for nestrneighbours selection,
which may negatively affect the result given the sample spam high-dimensional
space. Therefore, such an approach lacks the robustndssraitk base&NN criteria.
Our study (Sectio3.4.9 confirmed that SURF does not fully recover the SNP filtering
capacity. As discussed later in this paper, our aggregapgmoach, which relies on
sample ranking instead of direct thresholding, gives iestly better results.

3.4.3 Determination of ensemble size

An important parameter in any aggregation method is theegggion size. This is the
number of times an algorithm is repeatedly applied on a dateish reordered samples.
It is important to estimate the minimum aggregation size thaufficient to reduce
sample order dependency. We estimate this value via regehi correlation analysis
on TuRF-E with an aggregation size of 10, 20, 30, 40, and 50gutie simulated
datasets with 400 samples and 800 samples (Figi@elt is apparent that the increase
of the correlation in two separate runs using the original e randomly re-ordered
datasets plateaus at around an aggregation size of 40 fodbtasets, and there is only
minor improvement when employing more than 50 runs. Theeegfthe aggregation
size of 50 is used in all our subsequent experiments.
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Figure 3.5: The correlation between the SNP rankings wiheet to different aggrega-
tion size of TURF, using simulation datasets with 400 sae(#2400) and 800 samples
(s=800).

3.4.4 Ensemble approach to improve success rate in SNP filteg

One motivation for using the proposed aggregation appréath gain a more infor-
mative SNP scoring. Therefore, we investigated whetheraggregation scheme can
improve the ability of ReliefF and TuRF to retain functiorf@P pairs in SNP filter-
ing. Figure3.6 shows the trend of the success rate of each filtering algorébross
percentile 1 to 50i(e., 10-500 top ranking SNPs) using simulated datasets with 400
samples and 800 samples respectively. T8R2eshows the average cumulative success
rate of these algorithms on the same set of simulated dataaét found that TURF-E
performs the bestin all cases examined in our experimegésaess of sample size and
heritability of the simulated datasets. ReliefF-E and &e€lihave similar performance
in terms of success rate, while traditional univariateritguch ag(?-test and odds ra-
tio give the lowest success rates. The superiority of TuRE{karticularly noticeable
in datasets simulated with low heritability or a small numbesamples. This implies
that TURF-E is applicable in even these “challenging” cagesre other ReliefF-based
algorithms fail to achieve high enough success rates.

It is found that ReliefF-E does not exhibit much improvementReliefF whereas
TuRF-E achieves significant improvement on TuRF. This idably due to the fact
that the TuRF algorithm executes ReliefF multiple timeslevhemoving low ranking
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Table 3.2: Average cumulative success rate from percehtive50 using the simulated
datasets (400 and 800 samples). The best algorithm withghes$t average cumulative
success rate in each dataset is showuwoiial.

Methods | Heritability = 0.05 Heritability =0.1 Heritability = 0.2 He ritability = 0.3
Simulated dataset with 400 samples

X2-test 6.92 7.20 8.06 8.51
Odds Ratio 5.86 7.84 8.43 8.58
ReliefF 18.96+0.38 20.93:-0.47 30.33-0.28 33.98-0.31
ReliefF-E 19.27£0.17 21.22-0.14 30.92-0.24 34.76:0.26
TuRF 22.11+1.34 24.5%-2.53 42.27-3.41 61.3%:1.58
SURFTURF 18.12 21.88 44.92 59.88
TuRF-E 35.23+0.37 35.85-0.82 63.53-0.93 84.710.25
Simulated dataset with 800 samples
X2-test 7.73 8.53 9.61 7.84
Odds Ratio 8.53 9.86 9.92 6.61
ReliefF 24.37+0.52 25.110.80 44.23-0.86 54.4@-0.75
ReliefF-E 25.59+0.63 25.83-0.28 44.81-0.36 56.91-0.46
TuRF 33.20+2.11 39.99-2.04 78.64-3.14 91.931.13
SURFTURF 41.20 50.82 96.27 99.86
TuRF-E 61.59+0.58 65.73-1.09 96.69-0.26 99.96-0.21

SNPs in each iteration. Therefore, an aggregation approaal gain more informa-
tion in each iteration. It is also observed that SURFTuRFsdu® improve on TURF
in analysing datasets of 400 samples. This is consisteft out hypothesis that a
predefined distance threshold may be sensitive to a high t8MBmple ratio (thus,
high-dimensionality).

We further investigated whether TURF-E is simply “avergdiout the detection
ability in different runs of TURF. Figur8.7 shows the average cumulative success rates
of 50 runs of TURF on a simulated dataset (sample size = 4@@abiity = 0.05) where
a different sample order is used in each run, and the comespg average cumulative
success rate of their aggregate version (TURF-E). It isr dlest the aggregate SNP
ranking result is significantly better than any single runToRF. This implies that
our aggregation algorithm is indeed able to make use of tteenration embedded in
multiple runs of TuRF to improve its detection ability, igmg our motivation for
using an aggregation approach.

3.5 Summary

The field of gene-gene and gene-environment interactiontiftztion from GWA stud-
ies is still young and rapidly developing. One of the mainliemges in identification of
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Figure 3.6: Success rate for retaining a functional SNPipamulated datasets with
(a) 400 samples and (b) 800 samples.

such interaction relationships is computational efficjesiace in the worst case an ex-
ponentially large number of SNP combinations need to beuatedl. As discussed by a
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Figure 3.7: Comparison of average cumulative success fa&@ odividual runs of
TuRF (shown in a blue circle) and their aggregate result®KkEF&; shown in a red
square) using a simulated dataset with 400 samples (hiétjta$0.05).

number of authors [42,131, 191], effective SNP filtering gagatly reduce the compu-
tational burden of the subsequent combinatorial evalodtjoremoving a large portion
of noise. The main advantage of using ReliefF-based algustfor SNP filtering is that
they can detect conditional dependencies between agglji66]. Furthermore, they
are computationally efficient. A good implementation of FuBan analyse a GWAS
dataset with up to a few hundred samples in the order of nsni@ach computational
efficiency, coupled with its intrinsic ability in detecti@NP dependencies, has led to
its increasing wide-spread applications.

Through analysing the ReliefF-based algorithms, we disaml a previously un-
known anomaly in both ReliefF and TuRF. We show these two |aogiltering algo-
rithms are sensitive to sample ordering, and therefores givstable and suboptimal
SNP ranking in different runs when the sample order is pegthutUsing a simple
ensemble procedure based on the general theory of ensesabhénly, we can vastly
improve the stability and reliability of the SNP ranking geated by these algorithms.
It is indeed quite remarkable that such a simple modificatnamich is guided by the
theory of ensemble learning, can yield such a vast improm¢mehe final result. The
fact that TURF-E is better than the state-of-the-art SUREH algorithm indicates that
preserving th&NN rank-based routine is indeed a good idea.

ReliefF-based algorithms are also used to perform featleetson tasks for a range
of machine learning problems including gene selection ioraa@rray analysis. This
implies our findings are not limited to the field of gene-gemenaction identification
in GWA studies, and may have relevance to the broader matdmneing community.
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Although we recognize that the sample order sensitivityolam is of less relevance
to continuous datasets since tie-breaking is less likelyctur, the potential problem
caused by tie-breaking in kNN procedure is still noteworthy in the development of
new algorithms.

Our work indicates that new algorithms should be validatgairest a range of cri-
teria. Many bioinformatics algorithms have been develojpederform such filtering
tasks. These algorithms are mostly assessed and compaest dratheir objective, in
our situation, how well a filtering algorithm can retain ftiooal SNP pairs. However,
much less focus has been placed on analysing whether tHesrgsoerated by a SNP
filtering algorithm satisfy a set of desirable propertiebie Bample order dependency
property in this paper is one such example, as it is not naiexpect the SNP rank-
ing to change due to reordering the samples in a dataset.cintfee importance of
validating a bioinformatics algorithm and its software lepentation is increasingly
being recognized [32], and we believe that systematicalidating an algorithm a-
gainst a range of desirable properties of its behaviour c®ipéng more important as
biological interpretations are increasingly drawn frorsuiés produced by bioinformat-
iCs programs.

3.6 Software availability

The TuRF-E package is freely available from:

http://code.google.com/p/ensemble-of-filters



Chapter 4

Gene-Gene Interaction Identification
Using Genotype Data

This chapter is based on the following publication:

Pengyi Yang, Joshua W.K. Ho, Albert Y. Zomaya, Bing B. Zhgen&tic ensemble
approach for gene-gene interaction identification. BMCiBfiormatics, 11:524, 2010

4.1 Combinatorial testing for gene-gene interaction i-
dentification from genome-wide association studies

As mentioned in SectioB.1, current opinion is that the development of complex dis-
eases is inherently multifactorial governed by multiplegtec and environmental fac-
tors and the interactions among them. The fast developniémt genotyping technolo-
gies has empowered us to study genetic and environmengahations on a genome-
wide scale. However, data analysis is swamped by the largeiainof data and high-
dimensionality. Methods for gene-gene interaction fittgrihat we described in Chap-
ter 3 are key computational techniques to reduce the variablagrianageable amount
for combinatorial testing.

A number ofcombinatorial methodbhave been developed recently. These include
logistic regression-based approaches [146] random ®iested algorithms [25, 34],
and nonparametric methods like Polymorphism Interactioalysis (PIA) [127], Mul-
tifactor Dimensionality Reduction (MDR) [76], and Combiogal Partitioning Method

44
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(CPM) [138]. However, there is no one-size-fits-all methodthe detection and char-
acterization of gene-gene interaction relationships inA3fidies. Several comparison
and evaluation studies suggested that applying a combmafimultiple complemen-
tary algorithms, each having its own strength, could be tlstreffective strategy to
increase the chance of a successful analysis [22, 83, 136].

Here we attempt to address the problem from an alternativgppetive by con-
verting the issue into a combinatorial feature selectiabf@m. From the data mining
perspective, a sample from a SNP dataset of an associatidyistdescribed as a SNP
feature set of the forfy={g1,092,...,0n}, (i = 1,...,m) where each SNRj; , is a cate-
gorical variable that can take the value of O, 1, and 2 for ggres ofaa, Aa, or AA at
this locus, andnis the number of samples in the dataset. The dataset caefdresrbe
described as am x n matrix Dymr={(f1,¥1), (f2,¥2), ..., (fm, Ym) }, Wherey; is the class
label of thei'" sample. The assumption is that a gene-gene interactiots éiishelps
in discriminating the disease status. To evaluate theidigtation power of a set of
SNPs jointly, we apply the following two steps. (1) Genergta reduced SNP feature
setfi={01,02,...,04}, (f{ C fi) in @ combinatorial manner which restrains the dataset
matrix into Dmg={ (1, ¥1), (f5,¥2), ..., (f, Ym) }. A key observation is that feature selec-
tion algorithms that evaluate SNPs individually are notrappate since they cannot
capture the associations among multiple SNPs. (2) Creatasgification hypothesis
h using an inductive algorithm, and evaluating the qualityhe trained model using
criteria such as accuracy, sensitivity, and/or specifieity an independent test set.

Without loss of generality, we simplify the notation &$o denote applying a SNP
subset to restrain the SNP dataBgf,. If a SNP combinatiorf yields a lower misclas-
sification rate than others, we shall consider that it pdgsibntains SNPs with main
effects or SNP-SNP interactions with major implication® Wéw have two challenging
problems for the SNP interaction identification. The firsaltdnge is to generate SNP
combinations efficiently since the number of SNP combimatigrows exponentially
with the number of SNPs, and it is not feasible to evaluat@adisible combinations
exhaustively. The second challenge is to determine whidhative algorithm should
be applied for the goodness test of SNP combinations. Tdedble first problem,
we shall apply genetic algorithm (GA) since it has been destrated to be one of
the most successful wrapper algorithms in feature seleétoon high-dimensional da-
ta[105,106]. Furthermore, its intrinsic ability in capghg nonlinear relationships [193]
is valuable for modelling various nonadditive interacsoWith regard to the second



46 CHAPTER 4. GENE-GENE INTERACTION IDENTIFICATION

problem, there is no guiding principle on which inductivga@aithms are preferable
for identification of multiple loci interaction relationgts. However, a promising solu-
tion is to employ multiple classifiers and then to integttaddgnce the evaluation results
from these classifiers [34]. The key issue in applying thishoeé is that the individual
classifiers used for integration should be able to captulépteiSNP interactions that
commonly have nonlinear relationships. This may be ackiidyeusing appropriate
nonlinear classifiers.

As mentioned in Sectio.1.], the rationale of using multiple classifiers is that,
suppose a given classifiegenerates a hypothesis spa#g for sample classification,
if the number of training samples s large enough to characterize the real hypothesis
f (in this context,f is the set of disease-associated SNPs and SNP combinadiwohs)
the data are noise-free, the hypothesis space generaiexhbyld be able to converge
to f through training. However, since the number of training ks is often far too
small compared to the size of the hypothesis space, whichases exponentially with
the size of the features (SNPs), the number of hypotheseasaiftér can fit to the
available data is often very large. One effective way to tramsthe hypothesis space
is to apply multiple classifiers, each with a different hypesis-generating mechanism.
If each classifier fulfils the criteria of being accurate ancse [24], it can be shown
that one is able to reduce the hypothesis space to betterredpe real hypothesisby
combining them with an appropriate integration strate@}.[By combining GA with
multiple classifiers, we obtain a hybrid algorithm (callgehetic ensembler GE) for
gene-gene interaction identification that is able to idgwlifferent sizes of interactions
in parallel.

One other motivation for developing alternative method$SiP-SNP interaction i-
dentification is in hope that different algorithms may coemént each other to increase
the overall chance of identifying true interaction relastips. Therefore, itis important
to evaluate the degree of complementarity of multiple atgors for SNP-SNP interac-
tion identification. Specifically, based on the notiordotible faulf170], we propose a
formula for calculating the co-occurrence of mis-idenétfion that gives an indication
of the degree of complementarity between two different @lgms. Accordingly, the
joint identification of using multiple algorithms is derthe
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4.2 Gene-gene interaction identification using genetic en-
semble hybrid algorithm

As illustrated in Figuret.1, the GE approach is applied to SNP selection repeatedly. In
each run, randomly generated SNP subsets are fed into a ¢m®@mi multiple classi-
fiers for goodness evaluation. Two classifier integraticatsgies, namellglockingand
voting and a diversity-promoting method calldduble faultstatistic are employed to

Genetic
Ensemble
'
LN} i

guide the optimization process.

SNP Apply Genetic Ensemble
selection based SNP selection
v
Optimal SNP sets from each run

n mmmmm Fithess,(s) Fitnessy(s), Cross Validation
e ETE TR " W)
Combinatorial
ranking x _
SNP-SNP interaction identification —
. Crossover

v

Evaluation Phenotype classification

Figure 4.1: Genetic ensemble system. Multiple classifieesistegrated for gene-

gene and gene-environment interaction identification. g8eralgorithm is employed

to select SNP subsets that have been identified to have [@tgahe-gene and gene-
environment interaction information.

When the evaluation of a SNP subset is done, the evaluataibéeks of this SNP
subset are combined through a given set of “weight” valuessamt back to GA as
the overall fithess of this SNP subset. After the whole pdmreof GA is evaluated,
selection, crossover and mutation are conducted and thgeegration begins. A near
optimal SNP subset is produced and collected when a setroirtation conditions are
met. The entire GA procedure is repeated (with differentdsder random initializa-
tion) n times f = 30 in our experiments) to generatdest SNP subsets. These SNP
subsets are then analysed to identify frequently occu@iNg-pairs, SNP-triplets, and
higher-order SNP combinations.
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For SNP interaction identification, a combinatorial ramkis applied to then s-
elected SNP subsets. Each possible SNP combination is then gn identification
frequency score (the number of times it appears divided bytdatal number of itera-
tionsn). For example, if the SNP combinatidsnp, snp} appears in 25 out of 30
iterations, then its identification frequency score is P5(3833. Two alterative criteria
can be used to decide whether a SNP combination should ke aallnot. The first
criterion is to set a frequency score cut-off, say 0.8, atichicENP combinations with
a frequency score higher than this cut-off as functional $difAbinations. The second
criterion is to set a cut-off rank, and call all SNP combioas equal to or higher than
that rank as functional SNP combinations. As will be dem@testl in subsequent sec-
tions, the choice between these two criteria is likely to b@@nce between detection
power and false discovery rate.

4.2.1 Genetic component

The number of SNPs considered by the genetic ensemble thligoior potential inter-
action detection, ranges from the lower bound of 2 to the uppand ofd, whered is
the “chromosome” size of GA. The size of the GA chromosometivasmplications.
Firstly, it controls the number of factors we can identifyorfexample, if the size of
d = 15 is used, we can identify from 2-factor up to 15-factor riattions in parallel.
Secondlyd also influences the size of the combinatorial space to beoeeghl It is a
trade-off between the computational time and the combiratspace to be searched.
Therefore, for different SNP sizes (that is, the number oPShh the dataset), we shall
use different sizes af accordingly. Similar to the size of GA chromosome, the popu-
lation sizep and the generation of G are also specified according to the SNP size in
the dataset. In our implementation of the GE algorithm, taametersl, p, andg can
be specified by users. The default values of these paranaishosen empirically
such that they work well in a range of datasets.

For the GA selection operation, we employ the tournamergcteh method as
it allows control of convergence speed. Specifically, therament selection size,
denoted ag, is dependent on the size of the population, varying from 3.toThe
measure for determining the winner is as follows:

Winner= arg rsr;%xfitnesiR;(p)) (i=1,2,..,1) (4.1)
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whereR;(.) is the random selection function which randomly selectegemses from
the GA populationp, t is the tournament size, anidtnesg.) determines the overall
fithess of the randomly selected gene subset. Single paissaver is adopted with the
probability of 0.7. In order to allow pair mutations, we irepiented a multi-mutation
strategy; that is, when a single mutation occurs (configungalthe probability of 0.1)
on a chromosome, another single point mutation may occuh@same chromosome
with a probability of 0.25 and so on. The chromosome codiriges® is to assign an
id to each SNP in the dataset, and to represent the chromoscerstrasy of SNHds
that specify a selected SNP subset. For each position oromolsome, it could be a
SNPid or a “0”, which specifies an empty position. Therefore, ddfa sizes of SNP
combinations are explored in a single GA population in pakalable4.1 summarizes
the parameter settings.

Table 4.1: Genetic algorithm parameter settings.

Parameter Value
Chromosome size 15-25
Population size 40-340
Termination generation 8-20
Selector Tournament selection (3-7)
Crossover Single point (0.7)
Mutation Multiple points (0.1 & 0.25)

The fitness of GA is defined as follows:

fitnesgs) = wy x fitness(s) +wp x fitness (s) +ws x fitness (s) (4.2)

wheresdenotes a SNP combination under evaluation. The funcfibtness(s), fithess (s)
andfitness(s) denote the fithess of a SNP combinatsas evaluated by thelocking
voting anddouble faultdiversity measures, respectively. A complexity regukian
procedure is implemented in the GE algorithm to favour sfd8iNP combinations if
two SNP combinations have the same fitness value. The cotigrutietails of each
component of the fitness function are described in the nexiose
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4.2.2 Integration functions
4.2.2.1 Blocking

Our first integration function iblocking. It is a statistical strategy that creates similar
conditions to compare random configurations in order torohsnate the real differ-
ences from differences caused by fluctuation and noise Bi)pose a total df clas-
sification algorithms, each having a different hypothesisaled as?, (i =1,...,L),
are used to classify the data using a SNP subs€he fithess function determined by
blockingintegration strategy is as follows:

fitnesg(s) = i BC(p(t|h?,D),y) (4.3)

wherey is the class label vector of the test data3efunction p(.) predicts/classifies
samples irD ast usingh?, andBC(.) is the balanced classification accuracy devised to
deal with the dataset with an imbalanced class distributiothe binary classification,
itis the area under ROC curve (AUC) [29], which can be appratéed as follows:

SetS
BO(p(t]HF,D),y) =~ = (4.4)
N N
Se= 2 100, Sp=-—""" x 100 (4.5)
case control

whereSeis the sensitivity value calculated as the percentage aidingber of true pos-
itive classificationstp) divided by the number of caseNsd. Spis the specificity
value calculated as the percentage of the number of truginegtassificationsNy n)
divided by the number of control®N{oniro1). Such a balanced classification accuracy
measure can accommodate the situation in which the datastgics an imbalanced
class distribution of cases and controls [194].

The idea of applying this strategy for classifier integnairoSNP selection is that by
using more classifiers to validate a SNP subset, we are abtangirain the hypothesis
space to the overlap regiot, increasing the chance of correctly identifying functibna
SNPs and SNP-SNP interactions.
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4.2.2.2 Majority voting

The second classifier integration strategy applied in ouh@#id algorithm isnajority
voting [102]. Majority voting is one of the simplest strategies ombining classifi-
cation results from an ensemble of classifiers. Despitaniplecity, the power of this
strategy is comparable to many other more complex metiyd4.0]. With a majority
voting of L classifiers, consensus is madekyglassifiers where:

L/2+1 : ifLiseven
(L+1)/2 : ifLisodd

(4.6)

Again, suppose a total df classifiers, each having a different hypothesis denoted
ash®, (i=1,...,L), are used to classify the data using SNP sufdé&e fitness function
derived from majority voting is as follows:

fitness (s) BC(Vk( \ZI L P(t[h?,D ) ) 4.7)

wherey is the class label vector of the test dataBel(.) is the decision function
of majority voting, andt’ is the voting prediction. Here the balanced classification
accuracyBC(.) is calculated with voting results.

The reason for using the majority voting integration is t@ive sample classifi-
cation accuracy while also implicitly promoting diversaynong individual classifier-
s [169].

4.2.2.3 Double fault diversity

The third objective function is an explicit diversity protimg strategy callediouble
fault statistic. This statistic is commonly used to measure therdity of ensemble
classifiers [170].

Letcs, ¢, € {F, S} in whichF denotes the sample being misclassified by a classifier
while Sdenotes the sample being correctly classified. We déffaé as the number
of samples that are (in)correctly classified by two classfie which the correctness
of the two classifiers is denoted oy andc, respectively. Using this notation, we can
obtain the term:

NFF
D(p(t|he,, D), p(tIng,, D)) = =5~ (4.8)
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which is the estimation statistic of coincident errors ofaar pf classification models
hg, andhg (hence the name “double fault”) in classification of a totaNosamples in
test datasdD, using SNP subset

The fitness with regard to the diversity measuremerit ofassifiers over subsst
(denoted aditness (s)) derived from the double fault statistic is defined as fokow

2 L L

fitnesg(s) =1— =)

D(p(t|he,, D), p(t[hg,, D)) (4.9)
a=1b=a+t1

The value of this fitness function varies from 0 to 1. The vadgeals 0 when all
classifiers misclassified every sample. It equals 1 when mpkeais misclassified or
there is a systematic diversity, leading to no sample beiisglassified by any pair of
classifiers.

4.2.3 Selecting classifiers

The motivation for applying nonlinear classifiers is basadre assumption that non-
linear and nonadditive relationships are commonly preskim gene-gene interac-
tion [134]. This is particularly relevant in detecting coleyp epistatic interaction that

involves both additive and dominant effects. Thereforegnsemble construction, we
focus on evaluating nonlinear classifiers. Moreover, wéepreassifiers that are rela-
tively computationally efficient since the identificatiohgene-gene interaction is car-
ried out in a wrapper manner. Thus, our attention has bearséton decision tree-

based classifiers and instance-based classifiers, as wedinlybrids because they are
fast among many alternatives, while also being able to parfionlinear classification.

However, we note that any combination of linear and nonlmésssifiers can be used
in our framework. With the above considerations, an ingetl of experiments is con-

ducted to select candidate classifiers for ensemble carisinu Those results will be

presented in Sectioh.5.1

4.3 Evaluation datasets

We used the simulation datasets generated from the samd i8@¢ as those de-
scribed in Sectior3.4for evaluation. The dataset from the GWA study of AMD is also
used as a case study of a real-world dataset [103].
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For the simulation study, we used both balanced and imbathsiculation dataset-
s. For datasets with balanced class distribution [194]ckhes ratio is 1:1 with 100 case
samples and 100 control samples. The datasets are simuladed three different ge-
netic heritability models (heritability of 0.2, 0.1, and6), and two SNP sizes (SNP
size of 20 and 100). This gives six sets of datasets and egecpstains 100 replicates,
each generated with a different random seed [132]. The propé the imbalanced
datasets used for evaluation is the same as the balancedaxcept that the class
ratio is approximately 1:2 with 67 case samples and 133 abséimples. For imbal-
anced data, we restrict the evaluation to SNP size of 20,leréfore, we obtain three
sets of datasets with each set containing 100 replicatéde #& summarizes the char-
acteristics of the simulated datasets.

Table 4.2: Summary of simulation datasets used for SNP geantification.

Dataset Sample size Ratio Heritability SNP size No. refdiga
balanced200.0.2 20 200 1:1 0.2 20 100
balanced200.0.1 20 200 1:1 0.1 20 100
balanced200.0.05 20 200 1:1 0.05 20 100
balanced200.0.2.100 200 1:1 0.2 100 100
balanced200.0.1.100 200 1:1 0.1 100 100
balanced200.0.05100 200 1:1 0.05 100 100
imbalanced200.0.2 20 200 1:2 0.2 20 100
imbalanced200.0.1 20 200 1:2 0.1 20 100
imbalanced200.0.05 20 200 1:2 0.05 20 100

4.4 Evaluation statistics

4.4.1 Evaluation statistics for single algorithm

We compare the detection power of the proposed GE algoritlitim RFIA (version:
Pl A- 2. 0) and MDR (version:ndr - 2. 0_bet a_6). In the previous studies of M-
DR [164] and PIA [127], the power of an algorithm to identifgrge-gene interaction-
s is estimated as the percent of times the algorithm “sufidgsgdentifies” the true
functional SNP pair from 100 replicates of simulated datasghis is repeated for ev-
ery heritability model to quantify how well each algorithrarforms when dealing with
datasets of varying difficulty (lower heritability being meodifficult). An algorithm is
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said to have successfully identified a functional SNP paa dataset if the true SNP-
pair is reported as the top rank. For comparison with MDR ai#d ®e follow this
approach and estimate the power of GE, MDR, and PIA usingdit@fing statistics:

NS
Power= N (4.10)

whereN is the number of datasets testét=000 in our case), anil® is the number of
successful identification.

For GE in particular, we are also interested in estimatirggdistribution of false
discovery rate (FDR) and true positive rate (TPR) sinceheworst case, if there is
no SNP-SNP interaction in the dataset, a top-ranked irtieraltst only contains false
positive identifications. Formally, we estimate FDR as:

o NFP(C)

FDR(c) = NG (4.11)

whereFDR(c) is the FDR at the cut-off of, Nep(c) is the number of accepted false
positive identifications at the cut-off @f andN(c) is the number of accepted identifi-
cations at the cut-off of. Similarly, TPR is calculated as:

Nt p(C)
Nrp(C) + Nen(C)

whereTPR() is the TPR at the cut-off of. Ntp(c) andNgn(c) are the number of
accepted true positives and the number of false negatiths aut-off ofc.

TPRC) = (4.12)

Both the rank and the identification frequency score of ed¢R Sombination can
be used as the cut-off to calculate FDR and TPR at differemiidence levels. We con-
sider both approaches, and using the 100 replicate datafseéeh heritability model,
we obtain the average FDR and TPR at different cut-offs fahdweeritability model.

4.4.2 Evaluation statistics for combining algorithms

One major motivation for developing a genetic ensemblerdlga for gene-gene in-
teraction identification is to harness the complementagngth of different classifiers
such that a more robust and predictive SNP subset can beneBtailo extend this
idea further, we propose to combine the inferred SNP-SNé&tantion from different
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algorithms (such as MDR and PIA), in the hope that more robesilts can be ob-
tained. However, such benefits may come only when the regielided by different
SNP-SNP interaction identification algorithms are comp@etary to each other, which
is analogous to the idea of the ensemble diversity.

By modifying the equation of double fault, we design thedaling terms to quanti-
fy the degree of complementarity (CD) of a pair of algorithmSNP-SNP interaction
identification:

SF(X,Y) =NFS+NSF DF(X,Y) = NFF (4.13)

USFXY)
COY) = BETR,Y) + SFX.Y) (4.14)

whereNXY is the number of datasets with certain identification stagisg algorithms

X andY, andX,Y € {F,S} in which F denotes that an algorithm fails to identify the
functional SNP pair whil& denotes it succeeds in identifying the functional SNP pair.
SFK(X,Y) (single fault) is the number of times algorithi¥sandY give inconsistent
identification results, which is the situation when one athon succeeds while the
other one fails. DF(X,Y) (double fault) is the number of times bok andY fail.
The pairwise degree of complementarity of the algoritifnandY is determined by
CD(X,Y).

Excluding the case in which botk andY achieve 100% successful identification
(which givesg), the value ofCD(X,Y) varies between 0 and 1. When the results pro-
duced byX andY are completely complementary to each other, the valugFqiX,Y)
decreases to 0, and the value@D(X,Y) reaches 1. On the contrary, the value of
CD(X,Y) decreases with the decrease of the degree of complemgiitaiteen algo-
rithmsX andY, and reaches 0 when no degree of complementarity is found.

Our premise is that combining algorithms with a higher degrecomplementarity
will yield higher identification power. In this study, we esate the joint power of two
or three algorithms as:

Powep(X,Y) =N —DF(X,Y) (4.15)

Powep(X,Y,Z) =N—TF(X,Y,Z2); TF(X,Y,Z)=NFFF (4.16)
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where TF(X,Y,Z) is the “triple fault” which gives the coincident errors ofrée i-
dentification algorithms, anBower(X,Y) andPower(X,Y,Z) are the joint power of
combining two and three identification algorithms respedyi

4.5 Experiments and results

4.5.1 Classifier selection for ensemble construction

One of the most important steps in forming an ensemble o$ifiass is base classifier
selection. As described above, characteristics such dsaanseparation capability,
computational efficiency, high accuracy and diversity $ticae taken into account.
With these considerations, a classifier selection and dplgetonstruction experiment
was carried out. Specifically, we tested the merits of eacididate classifier using
datasets with model numbers of 10, 11, 12, 13 and 14 from Meba [132], all of
which have a minor allele frequency of 0.2, heritability o 0and sample size of 200
(100 case and 100 control). These are considered “difficldtasets since they are
simulated to have low minor allele frequency, low heritéjailand small sample size
[127]. Twenty replicates from each model were used for etan, and the power of
each classifier in identifying the functional SNP pair walsakated. Figuret.2a shows
the 12 candidate classifiers we evaluated in this study. HneyREPTree(REPT),
random tree(RT), alternating decision tre€ADT) [65], random forest{RT) [21],
1-nearest neighbou(lNN), 3-nearest neighbof3NN), 5nearest neighbou(5NN),
decision tre€J48), 1nearest neighbouwith cover treg(CT1NN), 3nearest neighbour
with cover tree(CT3NN) [15], entropy-based nearest neighbqStar) [37], and 5-
nearest neighbowvith cover tree(CT5NN).

The identification power of each classifier was estimateagisie simulated dataset-
s. Among the twelve classifiers, six of them successfullyidied the functional SNP
pair more than 50% of the time. Five of them were selected o fthe ensemble
(coloured in red in Figurd.2a). They are J48, KStar, and three decision treeland
nearest neighbour hybrids — CT1NN, CT3NN, and CT5NN.

The configuration of parameters such as GA chromosome rontatie and integra-
tion weights of diversity measure, blocking, and voting eveasted using the same sets
of data as above. Specifically, the mutation rates tested &66, 0.1 and 0.15. The in-
tegration weights of diversity tested were also 0.05, 0d @A5, while the integration
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Figure 4.2: Selection of base classifiers and ensemble cwafign. (a) Classifier se-
lection. The value on the top of each bar denotes the estihpatger in functional SNP
pair identification using each classifier. (b) Ensemble cométion. The value on the
top of each bar denotes the power in functional SNP pair ifilesiion using ensem-
ble of classifiers with different values of GA chromosome atioh rate and diversity
integration weight, respectively (denoted as a duplexexthxis).

weights for blocking and voting were kept equal, and thedhveights add up to 1. This
gives 9 possible configurations for the ensemble of classifiehe identification pow-
ers of the ensemble of classifiers using these 9 configussishown in Figuré.2b.

It is observed that all the ensembles achieved better sabialh the best single classifier
which has an identification power of 53.8%. Among them, th& parameter setting
is (0.1, 0.15) which specifies the use of a mutation rate ok@d integration weights
of 0.15, 0.425, and 0.425 for diversity, blocking, and vgtirespectively. This config-
uration gives an identification power of 60.8%, which is anffigant improvement on
53.8%. This setting was then fixed in our GE in the followupexkpents.

4.5.2 Simulation results
4.5.2.1 Gene-gene interaction identification

In the simulation experiment, we applied GE, PIA, and MDR detecting the func-
tional SNP pairs from 20 candidate SNPs and 100 candidate INgpectively. Table
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4.3 shows the evaluation results. By fixing the candidate SN ®20 and testing
datasets generated with three heritability values (022,ahd 0.05), we observed a de-
crease in the average identification power of the three @ltgos (taking the average of
the three identification algorithms) from 98:88.94 to 78.6742.62 and to 43.6%0.94.
By fixing the candidate SNP size at 100 and testing datasetygted with three heri-
tability values (0.2, 0.1 and 0.05), the average identificgpower drops to 93.670.94,
48.33t2.49, and 19.081.63, respectively. It is clear that both heritability andFSsize
are important factors to SNP-SNP interaction identifiaatd/hen comparing the pow-
er of each algorithm, we found no significant differences.e Btandard deviation is
generally small, ranging from 0.94 to 2.62, indicating ttia three algorithms have
similar performance.

Table 4.3: Functional SNP pair identification in balancethslets using GE, PIA, and
MDR.

Dataset GE PIA MDR
Power (%) Power (%) Power (%)
balanced200.0.2.20 99 97 99
balanced200.0.1.20 80 75 81
balanced200.0.05.20 45 43 43
balanced200.0.2.100 95 93 93
balanced200.0.1.100 45 49 51
balanced200.0.05.100 17 19 21

Table 4.4: Functional SNP pair identification in imbalanciedasets using GE, PIA,
and MDR.

Dataset GE PIA MDR
Power (%) Power (%) Power (%)
imbalanced200.0.2.20 92 90 95
imbalanced200.0.1.20 59 45 62
imbalanced200.0.05.20 32 24 27

To investigate whether an imbalanced class distributiteces identification power,
we applied GE, PIA, and MDR to imbalanced datasets with a-cas&ol ratio of 1:2
and a candidate SNP size of 20. From Tahl we found that the power of the three
identification algorithms decreased in comparison to tlodslee balanced datasets (Ta-
ble 4.3). Such a decline of power is especially significant when tiétdbility of the
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Figure 4.3: True positive rate and false discovery rateregton of GE at different rank
cut-offs. Simulated datasets with different heritabilitypdels, number of SNPs, and
class distribution, are used to evaluate the true posiéiteeand false discovery rate of
GE at different identification cut-offs using different kamalues [1-10].

dataset is small. This finding is essentially consistertt Wi4] in that datasets of larg-
er heritability values are more robust to imbalanced cléssibution. Since the sample
size and other dataset characteristics in the balancedhanidbalanced datasets are
the same, the observed decline of power could be attribatedet imbalanced class
distribution. It is also noticed that the identification pawof PIA is relatively low-
er compared to GE and MDR. This indicates that PIA may be mensigsve to the
presence of the imbalanced class distribution than GE an&MD

For the GE algorithm, two approaches were used to study shetition of the TPR
and FDR. For the first approach, we calculated the TPR and RDRtying the rank
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Figure 4.4: True positive rate and false discovery ratevegton of GE at different

frequency score cut-offs. Simulated datasets with diffeneritability models, number
of SNPs, and class distribution, are used to evaluate tleepositive rate and false
discovery rate of GE at different identification cut-offsngsdifferent frequency scores
[1-0].

cut-off of the reported SNP pairs. Figude8shows the distribution by using a rank cut-
off of 1 to 10 (the lower the number, the higher the rank). Nbs& the rank cut-off of 1
gives the results equal to the power defined in Equati@f For the second approach,
we calculated the TPR and FDR by varying the identificati@gfiency cut-off of the
reported SNP pairs. Figure4 shows the distribution by decreasing the frequency cut-
off from 1 to 0. By comparing the results, we found that therdase of the heritability
(from 0.2, to 0.1 and to 0.05) has the greatest impact on TPREfSample size
appears to be the second factor (from 20 SNPs to 100 SNPsihamubalanced class
distribution is the third factor (from a balanced ratio ol 10 an imbalanced ratio of
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1:2).

Generally, by decreasing the cut-off stringency (eithaekreut-off or identification
frequency cutoff), the TPR increases, and therefore, maretional SNP pairs can be
successfully identified. However, this is achieved by atingpncreasingly more false
identifications (higher FDR). The simulation results iradethat FDR calculated by
using the identification frequency cut-off is very steadsgardless of the change of
heritability, SNP size, or class ratio. In most cases, an EDRe to 0 is achieved with
a cut-off greater than 0.78.

4.5.2.2 The degree of complementarity among GE, MDR, and PIA

As illustrated in Tablel.3and Tabled.4, large candidate SNP size, low heritability val-
ue, and the presence of imbalanced class distributiontiegegive the worst scenario
for detecting SNP-SNP interaction. One solution to inceethe chance of successful
identification in such a scenario is to combine differennitfecation results produced
by different algorithms, which extends the idea of the erldermethod further. How-
ever, similar to the notion of diversity in ensemble classjfihe improvement can only
come if the combined results are complementary to each.d#egrce, the evaluation of
the degree of complementarity among each pair of algoriteesmes indispensable.

We carried out a pairwise evaluation using EquatdlatBand4.14 Tables4.5and
4.6 give the results for balanced and imbalanced situatiospeaively. We observed
that higher degree of complementarity is generally assedith higher identification
power. For the balanced datasets, the degree of complentgofaPIA and MDR is
relatively low compared to those generated by GE and PIA pafd MDR. The results
indicate that the GE algorithm, which tackles the probleomfia different perspective,
is useful in complementing methods like PIA and MDR in geeeginteraction iden-
tification. As for the imbalanced datasets, the differerfd@®complementarity degree
between each pair of algorithms is reduced. This suggestsrtbre methods need to
be combined for imbalanced datasets in order to improvdiittztion power.



Table 4.5: Functional SNP pair identification in balancetagets by combining multiple algorithms.

Dataset (GE + PIA) (GE + MDR) (PIA + MDR) (GE + PIA + MDR)
CD Powe;(%) CD Powej(%) CD Powej(%) Powej (%)
balanced200.0.2 20 1.000 100 1.000 100 0.667 99 100
balanced200.0.1.20 0.448 84 0.556 88 0.240 81 88
balanced200.0.0520 0.303 54 0.303 54 0.068 45 55
balanced200.0.2100 1.000 100 0.923 99 0.444 95 100
balanced2000.1.100 0.441 62 0.400 61 0.148 54 63
balanced200.0.05100 0.093 22 0.116 24 0.025 21 24

Table 4.6: Functional SNP pair identification in imbalandathsets by combining multiple algorithms.

Dataset (GE + PIA) (GE + MDR) (PIA + MDR) (GE + PIA + MDR)
CD Powej(%) CD Powej(%) CD Powej (%) Poweyj (%)
imbalanced2000.220 0.714 96 0.818 98 0.750 97 99
imbalanced2000.1.20 0.567 71 0.481 73 0.475 68 76
imbalanced200.0.0520 0.286 40 0.301 42 0.287 38 47
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The last columns of Table$.5 and 4.6 show the joint identification power of the
three algorithms in analysing balanced and imbalanced ddtase results indicate a
significant recovery of detection ability in functional S)gRir identification by apply-
ing three algorithms collaboratively. This is especiatlyetwhen analysing imbalanced
datasets and the heritability of the underlying genetic eh@gllow. For example, the
average identification power of three algorithms for imbakd datasets with heritabil-
ity of 0.1 and 0.05 are 55.33% and 27.67%, respectively €rdbl). By combining
the results of the three algorithms, we are able to incrdasedawer to 76% and 47%,
respectively, improving by around 20% (Figut).
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4.5.3 Real-world data application

As an example of a real-world data application, we appliedGiE algorithm, PIA and
MDR, to analyze the complex disease of AMD. To reduce the a¢patbrial search
space, we followed the two-step analysis approach [191aed a SNP filtering pro-
cedure that is similar to the method described in [34], whdah be summarized as
follows:

S1: Excluding SNPs that have more than 20% missing genoipey of total sam-
ples.

S2: Calculating allelig¢?-statistics of each remaining SNP and keeping SNPs which
have ap-value smaller than 0.05 while discarding others. A totaB583 SNPs
passed filtering.

S3: Utilizing RTREE program [212] to select top splitting B&lin AMD classifica-
tion. Two SNPs withd of rs380390 and rs10272438 are selected.

S4: Utilizing Haploview program [11] to construct the LirdgaDisequilibrium (LD)
blocks around the above two SNPs.

After the above processing steps, we obtained 17 SNPs frentw LD block-
S. They are rs2019727, rs10489456, rs3753396, rs38032B4664, and rs1329428
from the first block, and rs4723261, rs764127, rs1048654964707, rs10254116,
rs10486521, rs10272438, rs10486523, rs10486524, rs52838and rs1420150 from
the second block. Based on the previous investigation of ABE)77,175], we added
another six SNPs to avoid analysis bias. They are rs800233R64170, rs1065489,
rs1049024, rs2736911, and rs10490924. Moreover, envigatahfactors of Smok-
ing status and Sex are also included for potential envireninmgeraction detection.
Altogether, we formed a dataset with 25 factors for AMD agsiian screening and
gene-gene interaction identification.

Tables4.7 and 4.8 illustrate the top 5 most frequently identified 2-factor &8wd
factor interactions, respectively. At first glance, we dest the identification results
given by different methods are quite different from one AeatConsidering the results
of 2-factor and 3-factor interaction together, howeverfwe that two gene-gene inter-
actions and a gene-environment interaction are identifyealltihree methods. Specif-
ically, the first gene-gene interaction is characterizedheySNP-SNP interaction pair
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of rs1027243&rs380390. The first SNP is an A/G variant located in intron BB59
located in 7p14, while the second SNP is a C/G variant locatedron 15 of CFH lo-
cated in 1q32. The second frequently identified gene-geeeaiction is characterized
by the SNP-SNP interaction pair of rs1049092410272438. The first SNP in this
interaction pair is a nonsynonymous coding SNP of Ser69daadion located in exon
1 of ARMS2located in 10926, and the second SNP is again the A/G vaoaatéd
in intron 5 of BBS9located in 7pl4. As to the gene-environment interaction, [tas
characterized by rs102724388ex. This pair indicates that the SNP factor of the A/G
variant located in intron 5 dBS9ocated in 7p14 is likely to associate with the disease
differently in males and females.

We also test the association of the Age factor with AMD by gdBaussian dis-
cretization to partition the age value of each sample integltategories as follows:

“young” X<Uu—0o/2
agex) = ¢ “medium”  p-0/2< X <U+0/2 (4.17)
“elderly” X=>U+0/2

wherey is the average age value aads the standard deviation of age values.

After including the Age factor in the dataset, all three aitdons identified the gene-
environment interaction of rs14201%@ge as the interaction with major implication,
indicating that Age factor is, expectedly, strongly asated with the development of
AMD. The SNP that interacted with the Age factor is a C/G vairlacated in intron 9
of BBS9located in 7p14.



Table 4.7: Two-factor interaction candidates of the AMDedat using GE, PIA, and MDR, respectively.

GE CV Acc % PIA CV Acc % MDR CV Acc %
rs10272438&rs4723261 68.5 rs1027243&rs380390 64.2 rs10490924rs1420150 65.5
rs10272438&rs2736911 66.9 rs10490924rs10272438 68.2 rs10272438rs1065489 68.4
rs10272438&rs964707 68.5 Y402KHrs10272438 65.5 rs1027243682284664 66.7
rs1027243& Sex 67.5 rs10254116Smoking 67.1 rs1027243& Sex 67.5
rs10272438&rs2284664 66.7 rs10490924s10254116 67.7 rs1025411 652736911 67.7

Table 4.8: Three-factor interaction candidates of the AMiDadet using GE, PIA, and MDR, respectively.

GE CV Acc % PIA CV Acc % MDR CV Acc %
rs10272438&rs4723261 68.5 rs1027243&rs380390 590.8 rs1027243&rs380390 59.8
xrs964707 xrs10486524 xrs10486524
rs1027243&rs4723261 67.1 rs1027243&rs380390 61.2 rs1027243&rs380390 63.4
xrs2736911 x Sex xrs964707
rs1027243&rs380390 63.4 rs1027243& Sex 68.1 Y402Hxrs10272438 60.7
xrs964707 xrs1065489 xrs964707
rs10490924rs10272438 65.0 rs1027243&rs380390 66.6 rs10490924rs10272438 63.4
xrs4723261 xrs10254116 x Sex
rs1027243& Sex 63.5 rs10272438&rs380390 59.4 rs1027243& Sex 65.7
xrs4723261 xrs1420150 xrs2736911
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Table4.9 summarizes the factors involved in potential interactiolesitified by all
three different algorithms. Overall, the experimentaltesssuggest that genes BB-
S9(Bardet-Biedl syndrome 9CFH (complement factor H), andRMS2(age-related
maculopathy susceptibility 2) with the external factorsAgfe and Sex, and the in-
teractions among them are strongly associated with thelaj@went of AMD. This
is essentially consistent with current knowledge of AMD elepment in the litera-
ture [63,77,103,175].

Table 4.9: SNPs and environmental factors that statitieasociated with AMD.
Factor Chrom. Gene Location Effect  Main effeetalue

rs10272438 7pl4d BBS9 intron5 AlG 14x10°°
rs1420150 7p14 BBS9 intron9 CIG 21x 102
rs380390 1932 CFH intron15 C/G 41x10°8
rs10490924 10926 ARMS2 exonl Ser69Ala Bx 103
Sex —~ - —~ —~ 14 x 1072
Age - - - - 11x 103

4.6 Summary

The advance of high-throughput genotyping technologiesiges the opportunity to
elucidate the mechanism of gene-gene and gene-envirommeraiction via SNP mark-
ers. However, current algorithms have limited power in gohidentifying true SNP-
SNP interactions. Moreover, the simulation results inidaat factors such as heri-
tability, candidate SNP size, and the presence of imbatholess distribution all have
profound impact on a given algorithm’s power in identifyifumctional SNP interac-
tions. One practical way to improve the chance of identdyBNP-SNP interactions
is to combine different methods where each addresses the geohlem from a dif-
ferent perspective. The rationale is that the consensusmeegase the confidence of
identifications and complementary results may improve tivego of identification.

Due to these considerations, we proposed a hybrid algotging a genetic ensem-
ble approach. Using this approach, the problem of SNP-Sk#Paction is converted
to a combinatorial feature selection problem. Our simatastudy indicates that the
proposed GE algorithm is comparable to PIA and MDR in termslentifying gene-
gene interaction for complex disease analysis. Furthesntbe experimental results
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demonstrate that the proposed algorithm has a high degmeangilementarity to PIA
and MDR, suggesting the combination of GE with PIA and MDRiksll to lead to
higher identification power.

For practical application of the GE algorithm, the expemta results from the
simulation datasets suggest that taking the top-rankadtrgsnerally gives a higher
sensitivity of identifying SNP-SNP interactions than gsim frequency score cut-off.
However, if the detectability of the SNP-SNP interactiolois or no such interaction is
present in the dataset, the top-ranked result is likely ta tadse positive identification.
A more conservative approach is to use an identificatioruigaqy cut-off of 0.75-0.8
which in our simulation study gives identification resultshnan FDR close to 0. For
any identified SNP pair with an identification frequency lagthan 0.8, the confidence
is very high.

As a down-stream analysis, we can fit the identified SNP pairga logistic model
with interaction terms and calculate thevalues of their coefficients in order to quantify
the strength of the interaction. In particular, to test &deiand dominant effects, we
can fit the reported SNP combinations using the model destily Cordell [41] and
analyse the coefficients associated with additive and damtieffects of each SNP.

Current GWA studies commonly produce several hundredsafdgainds of SNPs,
yet the gene-gene interaction identification algorithiks MDR, PIA and the proposed
GE algorithm can only cope with a relatively small number NFS in a combinatorial
manner. Therefore, a filtering procedure is required tocedhe number of SNPs to
a “workable” amount before those combinatorial methods lwampplied to datasets
generated by GWA studies [71,130]. More efforts are reguiceseamlessly connect
these two components to maximize the chance of detectinglexrimteractions among
multiple genes and environmental factors [191].

In conclusion, we proposed a GE algorithm for gene-gene an@-gnvironment
interaction identification. It is comparable to two otheatstof-the-art algorithms (PIA
and MDR) in terms of SNP-SNP interaction identification. Bxperimental results al-
so demonstrated the effectiveness and the necessity ofiagphultiple methods each
with different strengths to the gene-gene and gene-envieon interaction identifica-
tion for complex disease analysis.
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4.7 Software availability

The genetic ensemble package for gene-gene interactioftifidation is freely avail-

able from:

http://code.google.com/p/genetic-ensemble-snpx



Chapter 5
Gene Sets Selection From Microarray

This chapter is based on the following publication:

Pengyi Yang, Bing B. Zhou, Zili Zhang, Albert Y. Zomaya, Atidfilier enhanced
genetic ensemble system for gene selection and sampleficktgsn of microarray
data. BMC Bioinformatics, 11:S5, 2010

5.1 Microarray data from a computational viewpoint

In previous two chapters, we concentrated on processingtges data generated from
genomic levels. In this section, we focus on processingstiagptomic data with en-
semble methods and hybrid algorithms.

One of the key technologies that has been predominateljeaifpl high-throughput
transcriptome profiling since its development in the midi8@gene expression microar-
ray [49,174]. Microarray technologies parallelize the iingdof the disease/trait caus-
ing genes by simultaneously measuring tens of thousandsresy For example, for
the studies that are designed to find genes associated wigtinceancers, tissue sam-
ples from cancer patients and normal individuals can besctdtl and profiled using
microarrays.

Common steps in microarray data analysis include data Hamian, disease/trait-
associated gene identification, sample classificationgané enrichment analysis [4].
Following these analysis procedures, downstream vatidatiay be performed in a
wetlab. It is clear that a successful downstream validatedies heavily on the ini-
tial data analysis, yet the data analysis has been found tmiivial. For example,

71
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the measured gene expressions from microarray experinemtgnavoidably affect-
ed by random variations and systematic variations thatraocdifferent samples and
experimental effects. Therefore, a proper data normadizgirocedure is critical to en-
sure gene expressions are comparable within and betwekrsaaple and experiment
batch [205]. Similar to the SNP interaction filtering andnt&cation, the identifica-
tion of disease/trait-associated genes is also hamper#telyroblems such asurse-
of-dimensionalityand thecurse-of-sparsitypecause the number of genes measured by
microarray is commonly several orders higher than the numisgamples used for pro-
filing [182]. Therefore, an efficient and accurate gene siele@pproach that is capable
of identifying key genes and gene sets that are differdyptaipressed between differ-
ent treatments or diseases from a huge candidate set ialdensure accurate sample
classification and followup biological validation.

In this chapter, we explore using hybrid approaches foradis@ssociated gene set
selection and sample classification. Wrapper and filterdlgas are commonly treated
as different approaches for differentially expressed gaection. The uniqueness of
the proposed approach is that filter and wrapper algorithee@mbined as a hybrid al-
gorithm and the strengths of each approach are harnessedntegrative way. We ap-
ply our hybrid approach to several benchmark microarrags#s and compare results
with those obtained from using either filter or wrapper featelection approaches.

5.2 Hybrid approach for gene set selection and sample
classification of microarray data

Feature selection is a key technique for identifying diséeait-associated genes from
high-dimensional microarray data. We categorized feasetection algorithms into
filter, wrapper, and embedded approaches in Se&tibi2 As mentioned earlier, a filter
approach separates feature selection from the sampleficiaissn component, thus,
they are generally computationally efficient. However,effects of the selected genes
in sample classification is useful information that may bedu® improve classification
accuracy [104]. Therefore, the wrapper approach, whicbrparates the classification
information for feature selection, may provide higher skngassification accuracy.
If the goal of the study is to accurately distinguish disesemples and controls, one
may prefer wrapper algorithms to filter algorithms. Yet, doenputational complexity
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of wrapper algorithms is generally much higher than filtgoaithms since one needs
to iteratively classify samples, often in a cross-validatmanner, so as to objectively
extract classification information for feature selection.

We argue that a good trade-off between filter and wrappeioagpes can be achieved
by combining the two techniques in that the filter algoritrsrused for a fast initial
screening and the wrapper algorithm is then applied to theced gene subset to ac-
curately identify the most important gene set in a compoeatly efficient manner.
Therefore we propose following procedure:

1. Split each dataset into external training sets and exitégst sets with an external
N-fold stratified cross validation.

2. Filter the external training sets by using a filter aldont

3. Split the filtered external training sets into internalrning sets and internal test
sets with an internd-fold stratified cross validation.

4. ldentify gene set with a wrapper algorithm using intetrahing sets and internal
test sets.

5. Evaluate the selected gene set on sample classificaiimypthe external test set.

The above procedure embedded feature selection in anahtzoss validation and
therefore provides an objective evaluation of the algarith

5.2.1 Multiple filter enhanced genetic ensemble

For the wrapper algorithm, we apply a similar genetic ender{tbE) system as those
used for gene-gene interaction identification in Secli@because this model is able to
evaluate genes as subsets, as opposed to individual gadeydd potentially identify
functional units. This is important because genes are camneonnected by pathways
and function as groups. Therefore, evaluating individweles may miss important
biopathway information.

To increase the speed of convergence and to further imphnevganeralization prop-
erty of the selected genes and gene subsets on unseen d@atficelion, we incorpo-
rate multiple filtering algorithms into the GE system. Thybhd system is named the
multi-filter enhanced genetic ensembigstem, or MF-GE for short. The flow chart of
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the hybrid system is illustrated in FiguBel A novel mapping strategy for multiple
filtering information fusion is developed to fuse the evélwa scores from multiple
filters, and this information is incorporated into the GEteys for gene selection and
classification. Thus, the system encompasses two commment “filtering process”
and “wrapper process”. In the filtering process, multipkefihg algorithms are applied
to score each candidate gene in the microarray dataset.cohesof each gene are then
integrated to the wrapper process. In the wrapper prodes$GE system is used to s-
elect discriminative genes using the information providgdhe filtering process. The
algorithm executes iteratively, collecting multiple geswbsets. The final collections
are ranked and the top genes are used for sample classiiicatio

External Multi-Filter Based
B —
Train Set Score Calculation Filtering process

Score Mapping

[Eae
Train Set Genetic Ensemble Kolected Genes
Based Gene Selection
: Internal i
Test Set

: ‘ Iterative execution :

Gene Ranking

!

External e
Test Set —_— Classification

Figure 5.1: Flow chart of the MF-GE hybrid system for genestbn and classification
of microarrays.
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5.2.2 Score mapping for information fusion of multiple filtering al-
gorithms

Traditionally, filtering algorithms select differentiaéges independently for the classi-
fication process. However, such information could be beradfifcappropriately inte-
grated into the wrapper procedure. As shown in Figulethe intermediate step called
“score mapping” serves as the synergy between the filteniaggss and the wrapper
process.

The score mapping process starts by calculating scoread¢brandidate gene with
different filtering algorithms. One issue in integratingsk scores is that different filter-
ing algorithms often provide evaluation scores with déferscales. In order to combine
the evaluation results of multiple filters, we must transfdhe evaluation scores into a
common scale. Therefore, softmax scaling is adopted to alarenthe gene evaluation
results of each filtering algorithm into the range of [0, 1felcalculation is as follows:

1
~ 14exp—y)

A

Xik
in which

_ Xk X
IOk

wherex is the average expression value of &ile gene among all sampleg is the
standard deviation of thieh gene among all samples, axgdis the transformed value
of xjx which denotes the expression value of kilegene in sample

After softmax scaling, the evaluation scores from diffeéfdtering algorithms are
summed up to a set of total scores that indicates the ovexaié of each gene under
the evaluation of multiple filtering algorithms. The totabses are then multiplied by
10 and rounded to an integer. Those with scores smaller tham et to 1 to make sure
all candidate genes are included in the wrapper selectiocegs. The scores are then
converted into frequency. The genetic operations suchla®fitosome” initialization
and mutation of the original GE system are conducted basdtdisrigene frequency
map”. Figureb.2gives an example of creating a gene frequency map using tiecsfil

It is readily noticed that genes with higher overall evaluatscores will appear
in the gene frequency map more frequently, and thus, wilerabetter chance to be
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(GenePool) | g |g, [q, | ... |

_~~ Score Calculation ™,

(Filter,) [22.2]88.6] 0.4 | ... | (Filter,) | 6.8 [133] 54| ... |

\ Softmax Scaling /

(Filter,)[ 0.4 | 0.7 ] 0.2
(Filter,)| 0.3 [ 05| 0.2

l Summing
(Total Score) | 0.7 | 1.2 | 0.4 | |
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Figure 5.2: An example of multiple filter score mapping sggtfor information fusion.

chosen in the initialization step and the mutation stephisway, multiple filter infor-
mation is fused into the gene selection process.

5.3 Filters and classifiers

The MF-GE system incorporated the evaluation scores of ftegifig algorithms, name-
ly x2-test, ReliefF, Symmetrical Uncertainty, Information Gaand Gain Ratio. Fur-
thermore, we extend the GE system, introduced in Secti@nfor multiple class-
es datasets. We evaluate multiple classifier combinatismgyua multiagent frame-
work [216] and find that the combination of five classifierasnedy, decision treeran-
dom forests 3-nearest neighbouyr7-nearest neighboyrandnaive bayess the best in
terms of sample classification and feature selection stabil

In this section, we start by introducing the filtering algloms incorporated in the
MF-GE hybrid system. The ReliefF algorithm is introduce&grction3.2.1 and there-
fore, is excluded from here. Then, we describe the extensidhe GE system for
multiple classes datasets.
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5.3.1 Filter algorithms
5.3.1.1 x2-test

For gene selectiory?-test can be considered to calculate the occurrence of iaart
value of a gene and the occurrence of a class associatedhigtieiue. Formally, the
merit of a gene is quantified as follows:

N(g= VC| ~E(g=v0))
IPRESS =5

wherec;, (i =1,...,m) denotes the possible classes of the samples from a dathdlet, w

gis the gene that has a set of possible values denotédN&y = v, ¢;) andE(g=V,C;i)
are the observed and the expected co-occurrenge-of with the class;, respectively.

5.3.1.2 Symmetrical uncertainty

Symmetrical uncertaintgvaluates the worth of a gene by measuring the symmetrical
uncertainty with respect to the sample class [198]. Eacle geavaluated as follows:

2x ((H(clasg) —H(classq))
H(class +H(9Q)

whereH (.) is the information entropy functionH (clasg andH(g) give the entropy

Symmug) =

values of the class and a given gene, whilelassg) gives the entropy value of a gene
with respect to the class.

5.3.1.3 Information gain

Information gainis commonly used in nodes selection for decision tree coatstm. It
measures the number of bits of information provided in ghssliction by knowing the
value of features [196]. L&t belong to a set of discrete classes (1, ..., m)\Lee the
set of possible values for a given gameThe information gain of a gerggis defined as
follows:

InfoGain(g) = Z\P ci)logP(c +Z/ZPg v)P(ci|lg=v)logP(ci|g=V)
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5.3.1.4 Gainratio

Gain ratio incorporates “split information” of features intoformation gainstatistics.
The “split information” of a gene is obtained by measuringvimoadly and uniformly

it splits the data [129]. Let us consider again that a miceyadataset has a set of classes
denoted as;, (i =1,...,m), and each genghas a set of possible values denote¥ as
The discriminative power of a gemgs given as:

| . InfoGain(g)
GainRatidg) = Split(g)
in which:

5 910918

whereS, is the subset o6 of which genegy has valuer.

Each algorithm evaluates the worth of a candidate gene irffereht way. The
hope is that genes of real biological relevance will shovitsigores in multiple criteria,
as opposed to the artifacts that may by chance show highssaor@ne criterion but
perform much worse according to the others.

5.3.2 Classification components

After fusing the filtering information from multiple filteyshe aim is to apply the GE
system to identify a subset of key genes that can maximizeriction accuracy on
diseases. We adopt the same architecture as describedtionS&2, but extend the
system for dealing with datasets with multiple classes.cHipally, for blockingand
majority voting we have the same equations as follows:

fitnesg(s) = i BC(p(t|h?,D),y) (5.1)

and
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fitness (s) = BC (vk (t’\ S L p(h?, D)) ,y) (5.2)

wherey is the class label vector of the test data3efunction p(.) predicts/classifies
samples irD ast usingh?, andV(.) is the decision function of majority voting that
combines multiple predictions into a consensus predicifdh

However, the calculation &C(.) is modified as:

_ 3L.Se

BC(p(t|hf,D),y) -

(5.3)
and

N
Sd = ﬁ’ x 100 (5.4)
whereSé is the sensitivity value calculated as the percentage afuingber of true pos-
itive classification I(\I} p) of samples in class, NJ denotes the total number of samples

in classj, andmis the total number of classes.

5.4 Experiment designs and results

In this section, we describe the dataset used for evalydhemletails of implementation
and the experimental results.

5.4.1 Datasets and data pre-processing

We gathered four benchmark microarray datasets for ouritigo evaluation. These
included binary class and multi-class classification peoid. Tablés.1is a summary
of the datasets.

The “Leukemia” dataset [70] investigates the expressiotwofdifferent subtypes
of leukemia (47 ALL and 25 AML), and the “Colon” dataset [5]ntains expression
patterns of 22 normals (denoted as NOR) and 40 tumour (déast€UM) tissues. The
“Liver” dataset [33] has 82 samples labelled as Hepatoleglicarcinoma (HCC) and
another 75 samples labelled as non-tumour (NON). The tasthése three datasets
is to identify a small group of genes that can distinguish@amfrom two classes.
The “MLL” dataset [9] provides a multi-class classificatiproblem. The task is to
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Table 5.1: Microarray datasets used for algorithm evabumati

Dataset name Leukemia| Colon Liver MLL
Reference [70] [5] [33] [9]
Number of Samples 72 62 157 72
Number of Genes 7129 2000 20983 12582
Number of Classes 2 2 2 3
Classl ALL: 47 | TUM:40 | HCC: 82| ALL: 24
Class2 AML: 25 | NOR: 22| NON: 75| MLL: 20
Class3 AML: 28

discriminate each class using a selected gene profile. Thesdatasets represent the
general scenarios in gene selection and sample classifigatmicroarray datasets.

Each dataset is pre-processed by converting the raw exmmesdue by logarithm
of 2 and normalizing the value to the range of [0, 1]. Then edafaset is split into
external training sets and external test sets with a 3-fivltiBed cross validation. A
pre-filtering procedure is applied to select the top 200 gdmeusing the between-
group to within-group sum of square ratio (BSS/WSS) [56]ldvaing that, the external
training sets are split into internal training sets andrimaktest sets with an internal 3-
fold stratified cross validation. The gene score calcutatsoconducted by using the
internal training sets while the wrapper selection is penied using internal training
sets and internal test sets collaboratively. The exteestl gets are reserved for the
evaluation of the selected genes on unseen data classificatid are excluded from
pre-filtering and the gene selection processes.

5.4.2 Implementation

The classification component in the genetic ensemble syisteletermined by using a
multiagent approach as described in [216]. A set of inigsks$ is conducted to deter-
mine working parameter configurations. The best parameténgs in the initial test
are chosen and fixed for the later experiments. Specifidhkyiteration of the genetic
ensemble procedure is set to 100. Within each iterationptipailation size of GA is
100. These 100 populations are divided into two niches e&d&®,0and are evolved
separately. After every 10 generations, the favourite msomes from the two nich-
es are exchanged with each other. The probability of cressayvis 0.7. A novel
mutation strategy is implemented to allow multiple mutasipthat is, when a single
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mutation happens (with the probability of 0.1) on a chrormegpanother single point

mutation may happen on the same chromosome with the pratladfiD.25 and so on.

The selection method is the tournament selection with thdidate size of 3, and the

contribution weights ofv; andw, are set to 0.5. Lastly, the termination condition for

each iteration is either that the termination generatial06fis reached or the similarity

of the population converges to 90%. Tabl@ summarizes the parameter settings.

Table 5.2: Parameter setting for genetic ensemble.

Parameter Value
Fitness Function Multi-Objective
Iteration 100
Population Size 100
Niche 2
Chromosome Size 15
Termination Multiple Conditions
Selection Tournament Selection (3)
Crossover Single Point (0.7)
Mutation Multi-Point (0.1 & 0.25)
Contribution Weight wp = 0.5, w»,=0.5

In our parameter tuning experiments, the average genetssibsés within 2 to 10.

Thus, the GA chromosome is represented as a string of siza thromosome coding,

each position is used to specify tlteof a selected gene or assigned a “0” to denote

no gene is selected at the current position. This gives alptpn of gene subsets of

different sizes with a maximum of 15.

Classifiers and filters are created by using Waka API [78].c&ipally, J48 algo-

rithm is used to create a classification tree. The randonsf@igorithm with size of

7 trees is applied, whil&-nearest neighbour and naive bayes classifiers are adopted

with default parameters. Each filtering algorithm is proaKor evaluation of each

candidate gene and integrated from our main code througtidbs API of Waka.

The GA/KNN code was downloaded from the author’s web site

(http://www.niehs.nih.gov/research/resources/saifgaknn). Chromosome length of

15, iteration of 1000, and majority voting witt=3 of thekNN were used. For each

dataset, GA/KNN requires a pre-specified selection thidstfacut-off. Therefore, dif-

ferent thresholds were used according to their classificgtower on different datasets.
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5.4.3 Results

The first set of experiments is focused on comparing the iflzestson accuracy of the
selected gene sets from MF-GE hybrid with GE, GA/KNN, andnGaatio filter al-
gorithms. Instead of trying to achieve the highest classifim accuracy, we aim to
differentiate the classification performance of differgahe selection algorithms. The
ranking and classification of each dataset are repeatedes &@md each time the top 5,
10, 15, and 20 genes are used for sample classification. Videt e average of the
classification results.

The evaluation results obtained from the different micraadatasets are depicted
in Tables5.3-5.6. In each table, the classification results using each iddaliclassifier
as well as the mean and their majority voting are listed. #asy to see that the MF-
GE system has a higher average classification accuracylfdatalsets. For example,
1.20%, 1.33%, 0.75%, and 1.85% improvements of mean overtgmal GE (which
is the second best in average over all datasets) are obtasneg the MF-GE system
for Leukemia, Colon, Breast, and MLL, respectively. Givae fact that the GE part
of these two algorithms is the same, the natural explanatiohe improvement is the
fusion of multiple filter information.



Table 5.3: Classification comparison of different gene magklgorithms using Leukemia dataset.

Dataset Classifier Algorithm
Gain Ratio] GA/KNN | GE | MF-GE
Leukemia C4.5 87.41 7855+2.96 | 83.04+1.56 | 8451+2.53
Random Forests 9259 91.754+0.99 | 90.82+1.87 | 9235+0.70
3-Nearest Neighbour 91.16 9374+1.27 | 94.30+1.73 | 95.48+0.95
7-Nearest Neighbour 83.10 89.43+1.10 | 90.454+2.04 | 90.86+1.26
Naive Bayes 92.78 90.28+1.33 | 96.204+0.93 | 96.27+ 1.65
Mean 89.41 88.75 90.69 91.89
Majority Voting 9245 9329+1.29 | 9533+0.96 | 96.23+1.26

Table 5.4: Classification comparison of different gene naglalgorithms using Colon dataset.

Dataset Classifier Algorithm
Gain Ratio] GA/KNN | GE | MF-GE
Colon C4.5 71.49 6243+2.78 | 73.08+2.77 | 76.64+1.53
Random Forests 63.66 7348+2.09 | 71.86+2.02 | 74.35+2.01
3-Nearest Neighbour 68.02 7383+157 | 7543+0.92 | 77.01+2.09
7-Nearest Neighbour 65.43 67.62+1.45| 68.39+1.76 | 6878+2.32
Naive Bayes 70.61 7212+1.68 | 76.46+2.14 | 75.07+2.38
Mean 68.84 69.90 73.04 74.37
Majority Voting 70.56 73.37+1.84 | 75.81+2.00 | 76.98+1.06
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Table 5.5: Classification comparison of different gene nagkalgorithms using Liver dataset.
Dataset Classifier Algorithm
Gain Ratio] GA/KNN | GE | MF-GE
Liver C4.5 84.88 88.33+0.94 | 87.09+0.79 | 88.19+0.56
Random Forests 89.65 90.31+1.11| 91.87+0.94 | 93.13+1.18
3-Nearest Neighbour 87.76 90.46+0.65 | 9357+0.57 | 93.39+0.79
7-Nearest Neighbour 87.65 89.53+0.56 | 91.91+0.69 | 9254+ 0.57
Naive Bayes 89.05 90.85+0.51 | 9270+ 0.67 | 93.63+0.64
Mean 87.80 89.90 9143 9218
Majority Voting 89.02 91.60+0.36 | 93.37+0.46 | 93.80+0.47
Table 5.6: Classification comparison of different gene naglalgorithms using MLL dataset.
Dataset Classifier Algorithm
Gain Ratio] GA/KNN | GE | MF-GE
MLL C4.5 81.87 72.89+2.08 | 7827+3.10| 81.54+1.67
Random Forests 83.02 88.07+1.05| 8820+1.41| 89.74+0.60
3-Nearest Neighbour 79.63 8822+1.30| 86.18+1.39 | 8814+1.09
7-Nearest Neighbour 79.63 86.72+1.03 | 85.02+1.49 | 86.69+1.98
Naive Bayes 83.95 89.62+0.67 | 90.68+1.28 | 91.50+0.67
Mean 81.62 85.10 85.67 87.52
Majority Voting 83.88 88.38+0.97 | 89.02+1.71 | 91.08+0.96
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An apparent question is whether such improvements withipteltilters justify the
additional computational expenses? This question can §seard from two aspects.
Firstly, the multi-filter score calculation in the MF-GE $gs1 is done only once at the
start of the algorithm. This step will not be involved in thengtic iteration and opti-
mization processes. Therefore, it is computationally iefficto incorporate this initial
information. Secondly, by closely observing the classiftcaresults produced by in-
dividual classifiers, we can see that the MF-GE system aeti®etter classification
results in almost all cases than those alternative methegardless of which inductive
algorithm is used for evaluation. Moreover, such improvenigeconsistent throughout
all datasets used for evaluation. This demonstrates tbajehe subsets selected by the
MF-GE system have a better generalization property andareimore informative for
unseen data classification. From the biological perspedine selected genes and gene
subsets are more likely to have genuine association witdigease of interest. Hence,
they are more valuable for future biological analysis.
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Figure 5.3: The comparison of average classification andmtyajyoting classification
of the five classifiers with different gene selection methiadsach microarray dataset.

Figure5.3 gives the comparison of the mean classification accuracyrenchajor-
ity voting accuracy of these five classifiers with differeehg ranking methods in each
microarray dataset. In all cases, integrating classifiéfs mvajority voting gives better
classification results than the average of individuals.réfoee, majority voting can be
considered as a useful classifier integration method forawipg the overall classifi-
cation accuracy. Figurg.4 depicts the multi-filter scores of the 200 genes pre-filtered
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Figure 5.4: The multi-filter consensus scores of the 20(fifiszed genes.

by BSS/WSS. It is evident that many genes with relatively B85/WSS ranking have
shown very high multi-filter scores. Interestingly, in thel@n dataset, genes are frac-
tured into two groups with respect to the multi-filter scorsvould be interesting to
conduct further study on finding the causality of such in¢stescy.

Table 5.7: Generation of convergence & subset size for eatdsdt using MF-GE and
GE.

Dataset Comparison Criterion MF-GE | GE | p-value
Leukemia| Mean Generation of Convergence 21.2 | 23.4| 1x 102
Mean Subset Size 4.7 54 | 4x10°3

Colon | Mean Generation of Convergente 25.5 | 27.1| 5x 1072
Mean Subset Size 6.0 6.6 | 3x10°3

Liver Mean Generation of Convergente 27.1 | 27.4| 1x 101
Mean Subset Size 7.2 7.7 | 1x10°3

MLL Mean Generation of Convergente 25.0 | 26.1| 8 x 102
Mean Subset Size 6.8 7.2 | 3x10°7

“p-values are calculated using studeigst with one tail.

The second set of experiments is conducted to compare the geseeration of
convergence (termination generation), and the mean gdisessize collected in each
iteration of the MF-GE and the original GE hybrid. We forntelghese two criteria for
comparison because the biological relationship with thgetadisease is more easily
identified when the number of the selected genes is small &l a shorter termination
generation implies that the method is more computatioredfigient.
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Figure 5.5: Mean gene subset size selected by GE and MF-@HEnaan generation of
convergence of GE and MF-GE from each microarray dataset.

As illustrated in Tablé.7, it is clear that the MF-GE system is capable of converg-
ing with fewer generations while also generating smalleregaubsets. Specifically, the
mean gene subset size given by MF-GE is about 0.4 to 0.7 of @ lges than those
of GE, while the mean generation of convergence is about 1gerrations fewer.
Essentially, the improvement on producing more compace geisets is more signif-
icant as demonstrated by tipevalue of the one-tail Studetitest. The results are also
shown in a boxplot in Figur&.5. One interesting finding is that these figures indicate
a dataset-dependent relationship, that is, the optimaletidize and the convergence
of the genetic component is partially determined by the myidataset. Nevertheless,
significant improvements can be achieved by fusion of pratadnformation into the
system.

Lastly, in Table5.8 we list the top 5 genes with the highest selection frequerficy
each microarray dataset respectively.



Table 5.8: Top 5 genes with the highest selection frequermey Bach microarray data.

Dataset || Identifier | Gene Description

88

Leukemia| X95735at Zyxin
M31523at | TCF3 Transcription factor 3 (E2A immunoglobulin enhanceding factors E12/E47)
Y07604 at Nucleoside-diphosphate kinase
M92287 at CCND3 Cyclin D3
M27891at CST3 Cystatin C (amyloid angiopathy and cerebral hemoghag
Colon Hsa.549 P03001 TRANSCRIPTION FACTOR IlIA
Hsa.3016 S-100P PROTEIN (HUMAN)
Hsa.8147 Human desmin gene, complete cds
Hsa.36689 H.sapiens mRNA for GCAP-Il/uroguanylin precursor
Hsa.6814 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)
Liver AA232837 Plasmalemma vesicle associated protein (PLVAP)
AA464192 PDZ domain containing 11 (PDZD11)
AA486817 Shisa homolog 5 (Xenopus laevis) (SHISAS)
R43576 Basic leucine zipper nuclear factor 1 (BLZF1)
H62781 Ficolin (collagen/fibrinogen domain containing lectin)fi¢olin) (FCN2)
MLL 33412at vicpro2.D07.r Homo sapiens cDNA, 5’ end
1389at | Human common acute lymphoblastic leukemia antigen (CALIRNA, complete cds
32847 at Homo sapiens myosin light chain kinase (MLCK) mRNA, comeleds
39318at H.sapiens mRNA for Tcell leukemia
40763at Human leukemogenic homolog protein (MEIS1) mRNA, comptete
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5.5 Summary

Traditionally, filter and wrapper algorithms are treated¢@spetitors in gene selection
for data classification. In this study, we embrace an altermaiew and attempt to
combine them as the building blocks of a more advanced hglystem. The proposed
MF-GE system applied several novel integration ideas engthen the advantages of
each component while avoiding their weaknesses. The erpatal results indicate the
following:

e By fusing evaluation feedbacks of multiple filtering algbms, the system not
only seeks for high classification accuracy of training data greedily, but takes
into consideration other characteristics of the data. Mezfiiting problem can
then be circumvented and a better generalization of theteelgene and gene
subsets can be achieved.

e By weighing the goodness of each candidate gene from meiligbects, we re-
duce the chance of identifying false-positive genes whigglpcing a more com-
pact gene subset. This is useful since future biologica¢erpents can be more
easily conducted to validate the importance of the seleptees.

e With the use of multiple filtering information, the MF-GE ibla to converge
more quickly without sacrificing the sample classificatioowacy and thus saves
computational expense.

The MF-GE system provides an effective measure for incepay different algo-
rithm components. It allows any filters or classifiers withvre special capabilities to
be added to the system and those no longer useful or inapai®ps be removed from
the system, based on the data requirements or user pregsrenc



Chapter 6

A Self-boosted Semi-supervised
Learning Algorithm for
Post-processing Mass
Spectrometry-based Proteomics Data

This chapter is based on the following manuscript:

Pengyi Yang, Jie Ma, Penghao Wang, Yunping Zhu, Bing B. ZYemiHwa Yang,
Improving X!Tandem on peptide identification from mass speetry by self-boosted
Percolator, IEEE/ACM Transactions on Computational Bgpl@nd Bioinformatics, ac-
cepted.

6.1 Peptide-spectrum match post-processing

In previous chapters, we have looked at different companati approaches for ana-
lyzing large-scale genomic data and transcriptomic datamRhis chapter, we turn
our attention to the mass spectrometry (MS)-based proteonaind study proteins—the
functional products of genes and transcripts.

One of the main computational challenges in MS-based pnuit=nis the identi-
fication of peptides from the spectra produced by the masstrepeeter. There are
three main approaches for peptide identification, the @abearch approach [62]: the
spectral library search approach [45, 109], anddéenovosequencing approach [64].

90
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Thede novosequencing approach is often only applicable to very higicipion mass
spectrometry [64] and the remaining two approaches are cwrenon. The library
search approach relies on the initial results from the delsearch, and tlie novo
sequencing approach can benefit from incorporating dag¢ad®ses ch results [14]. Thus,
improvement on the database search approach will also ealthe library search ap-
proach and thede novosequencing approach. This suggests that it is importanotira
initial focus for improving peptide identification resultsto concentrate on achieving
better and more efficient database search results.

In the database search approach, a search algorithm issdgpliproduce a list
of peptide-spectrum matches (PSMs) , in which the peptiddgaoteins are inferred.
Popular database search algorithms include SEQUEST [6REGOT [150], X!Tandem
[44], OMSSA [66], and Paragon [179]. Several studies haveeweed and compared
their performance on different datasets [10, 97].

All these algorithms involve comparing observed spectra list of theoretical en-
zymatic digested peptides from a specified protein databEse comparison is based
on a “search score” measuring the degree of agreement betive@bserved spectra
to a theoretical spectrum generated from enzymatic diggstptide. Each pair of ob-
served spectra and a theoretical peptide is known as a peggettrum match (PSM).
Each PSM is assigned a search score and different algonithmsn their definition of
the score. For example, SEQUEST calculates an Xcorr scoeathh PSM by evaluat-
ing the correlation between the experimental spectrumlaathieoretically constructed
spectrum from the database [62]; X!Tandem [44] counts thebar of matched peaks
and then calculates a score using the matched ions andritesisities.

Each search score is an indication of the quality of matcivéen the theoreti-
cal peptides and the observed spectra. One typically expleat the higher the score,
the more likely that the PSM is a correct match, that is, theeoked spectrum is cor-
rectly identified as the corresponding peptide of the PSMe Ruthe varying quality
of the spectra, the characteristics of the search algor@hdnscoring metrics, and the
incompleteness of the protein database, typically, onhaetion of the PSMs are cor-
rect [141]. Moreover, the search scores are often not dyratterpretable in terms
of statistical significance [95]. Therefore, it is necegdardetermine a critical value
above which ranking scores are to be considered significems filtering process is
also seen as an independent validation of the PSM and thwghthle process is often
known as PSM post-processing.
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For PSM post-processing, algorithms such as PeptidePr¢pbE] and Percola-
tor [94] are probably the most popular ones. PeptideProjglaehs a linear discrimi-
nant analysis (LDA) classifier from database search reaotidits an expectation max-
imization (EM) model from which a posterior probability feach PSM being a correct
peptide identification is generated. Percolator uses a-sep@rvised learning (SSL)
algorithm for training a support vector machine (SVM) itarely. The training data
is filtered subsequently with a predefined false discovery (ffDR) threshold, and the
SVM model from the last iteration is used for classifying PSM

Both Percolator and PeptideProphet were originally desigior SEQUEST [94,
101]. Recent extensions to PeptideProphet include thepocation of more flexible
models (e.g. variable component mixture model) [35] an@iottatabase search algo-
rithms [51]. In comparison, the extensions of Percolatolude a wrapper interface for
MASCOT [23], and the reformulation of the learning algonitifil83].

While these validation and filtering algorithms have beemnfbto be very use-
ful, they are predominantly designed for commercial dagabsearch algorithms i.e.
SEQUEST and MASCOT. So far, there has been no extension obRésr for open
source search algorithms such as X!Tandem. Thereforehigidy desirable to extend
and optimize these PSM post-processing algorithms for gparce algorithms, given
their increasing popularity in the proteomics community][5

In this chapter, we describe a self-boosted Percolatordst-processing X!'Tandem
search results. We discover that the current Percolatorittign relies heavily on decoy
PSMs and their rankings in the initial PSM list [23]. The &&ve FDR filtering of
PSMs is the key to enhance the discriminant ability of thel {8\M model. If the
decoy PSMs are poorly ranked in the initial PSM list, the perfance of the algorithm
may degrade, resulting in a suboptimal SVM model and redir®#l classification
accuracy. One potential solution could be to apply the SVMiehérom Percolator to
re-rank the PSM list and re-run Percolator on the re-rani&d Rst.

We implement such a cascade learning procedure for thenatigiercolator algo-
rithm. By repeating the learning and re-ranking processwatimes, the algorithm
“boosts” itself to a stable state, overcoming the poora&hiB@SM ranking and identify
more PSMs which translate into more protein identificationge integrated the self-
boosted Percolator with ProteinProphet [140] in Trangd®tnmic Pipeline (TPP) [51]
by generating PSM filtering results in a ProteinProphetabformat. With such an
integration, the proposed algorithm can be used convdpiasta key component in
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large-scale protein identification.

6.2 EXxperiment settings and implementations

6.2.1 Evaluation datasets

Several large-scale proteomics datasets generated byspaessometry experiments
are publicly available and commonly used for algorithmikdations [126]. The first is

a Universal Proteomics Standard (UPS) #P§1). This dataset contains the tandem
MS spectra of 48 known proteins generated by the LTQ masgrepeeter. The corre-
sponding target database for database searching is thentsgreeific protein sequences
extracted from the SWISS-PROT sequence library (rele@4€-@5), and the decoy
database is generated by reversing the sequences of tlesentthe target database.
Another two complex sample datasets [94] are also include@valuation and they
are known as th&eastdataset and thé/orm dataset (refer to Supplement of [94] for
details). Specifically, we utilize the datasets generatauh trypsin digestion. The cor-
responding target databases are obtained from the authors
(http://noble.gs.washington.edu/proj/percolator) #mel decoy databases are built by
reversing the sequences in the target databases, reghectiv

6.2.2 Database searching

We use the concatenated target-decoy database searcla@pprowhich the reverse
protein sequences are combined with the target databakeTlléd estimated false dis-
covery rate (FDR) is calculated as follows:

Np

FDR=2x
Np + Nt

(6.1)

whereNp andNt are the number of decoy and target matches from the cont¢atena
database, respectively, which pass the predeterminednigténreshold. They-value

is defined as the minimal FDR at which a PSM is accepted. Focdh&ol dataset of
UPS1, the actual FDR is defined as follows and can be direaltytated using known
proteins [23]:
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Nep

FDRActual = N (6.2)

whereNgp is the number of false positive identifications from the ktdeget assign-
mentsNy that do not match to the control proteins.

Raw spectra files were searched against the concatenasdmhdatusing X!Tandem
(2009.10.01.1 from TPP v4.4). The average mass was useatiopleptide and frag-
ment ions, with fixed modification (Carbamidomethyl, +57[0) on Cys and variable
modification (Oxidation, +15.99 Da) on Met. Tryptic cleaeaat Lys or Arg only was
selected and up to two missed cleavage sites were allowed. méss tolerance for
precursor ions and fragments were 3.0 Da and 1.0 Da for alkdts.

6.2.3 Percolator for X!Tandem search results

We extend Percolator for filtering X!Tandem search resuipecifically, Percolator
extracts a set of discriminant features from the data and B&iM is represented as a
vectorx; and a class labsk(i = 1,...,M) whereM is the total number of PSMs. Each
componentirx; is a featureqj (j = 1,...,N) interpreted as thiéh feature of thg!" PSM,
where N is the dimension of the feature space.

A linear SVM with a soft margin is trained to generate a créiybscore for each
PSM. Linear SVMs with a soft margin are robust tools for ddtssification [13].
The hyperplane in SVM is formed by optimizing the followinlgjective function with
constraints:

1 M
min = ||w||“+ % Zlfi
whé 2 =

subject to :yi ((w, X)) +b > 1—§

wherew is the weight vectoré; are slack variables that allow misclassificatiéf,
determines the penalty of misclassification, &ns the bias.

The key component in Percolator is to label each PSM so asitodrSVM. Since
we do not knowa priori which PSMs are correct/incorrect identifications, a target
decoy approach is used to construct positive and negativis RS SVM training. Par-
ticularly, a subset of PSMs regarded as “correct identiboat from the target database
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are used as positive training examples while all PSMs framd#étoy database are used
as the negative examples. In order to build a high-quabkiying dataset, the Percolator
algorithm attempts to iteratively remove potential falssigive identifications from the
target databaseé\(gorithm 3). This is done by calculating a FDR in each iteration and
removing the target hits that appear below the expected Rp#hold Algorithm 4).

Algorithm 3 Percolator
1: Input: PSM listL
Output: PSM probability listL’
while number of removed target PSMsO0 do
D = getTrainSel();
svm= trainSVM(D);
L = probabilityvm L);
end while
/I use the SVM model from the last iteration to re-classifivPit
L’ = probabilityGvm L);
return L/;

N R DN

|
=

From X!Tandem’s search results, we extract 14 featuresdaring SVM in Perco-
lator. Table6.1summarizes the features used by our Percolator for X!Tanddrase
features are selected according to previous studies omlBtc for SEQUEST and
MASCOT [23,94]. Particularly, these features are evalated well supported by
Kall et al. (see Supplementary Table 1 in [94] for details).

Table 6.1: Summary of features used by Percolator for X!'€@amdearch results.

Feature Description
Hyperscore the first Hyperscore reported by X!Tandem
Ascore the difference between the first Hyperscore and tlundescore
expect the expectation reported by X!Tandem
In(rHyper) the natural logarithm of the rank of the matchdshen the Hyperscore
mass the observed monoisotopic mass of the identified @eptid
Amass the difference in calculated and observed mass
absf\mass) the absolute value of the difference in calculatecbasdrved mass
ionFrac the fraction of matched b and y ions
enzN a Boolean value indicating if the peptide is preceded toyptic site
enzC a Boolean value indicating if the peptide has a tryptie@inus
enzint the number of missed internal tryptic sites
pepLen the length of the matched peptide, in residues
charge the predicted charge state of the peptide

In(numProt) number of times the matched protein matchesr *BMs
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orithm 4 getTrainSet

Alg
1

XN R DN

NNNNNNRPERERRERERRPRPR PR
a R ®NMNRE OO0 NOR®®NRO

Input: PSM listL
Output: train setD
positives= 0;
negatives= 0;
p = 0; // a pointer that go through the PSM list
while FDR < 0.01do
p=p+1;
if L[p| € targetsthen
/I PSM is from target database, collect it as positive exaspl
positives= positivesJL[pl;
else
/I PSM is from decoy database, collect it as negative exanple
negatives= negatives)L[p|;
end if
FDR = getCurrentFDRgositives negative},

: end while
. I collect the rest of decoy matches as negative examples
: while L[p] # null do

p=p+1;

if L[p] € decoysthen
negatives= negativesJ L[p|;

end if

. end while
. D = createTrainSepositives negativey,
: return D;

[23

Following the same configuration as in Percolator for SEQUBSd MASCOT
, 94], we implemented the iterative PSM filtering proced(Algorithm 3 and4).

The result of Percolator is a list of PSM scores reported byrdined SVM model from

the

last iteration.

6.2.4 Semi-supervised learning on creating training dataet

In Percolator, the training set is built by removing ambigsi@®SMs from the target

database using a FDR threshofddorithm 4). However, since the FDR is estimated

by

using PSMs from the decoy database, the rankings of theyde8Ms determine

how many PSMs from the target database will be removed andhadfithem will be

used as positive training examples in each iteration.

As an example, assume that the PSM list in Fighida is the initial ranking using



6.2. EXPERIMENT SETTINGS AND IMPLEMENTATIONS 97

PSM FDR filtered PSM FDR filtered
ranking list PSM list ranking list PSM list
- positives .
- positives
Fnegatives 3 .
i —negatives
(@) Initial PSM list (b) Re-ranked PSM list

Figure 6.1: Schematic illustration of PSM rank effect onatireg training dataset. (a)
Initial PSM list ranked by search score from database sedgdnithm. (b) A re-ranked
PSM list by, e.g. PeptideProphet; dnd Tz are true positive and false positive iden-
tifications from target database. D denotes identificattomfdecoy database. Empty
rectangles indicate that the corresponding PSM is remaitedfeDR filtering.

PSM search scores of a database search algorithm wherd@Skhést in Figure6.1b
is the re-ranking after further processing. ldentificasidrom the target database are
denoted as “T”, from which true positive identifications dalde positive identifications
are denoted as ‘{Tand “T;”, respectively. Any identification from the decoy database
is denoted as “D” . In both cases (Figuda,b), by estimating FDR (Equatid2.2
and using any threshold smaller than 0.5, we will remove a8W® from the target
database that appear below one or more PSMs from the decalyadat Therefore,
the resulting training set from Figufela includes only two positive training examples
where one of them is a false positive identification that Wwél treated incorrectly by
SVM as a positive example. In contrast, the resulting trejrset from Figures.1b
includes three positive training examples and all of theetare identifications.

In this study, we evaluate the number of PSMs included for Sxévhing using the
control dataset of UPS1 and two complex proteomics data$&sast and Worm. The
FDR threshold of 0.01 is used for PSM filtering in each itenati

6.2.5 Self-boosted Percolator

As described above, the SSL algorithm used by Percolat@Wdd training is sensitive
to the initial PSM ranking list. That is, a poor initial ramig will have a reduced number
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of target PSMs passing the predefined FDR filtering threslwaldsing an under repre-
sentation of positive training examples. This under regmesion of positive training
examples persists through the iteration of the training@se since once a target PSM
is removed by FDR filtering, it will not be considered in follaup interactions.

One way to overcome this inefficiency is to repeat the Petopteaining and filter-
ing process multiple times each on the PSM ranking list geedrin its previous runs.
The assumption is that if Percolator could improve the nagkif PSMs, then by each
time repeating the Percolator training on the PSM rankisicgénerated in its previous
run, we can obtain more target PSMs with potentially lessefglositives. We call this
cascade learning procedure “self-boosting” and the algoriself-boosted Percolator”
(Algorithm 5).

Algorithm 5 Self-boosted Percolator
1: Input: Initial PSM listL, number of boost runis

Output: PSM probability listL’
while b > 0do

L = Percolator();

b=b-1;
end while
Il record the ranking list from the last boost run
L' =L
return L’;

e NOdRE N

6.2.6 Performance comparison on PSM post-processing

For PSM filtering, we compare the performanceof self-babgtercolator with Pep-
tideProphet and the original Percolator algorithm. Theltegrom the database search
algorithms (without further processing) are used as thellvees. Specifically, we cal-
culate the number of accepted PSMs reported by each PSMnfijtatgorithm with
respect to the estimated FDR (denotedjaslue) threshold ranging from (0, 0.2]. S-
ince the proteins are known beforehand in UPS1 dataset, agitito verify whether
the g-value reported by each PSM filtering algorithm resemblesatttual FDR. This
is done by directly calculating the actual FDR (Equat®B.2 for the UPS1 dataset
using the known proteins and comparing it with tpgalue. For PeptideProphet, we
used TPP v4.4 [100]. The database search outputs from XéRarade preprocessed
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by msconvert.exe to generate mzXML files for running Peirdehet. For Percola-
tor, the self-boosted Percolator is run with the boost r@tgcs1. This, in essence, is
equivalent to the original implementation of the Percalaigorithm in MASCOT and
SEQUENT.

For protein identification, we compared the combination§lyfself-boosted Per-
colator + ProteinProphet, and (2) PeptideProphet + Pretephet. We only included
PSMs that passed FDR of 0.01 filtering for protein infereraecel the FDR is recalcu-
lated on the protein level using the same equation as for Pi&Mrig.

6.3 Results and discussion

6.3.1 Percolator is sensitive to PSM ranking

We evaluate the number of target PSMs included in each boostfiPercolator. Figure
6.2a shows the result from the UPS1 dataset. As can be seenfirsth®ost run, very
few target PSMs are included as positive training examplé® number increases to
~2000 in the second boost run and plateaus2800 in the third, fourth, and fifth boost
runs. For the Yeast dataset (Figu@eb), Percolator starts with less than 4000 target
PSMs and plateaus at11,000 target PSMs. A similar pattern is observed from the
Worm dataset (Figuré.2c), where less than 2000 target PSMs are included for trginin
in the first boost run and more than 10,000 target PSMs arededl for training in
the last boost run. Notice that FDR is controlled at the sagmell(i.e. 1%) among
each boost run. These results suggest that the originablB@ercalgorithm is sensitive
to the initial PSM ranking, and the self-boosted Percol&aable to overcome this
inefficiency by extracting increasingly more target PSMsfreach boost run for SVM
model training and PSM re-ranking.

In Figure6.2, multiple iterations of filtering within each boost run arendted by
points with the same shape. Within each boost run, targetP8bifiltered iteratively
by a predefined FDR threshold (1% in our experiments). Itesicthat within each
boost run, the SSL algorithm of Percolator generally coyeerafter a few iterations.
Note that the iterative filtering of SSL does not increasentimaber of target PSMs for
SVM training.
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Figure 6.2: Self-boosting of Percolator on (a) UPS1 datdbgtyeast dataset, and (c)
Worm dataset. For each dataset, 5 boost runs are conducttdn Whboost run, FDR
filtering iterations are denoted by points with the same sh&pr each dataset, a locally
weight regression line is fitted to all points.

6.3.2 Determining the number of boost runs

We investigate the number of boost runs required for sedisbexd Percolator to produce

stable PSM filtering results. This is done by calculating egBman correlation of the

PSM rankings from each boost run with its previous boost tfigure 6.3 shows the

results. By linear extrapolation, the Spearman correfadippears to plateau after the
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Figure 6.3: Spearman correlations of PSM rankings from &acist run with its previ-
ous boost run for (a) UPS1 dataset, (b) Yeast dataset, aMidich dataset. For each
dataset, a linear extrapolation line is fitted to the points.

fifth boost run in all three datasets. Therefore, it is evidkat five boost runs are suffi-
cient for self-boosted Percolator to reach the stable.sfdte subsequent experiments
are conducted with boost runs set to 5.
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Figure 6.4: The number of accepted PSMs is determined at @aektue threshold
on X!Tandem search results using X!Tandem modified Hypeesd@eptideProphet,
Percolator without self-boosting, and self-boosted Haton (a) UPS1 dataset. (b)
The estimated}-value is plotted against the FDR as reported by the UPSkelatér)
Yeast dataset. (d) Worm dataset.

6.3.3 PSM post-processing

The motivation of extracting more target PSMs through belbsting is to create a
more robust and accurate PSM filtering model which could tealle identification of
more PSMs without sacrificing FDR. FiguBed shows the performance of self-boosted
Percolator in comparison with PeptideProphet and Peaguhatbout self-boosting. We
observe that in all three datasets self-boosted Percdldatifies consistently more
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PSMs at any givem-value thresholds. The improvement is significant compaoed
PeptideProphet and Percolator without self-boosting. dnegal, the performance of
Percolator (without self-boosting) is better than Pefidphet. This is consistent with
the result obtained by Ka#t al. [94]. In all cases, using the raw score of X!Tandem
for PSM filtering gives low sensitivity. This implies thatetself-boosted Percolator
is robust to the noise of initial PSM ranking and can fullyoeer the performance of
Percolator without self-boosting.

To verify whether the estimated FDR-yalue) reported by each PSM filtering al-
gorithm resembles the actual FDR, the FRR is calculated using the UPS1 dataset
with known proteins and plotted against thpalue (Figures.4b). All lines after PSM
validation and filtering are approximately straight alohg #5-degree lines; this indi-
cates that PeptideProphet, Percolator, and self-boosted/Btor can provide a fairly
accurate FDR estimation. The FDR estimated directly baseXt Gandem Hyperscore
alone deviated from the actual FDR substantially.

6.3.4 Protein identification

The post-processing results from PeptideProphet andbeelted Percolator are filtered
by controlling PSM level FDR at 0.01. Then ProteinProphetfTPP is used to infer
proteins using the PSMs that passed FDR filtering. FiguBecompare the results
from using PeptideProphet with ProteinProphet for protdantification with using
self-boosted Percolator with ProteinProphet for protdentification. It is clear that in
most cases, the combination of self-boosted PercolatoPamiginProphet gives more
protein identifications, and the proteins identified by gsiasults from self-boosted
Percolator have many more PSMs assigned to.

6.4 Summary

Database searching is a key step in protein identificatiom fMS-based proteomics.
The post-processing of database search results is cfiticquality control where spu-
rious identifications are removed, while only informative\®s are reserved for protein
inference. In this chapter, we look at the post-processing Tandem database search
results. XITandem is an open source database search hilgoktowever, unlike com-
mercial database search softwares, X!Tandem is not wepastgd by sophisticated
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post-processing algorithms such as Percolator. For tasore we extend the Percola-
tor algorithm for post-processing X!Tandem search results

In addition, we found that the learning procedure used bygd?ator relies heavily
on the guidance of the decoy PSMs and their ranking amongtt&g§Ms. The itera-
tive FDR filtering of PSMs is the key to enhance the discrimtrability of final SVM
models. If the decoy PSMs are poorly ranked in the initial RBMthe performance of
the SVM model may degenerate. We propose to overcome theciaaty of the orig-
inal Percolator algorithm by using a cascade learning amtrevhere the performance
is boosted by using the PSM ranking from the previous boastsithe input of the
next boost run. The consistent improvement of performamca benchmark dataset
and two complex sample datasets indicates that the prope#iedoosted Percolator is
effective for improving X!Tandem on peptide and proteinntigcation from tandem
mass spectrometry.

In conclusion, we proposed a self-boosted Percolator idfgoifor post-processing
X!Tandem search results and intergraded it with ProteipRebin TPP. X!Tandem is
open source software, but not originally supported by eiBeptideProphet or Perco-
lator. With our new self-boosted Percolator package freetwided to the research
community, proteomics researchers can now set up a conquetenercial free soft-
ware pipeline for mass spectrometry analysis.

6.5 Software availability

The self-boosted Percolator package is freely availablafr

http://code.google.com/p/self-boosted-percolator



Chapter 7

A Clustering-Based Hybrid Algorithm
for Extracting Complementary
Biomarkers From Proteomics Data

This chapter is based on the following publication:

Pengyi Yang, Zili Zhang, Bing B. Zhou, Albert Y. Zomaya, Ateling based hybrid
system for biomarker selection and sample classificatioma$s spectrometry data.
Neurocomputing, 73:2317-2331, 2010

7.1 Biomarkerdiscovery from MS-based proteomics da-
ta

In the previous chapter, we described the post-proces$ing§Ms for quality control of
mass spectrometry search results. In this chapter, we kitble anethod for extracting
key protein sets that will be used for disease and contrekdiaation.

Compared to gene profiling using microarray technologieS;iddsed proteomics
enables a more direct proteome-level view of the cellulacfionality and pathogen-
esis. According to the types of the data, a biomarker coulddfmed as a protein, a
peptide, or a mass-to-charge (m/z) ion ratio. Here we reféneém collectively as pro-
teomic biomarkers. The quantification of a proteomic bidteacould be performed
by using isotopic or isobaric labelling such as stable isetiabeling with amino acids

106



7.2. FEATURE CORRELATION AND COMPLEMENTARY FEATURE SELEQDON107

in cell culture (SILAC) [144] and isobaric tag for relativachabsolute quantitation (i-
TRAQ) [167], or by a label-free approach where the spectraomts [119] or spectrum
intensity [143] can be used as the estimation of abundanice.gdal is to select a set
of proteomic biomarkers that jointly distinguish diseasd aormal samples.

Similar to microarrays in case-control studies, MS-basedepmics datasets are
plagued by the curse-of-dimensionality and curse-of-dptasity [182]. Without in-
tensive feature filtering or dimension reduction, standardervised classification al-
gorithms cannot be properly employed [114]. Clearly, mdsthe common feature
selection approaches that are used in microarray datasamalyuld also be applied to
MS data. This is reviewed by Hilario and Kalousis [84].

7.2 Feature correlation and complementary feature se-

lection

One of the key findings in previous experience with microadata analysis is that
aggressive feature reduction using a filter-based appnoaghlead to the selection of
highly correlated features [90]. This is because filtereleelgorithms commonly eval-
uate each feature individually, and features selectedsmiftly often have high correla-
tion with each other, limiting the extraction of complemantinformation. Under the
assumption that genes with high correlations could pa#yntbelong to the same bio-
logical pathway, if a disease-associated pathway has @ ramnber of genes involved,
the gene selection results may be dominated by such a patiwvég other informative

pathways will be ignored [28].

As the central dogma indicates, proteins are the functipradlucts of genes ex-
pressed in certain time and conditions. Therefore, MS ditasay have similar proper-
ties as microarray datasets with many correlated m/z featould possibly come from
several dominated pathways. If this assumption is trueséhection of m/z biomark-
ers may also be hampered by issues such as highly correleatatds. In order to
take other informative pathways into account, speciategias must be employed to
generate a redundancy-reduced and information-enrigetdre selection result. Such
procedures are aimed at facilitating the followup sampéssfication and biomarker
validation.

Clustering algorithms has been demonstrated to be useafuédluicing correlation
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in feature sets. Specifically, Hanczair al. [80] proposed a prototype-based feature
extraction procedure for microarray data analysis. Inrtakjorithm, ak-means clus-
tering procedure is applied to the initial microarray datas cluster the genes with
similar expressions. Then the mean expression level of apgob genes is calculated
and used as the “prototype” gene for the followup classibegprocess. However, the
“prototype” genes are the transformed feature vectorsdbaipounded the biological
interpretation. Furthermore, the algorithm uses all “ptgpe” genes, each from a dif-
ferent cluster, for sample classification, but it is mostkedy that all “prototype” genes
are relevant to the disease of interest. This inevitablpthices undesired redundancy,
and potentially affects the classification results.

Wanget al. [196] applied a hierarchial clustering hybrid algorithnm fgene selec-
tion from microarrays. Their method firstly ranks 50 to 10@@® using a given filter
algorithm and then uses a hierarchial clustering algoritbrproduce a dendrogram
with these top-ranked genes. Key genes are selected bpgtitee dendrogram into
pieces at different levels and selecting a representativedch piece. This procedure
is exhaustively investigated from the bottom to the top efdiendrogram to select the
best feature subset in a wrapper manner. Due to the intec@mputations, this hybrid
algorithm suffers from scalability problem. A prefiltering50 to 100 genes potentially
restricts its ability to include as much pathway informatés possible.

Another recent study applied a similar idea for selectirggiininative genes for
multi-class microarray data analysis [28]. The gene ragmkind gene clustering pro-
cesses are conducted independently, and the final genersaedstarmined by using
gene ranking and clustering information collaborativelyowever, the experimental
results across four datasets illustrated that the claggdit accuracy increases almost
monotonically with the increase of the gene size used fasdiagation. In order to
achieve the highest classification accuracy, the numbeemégused for classification
has to be very large. These results indicate that the eakpatiern of the datasets is
still not well captured.

Built on previous studies on microarray data analysis, wppsed &-means clustering-
based hybrid system for MS data analysis [204]. Our hybrgb@ihm utilizes ak-
means clustering-based feature extraction and selectmregure to bridge the filter
selection algorithm and the genetic ensemble algorithnusasl in our SNP and mi-
croarray data analyses in Chapteand Chapteb. We named this hybrid algorithm
FCGE short for “filtering, clustering, and genetic enseng®éection”. It combines
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the advantages of both filter and wrapper algorithms whge alcorporating the extra

benefits from clustering-based correlation reduction afiormation enrichment. By

implementing an iterative procedure, the proposed syssembust to random initial-

ization and able to automatically stabilize the featurec@n results.

7.3 A clustering-based hybrid approach

Here we define a m/z ion ratio as a proteomic feature from M8, @datd the goal is to

select a set of m/z features that jointly distinguishesatiseand normal samples. The

selected m/z features are the potential biomarkers forideade of interest. Neverthe-

less, the system could also be applied to MS/MS data wherdefeition of feature

could be a peptide or protein.

Figure7.lillustrates the proposed system. It executes the followtegs:

A filter-based m/z feature ranking algorithm is utilized tefiter the potential
m/z biomarkers, by ranking m/z features according to theadmess in sample
discrimination.

After the prefiltering stepk-means clustering is conducted on the prefiltered sets

to group the m/z features with similar intensity acrossaléht samples into clus-
ters; m/z features within the same cluster will have higloeredation to those in
a different cluster.

The mean intensity pattern of each cluster is calculated,aam/z feature with
the most similar intensity pattern to the mean intensityguat as well as a m/z
feature with the most different intensity pattern to the miggiensity pattern, are
selected as the representatives of each cluster.

The genetic ensemble wrapper is then invoked to furthermind feature redun-
dancy by identifying the most informative representativégsle discarding the
uninformative ones, guided by the sample classificatiom@oy of an internal
cross-validation.

Steps 2-4 are repeated multiple times (30 in our experimemd the selected
highly differential m/z features are collected and rankgdHeir selection fre-
quency.
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e Finally, a ranking list of m/z features is obtained and theranked m/z features
that are regarded as the most informative biomarkers togkengial pattern of
the underlying dataset are evaluated in unseen data atassifi.

M_S Filter based m/_z Top-ranked
selection set feature pre-filtering m/z features T

— k-means clustering —* / Dissimilar clusters

Mean intensity calculation Representative
— and representative — A —

m/z feature selection W

MS Genetic Ensemble based | |/ Highly differential
validation set\ — > m/z feature selection m/z features

iteration K
L, m/z feature collection |__, m/z feature
and frequency ranking ranking list W

— | Evaluating m/z features
by performing sample |~ | Evaluation accuracy
classification

Figure 7.1: The overall work flow of the FCGE hybrid system.

Particularly, the iterative procedure of FCGE overcomesittstability of thek-
means clustering and genetic ensemble selection becagisdutitering procedure is
repeated with different initialization and the selecti@sults are not determined by a
single run of the system but averaged and ranked by theitivelenportance to the
sample classification in multiple runsAlgorithm 6 summarizes the above steps in
pseudocode; m/z feature evaluation is excluded from the foap since it is indepen-
dent from the feature selection procedure.
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Algorithm 6 FCGE main loop
1: Input: selectionData

Output: rankList
preSet= 0;
for i=1 tonumFeaturedo

filteringScore = filterEvaluation§electionDatai);

if filteringScore > cutof fthen

preSet= preSetJi;

end if
end for
k = setClusterSize();
. resultSet= 0;
. for i=1 toiterationdo
clusterSet= clusteringpreSet k);
representativeSet 0;
for j=1tokdo

representative= selectClusterRepresentatigk(sterSet j);

representativeSet representativeSetrepresentativg
end for
selectSet= geneticEnsembleSeleatpresentativeSkt
resultSet= resultSetJ selectSet
. end for
. rankList=rank{esultSe};
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7.3.1 Filter-based prefiltering

Itis widely agreed that, of the several tens of thousandadidates in MS dataset, on-
ly a small portion of m/z features are disease-related bikena [172]. Thus, a prefilter-

ing process can help us to eliminate the unrelated featbegsnill exert considerable

computational burden if included. However, the main condwre is to ensure that the
reduction is carried out without sacrificing any criticaldrmation. Here we evaluate
two filtering algorithms for our hybrid composition: the ixeten-group to within-group

sum of square (BWSS) algorithm [56] and th&-test.

Given a data matrix witlm samplesn m/z features, and classes, the goodness of
a m/z featurg is evaluated as follows using BWSS:

omey=hE -
BWS =
o i;.; (i =1) (5 =X

wherel (.) is the indicator functionj is the sample index, ang is the class label of

. (xez™M (7.1)

samplel. xjj is the value of thgth m/z feature in théth sample, while<_,~_andxﬁ) are
the average value of m/z featuyexcross all samples and across samples belonging to
classl only, respectively.

When used for feature evaluatioy?-test can be considered to calculate the occur-
rence of a particular value of a feature and the occurrenaectafss associated with this
value. Formally, the discriminative power of a m/z featyis quantified as follows:

m c I(yi =1)(O (Xij:V)—E XijIV))Z o
Z/Zh 1 l(yi =1DE(j =V) , (xeZ™) (7.2)

wherej has a set of possible values denotedt @3/, andO(x;j = v) andE(x;j = V) are

the observed and the expected co-occurrenog; 6f v, respectively. Other notations
are as those defined above.

Initial tests find that the prefiltering size of one fifth of tloéal feature size (around
3000 for typical low-resolution MS datasets) is large erotagcapture most differential
features while also suitable for tlkemeans algorithm to work with [204]. Therefore,
we apply the above two filtering algorithms to prefilter eaatedet with one fifth of the
total m/z features, respectively.
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7.3.2 k-means clustering

Thek-means clustering algorithm is an important component irhgbrid system. The
main purpose of applying-means clustering is to reduce the feature correlation and
redundancy. This goal is achieved by clustering m/z featuiigh similar intensity pat-
terns, while also increasing the dissimilarity among défe clusters by using a given
measure of similarity and cluster mean. In our hybrid systaik-means clustering
with Euclidean distance is employed to compute the sintylafrormally, given two
m/z featureg andk, the distance value af( j, k) is computed as follows:

(10 = 3 yfou w7, xe ™) 73)

wherei is the sample index; is the value of thgth m/z marker of théth sample, and
Xik is the value okth m/z marker of théth sample.

The first challenge of applying themeans clustering algorithm is that differen-
t initial partitions of the dataset can result in differehistering outcomes. This can
be overcome by clustering the given dataset multiple tim#és avfferent initialization.
The second challenge is that the number of the clugtensist be determined before
conducting the clustering process [28]. Therefore, a sekpériments is conducted to
evaluate the effects of differektvalues on the feature selection and sample classifica-
tion.

7.3.3 Cluster feature extraction and representative seléon

Followed byk-means clustering, we calculate the mean intensity pattiezach cluster
by averaging the intensity value of m/z features within thms cluster. After obtaining
the mean intensity pattern of each cluster, we choose a wtzréewith the most similar
pattern to the mean pattern and a m/z feature with the mostgéwnt pattern from the
mean pattern for each cluster as the representatives ofusieic This process can be
formulated as follows:

e, = mind(x,mean), (rg,. €% (7.4)
X €Cy

r....= maxd(x,mea re. €%m 7.5
Kmax X €Cy ( 1y m)’ ( Kmin ) ( )
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whered(.) is the Euclidean distance defined in Equati@B), Cy is thekth cluster,
while ri. andry . are the two representatives with the most similar and thet mos
divergent expression patterns to the mean ofktheclustermean which is calculated

as follows:

Yitel (% € Cox
S ;
wherel (.) is the indicator functionn is the number of m/z features, agdis the size
of thekth cluster.
With the above extraction and selection process, our metbtatts two represen-

mear = (%, meap € Z™) (7.6)

tative features per cluster, and the representative mtariesaof each cluster are then
combined into the clustering processed set for furtherctiele with genetic ensembile.

7.3.4 Using genetic ensemble for m/z biomarker identificadin

The clustering and representative selection procedumsdar us with a set of dissim-
ilar m/z features that potentially represent differendaithway information. However,
it is worth noting that not all biological pathway informaiti in the dataset is related
to the disease or the biological trait of interest. Therefan extra step is required to
remove those unrelated representatives, which could gaegative effect on sample
classification and biomarker identification if included. eTgenetic ensemble used for
gene set selection from microarray data (Sectdh? is incorporated in FCGE to fur-
ther minimize the feature size by selecting those highlgrihisinative m/z features in a
combinatorial way.

7.4 Evaluation datasets and experiment designs

This section describes the MS datasets used for algoritlanaion, the data prepro-
cessing details, and the evaluation methods.

7.4.1 Datasets

We use four low-resolution MS datasets for evaluation. Weetheach dataset by the
type of disease it investigated, the protein chip type, &edwnass spectrometer type if
available.
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7.4.1.1 OC-WCX2

This is an ovarian cancer discriminating dataset genetatestudy [153]. It includes
100 disease and 100 healthy samples. Unlike the datasetedpo [153] that was
generated by using the H4 protein chip, this dataset wasgieueby using the WCX2
protein chip to cope with the discontinuation of the H4 clitpch sample in the dataset
was processed (washing, incubation, etc.) by hand andsemied by 15,154 m/z fea-
tures.

7.4.1.2 OC-WCX2-PBSll-a

This dataset was also generated by the WCX2 protein chiedda 8-7-02). Unlike

the samples of OC-WCX2 dataset that were processed by hamdamples in this

dataset were processed by a robotic sample-handlingmstrito explore the impact of
robotic sample-handling on the spectral quality. In additen upgraded PBSII SELDI-
TOF mass spectrometer was employed to generate the spHutrdataset contains 91
control and 162 ovarian cancer samples, which were not raimal so that the effect
of robotic automation on the spectral variance within eaebnotypic group could be
evaluated. Samples in the dataset are represented by IH/15datures.

7.4.1.3 OC-WCX2-PBSll-b

This dataset (dated as 6-19-02) is an initial version of OCX®-PBSII-a dataset. It
contains the same 91 control and 162 ovarian cancer sanapléshe total number of
m/z features is again 15,154. However, the intensity valvese normalized according
to the formula:

NV = (V — Min)/(Max— Min) (7.7)

whereNV is the normalized value/ the raw valueMin the minimum intensity and
Max the maximum intensity [151]. This equation linearly norires$ the peak intensi-
ties to the range of [0, 1], and the normalization is done allehe 253 samples for all
15,154 m/z features.
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7.4.1.4 PC-H4-PBS1

The last dataset was generated from the study of prostatercftb2]. This dataset
was collected using the H4 protein chip and a Ciphergen PERDETOF mass spec-
trometer. The samples were prepared by hand and each samgpegsented by 14,321
m/z features. There are a total of 322 serum samples, whichategorized into four
classes. The first class contains 190 serum samples thabbaualiagnosed as benign
prostate hyperplasia with serum prostate-specific anti§&A) level greater than or
equal to 4 ng/ml. The second class has 63 serum samples deyas no evidence
of disease with serum PSA level less than 1 ng/ml. The thedsctontains 26 serum
samples diagnosed as prostate cancer with serum PSA leawsddre4 and 10 ng/ml.
The last 43 serum samples were categorized as the fourthwldsserum PSA level
greater than 10 ng/ml.
Table7.1summarizes each dataset used in evaluation.

Table 7.1: MS datasets used in evaluation.

Dataset # Features # Samples # Class
OC-WCX2 15,154 200 2
disease: 100
healthy: 100
OC-WCX2-PBSll-a 15,154 253 2
control: 91
cancer: 162
OC-WCX2-PBSlI-b 15,154 253 2
control: 91
cancer: 162
PC-H4-PBS1 14,321 322 4
no evidence: 63

benign: 190
cancer(4-10): 26
cancer(10+): 43

The study of OC-WCX2-PBSlI-a and OC-WCX2-PBSII-b dataseétlsshow us the
effects of the different pre-processing and normalizgtimtedures upon the biomarker
identification and sample classification. The study of OCX¥Gnd the two OC-
WCX2-PBSII datasets will demonstrate the reproducibibityhe MS-based profiling,
while the study of the PC-H4-PBS1 dataset will reveal theabdjty of the evaluated
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algorithms on multi-class MS data analysis.

7.4.2 Data pre-processing

Datasets OC-WCX2, OC-WCX2-PBSlI-a, and PC-H4-PBS1 arainbtl from:
http://home.ccr.cancer.gov/ncifdaproteomics/ppagersp
while OC-WCX2-PBSII-b is obtained from:
http://sdmc.lit.org.sg/GEDatasets/index.html
All datasets have been processed with baseline corregigak, detection, and peak
guantification. Therefore, we used a simplified pre-praogsgrocedure that applies
the following two steps to each dataset (except OC-WCX2{iRPBSwvhich is processed
by Equation7.7):

e Standardize each m/z feature to zero mean and unit variance.

e Normalize the value of each m/z feature to the range of [0, 1].

After the pre-processing step, each dataset is split ifecten and test sets with
an external stratified 3-fold cross validation. The setetsets are then further split
into training and evaluation sets with an internal stradiféefold cross validation for
m/z feature selection. The selection sets from externascvalidation are subject to
prefiltering, clustering, and m/z selection, while the t&=tis are excluded from these
processes and reserved for final m/z feature evaluationdardo provide unbiased
results.

7.4.3 Results evaluation

In the m/z selection phase, the fithess of each m/z sghsedvaluated by the average
score of blocking fitness (Equati@nl) and voting fithess (Equatidfh2). The score of
blocking fitness is also used as the indicator for findingroptk of k-means clustering
algorithm. In the sample classification phase, the classifin accuracy of a classifier
with a given m/z subsetis calculated using the balanced accuracy (Equdii8n

In order to compare the correlation of m/z features selebie&CGE and other
alternative algorithms, we quantify the correlation of rféatures by calculating their
averaged pairwise Pearson correlation coefficient:
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L 20K
avgCorr= -t (7.8)
2,2, 1D

wheret is the number of m/z features from the ranking result grjdk) is the Pearson
correlation of a pair of m/z features which is computed a®ved:
(), k) = 21 ix'z">()q"_x"‘)_ o (xe 2™ (7.9)
Vi =X )i Ok — Xk)

wherei is the sample index j is the average value of m/z featuracross all samples,

andxy is the average value of m/z featucacross all samples.

The value of average correlation varies from 0 to 1. A largeedclose or equal
to 1) indicates a high correlation of the selection resuitsije a small value (close or
equal to 0) indicates a low correlation of the selectionltesu

7.5 Experimental results

7.5.1 Evaluatingk value of k-means clustering

Thek value of 50, 100, 200, 300, and 400 is tested foikdmeeans clustering algorithm.
The size of the top ranked m/z features used in evaluatiogesafrom 5 to 100. The
blocking accuracy of the ensemble classifier is used as tlierpgence indicator, and
the results with respect to each dataset are summarizedume=.2 As can be seen,
the k-means clustering algorithm with tHevalue of 200 and 300 seems to give the
highest accuracy with the ensemble classifier. This isfidrby averaging the results
of different sizes of m/z subsets according to the value(@igure7.3). However, it is
also realized that the change of tkigalue had only a limited impact on the classifica-
tion results. Therefore, thevalue of 200 is considered a good trade-off between the
accuracy and the computation, and subsequently used imlkbawiéip feature selection
and sample classification experiments.

By viewing the results of each MS dataset individually, welfthat the overall
blocking accuracy of the OC-WCX2 dataset is relatively dyeaith only a few m/z
features reaching a very high classification accuracy (Eigiza). The overall blocking
accuracy of the OC-WCX2-PBSllI-a (Figure2b) and the OC-WCX2-PBSII-b (Figure
7.2c) datasets are similar in that the highest accuracy is @aetliasing only 10 to 20
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Figure 7.2:k value evaluation of FCGE hybrid system. Tke&alue of thek-means
clustering component ranging from 50 to 400 is evaluatedgusi/z subset with size
ranging from 5 to 100.

high ranked m/z features, and both figures show a notableéegith large fluctuation
when more m/z features are included. The trend of the PC-BRB1P(Figure7.2d)
dataset indicates a sharp increase of blocking accurany $udbset size of 5 to size of
10, and it remains relatively stable when more m/z featuresneluded.

A careful observation of Figuré.2 also reveals that, in most cases, the highest fit-
ness is achieved by using less than 40 m/z features, andiioerpance declines when
extra m/z features are added. These results indicate tad@GE hybrid algorithm
is able to group the most differential m/z features into atre¢ly small and compact
feature subset for sample classification.

7.5.2 Sample classification

The sample classification accuracy of the proposed FCGHdgpstem is compared
with those achieved by using univariate Information Gai®][®eliefF [157], BWSS
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Figure 7.3: Average blocking accuracy according to diffiékevalues.

[56], and the GAKNN algorithm [116], all of which have been applied to m/z teat
selection and classification of MS datasets previously.

Since the highest classification accuracy of all four MS sktta can be achieved
within the size of 40 top ranked m/z features, we comparedifit feature selection
algorithms using the m/z subsets with size of 5, 10, 20, 38,4 respectively. Ten
different supervised classification algorithms are usecl@ssification accuracy com-
parison. They are trained using the top ranked m/z featusesrned by each selec-
tion algorithm. These 10 classification algorithms deeision tree(J4.8), 1nearest
neighbour(1-NN), 3-nearest neighbou(3-NN), 7-nearest neighbou(7-NN), naive
bayes(NB), support vector machingSVM) , multi-layer perceptron(MLP), random
forests(RF), multinomial logistic regressiofLogistic), andradial basis function net-
work (RBFnet). The default parameters of Weka for each classditalgorithm are
used [78]. The purpose of using such a wide range of classieilo obtain an unbi-
ased and general evaluation of the m/z feature selectiamitdms that play the role of
identifying informative m/z biomarkers that help the cléisation algorithm to achieve
high classification accuracy.

The detailed classification results (shown as classifioaroor rates) of the 10 clas-
sifiers by using the m/z features ranked by FCGE with BWSS (E@®®VSS)), FCGE
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Table 7.2: OC-WCX2 dataset. Error rate comparison of sifetBht m/z feature se-
lection algorithms using 10 different classifiers with sif¢he top ranked m/z features

from 5 to 40

Classifier FCGE(BWSS) FCGE(?)
5 10 20 30 40 Cavg 5 10 20 30 40 Cavg
J4.8 10.02  9.09 9.01 8.50 9.01 9.13 9.09 9.09 10.02 10.02 10.02 9.6%
1-NN 6.99 2.53 2.02 2.02 2.02 3.12 2.53 3.54 2.53 4.04 2.02 2.93
3-NN 4.02 3.03 3.03 2.53 3.03 3.13 3.54 3.03 2.02 3.03 3.54 3.03
7-NN 4.97 451 3.54 3.54 3.54 4.02 4.97 4,97 2.02 3.54 3.54 3.81
NB 5.07 457 2.53 2.48 2.53 3.44 4.04 3.03 3.03 2.53 4.55 3.44
SVM 451 3.03 2.53 2.53 2.53 3.03] 4.50 3.03 2.02 2.53 2.53 2.92
MLP 4.49 1.52 4.04 2.53 4.04 3.37 3.54 3.54 2.53 2.53 2.53 2.93
RF 5.49 6.02 5.05 3.03 5.05 493 5.05 5.01 4.55 3.54 6.48 4.93
Logistic 4.50 5.05 2.53 3.03 3.03 3.63 3.03 3.99 2.53 3.03 2.53 3.02
RBFnet 3.98 4.05 2.53 2.53 2.53 3.17 3.03 4.55 2.02 3.03 5.56 3.64
Savg 5.40 4.34 3.68 3.27 3.73 4.09 4.33 4.38 3.32 3.78 4.33 4.03
Classifier BWSS GA/KNN
5 10 20 30 40 Cavg 5 10 20 30 40 Cavg
J4.8 9.01 10.02 10.52 10.52 10.52 10.1210.02 10.02 10.52 10.52 10.52 10.32
1-NN 4.04 5.01 4.04 4.04 3.54 4.13 5.05 4.04 4.04 3.54 4.04 4.14
3-NN 3.54 3.54 3.03 3.03 3.54 3.31 3.54 2.53 3.03 3.03 3.54 3.13
7-NN 4.50 3.54 3.54 4.04 4.04 3.93 551 3.03 3.54 3.03 4.04 3.83
NB 4.00 4.04 3.03 3.03 3.03 3.43 5.01 3.54 3.03 2.53 3.49 3.52
SVM 4.00 3.03 2.53 3.03 2.53 3.b2| 3.49 2.53 2.53 2.53 2.53 2.2
MLP 4.04 6.06 3.03 3.54 2.53 3.84 455 4.55 5.05 3.03 2.53 3.94
RF 6.02 6.48 5.51 6.57 6.02 6.14 6.02 3.53 5.05 5.51 5.93 5.21
Logistic 8.59 8.08 7.53 7.53 4.00 7.14 7.58 5.51 5.56 4.04 3.03 5.14
RBFnet 3.49 3.03 4.00 6.02 5.51 4.41 4.00 3.03 4.04 4.00 6.02 4.22
Savg 5.12 5.28 4.68 5.13 432 495 5.48 4.23 464 418 4.57 4.62
Classifier Information Gain ReliefF
5 10 20 30 40 Cavg 5 10 20 30 40 Cavg
Ja.8 9.01 9.01 10.52 10.52 10.52 9.92 8.00 10.02 10.52 10.52 10.52 9.92
1-NN 4.04 4.04 5.56 5.56 3.54 4.5 6.57 5.51 4.50 3.54 3.03 4.63
3-NN 3.54 2.53 3.54 3.03 3.03 3.13 5.05 4.00 3.54 4.04 3.54 4.03
7-NN 3.99 3.54 3.54 3.54 5.05 3.93 4.04 4.50 4.55 4.04 5.05 4.44
NB 3.03 3.54 4.50 4.04 4.50 3.924 3.54 2.99 2.99 4.00 4.50 3.60
SVM 3.03 2.53 2.53 2.53 2.53 263 354 3.03 3.03 3.03 3.54 393
MLP 3.54 4.55 3.03 4.04 2.53 3.54 4.04 5.01 4.04 4.04 4.04 4.23
RF 7.53 5.05 7.03 7.03 6.52 6.63 7.03 6.02 7.53 5.56 9.05 7.04
Logistic 5.56 6.99 6.52 7.07 5.01 6.23 9.09 11.57 5.56 6.02 5.01 7.4
RBFnet 4.04 2.53 3.03 4.50 5.51 3.92 4.04 4.50 6.52 5.01 7.03 5.42
Savg 473 443 4.98 5.19 4.87 4.84 5.49 5.72 528 498 553 5.40

T classifier with the lowest classification error rate acrafferént m/z subset sizes.
* m/z subset size with the lowest classification error rateszcall classification algorithms.

with x2 (FCGE(x?)), GA/KNN, BWSS, Information Gain, and ReliefF are presented
in Tables7.2-7.5. The column of C avg” shows the average error rates with a given
classifier using different m/z feature sizes, while the réWw®avg” shows the average
error rates with a given size of m/z set across differentsdi@ss. The first value gives
an average indication of a specific classifier's power on $awipssification while the
second value gives an average indication of the effect afnitzesubset size on MS data
classification. The grand mean error rates across all mfarkeaizes and all classifiers
are marked in bold. As can be seen, the proposed FCGE hylgadithim is able to
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Table 7.3: OC-WCX2-PBSllI-a dataset. Error rate comparigbfour different m/z
feature selection algorithms using 10 different classfigith size of the top ranked

m/z features from 5 to 40

Classifier FCGE(BWSS) FCGE(?)

5 10 20 30 40 Cavg 5 10 20 30 40 Cavg
J4.8 409 439 439 353 353 3.99 296 5.06 5.06 5.57 5.57 4.84
1-NN 1.73 167 0.56 1.11 0.56 1.13 222 1.67 0.00 1.67 1.67 1.45
3-NN 0.86 1.67 0.56 1.11 1.11 1.0 2.22 1.67 0.56 2.22 1.11 1.56
7-NN 1.67 167 0.56 1.67 1.67 1.48 278 167 1.67 1.11 1.11 1.67
NB 0.86 056 0.86 142 1.67 1.11 1.79 0.62 0.86 1.42 0.86 1.11
SVM 1.67 1.11 0.00 0.00 111 o8l 1.11 111 0.00 0.00 0.00 0.44
MLP 1.73 142 056 111 0.56 1.08 1.11 056 0.00 0.56 0.56 0.54
RF 402 347 291 371 3.15 3.4 3.65 3.47 4.01 2.59 3.15 3.37

Logistic | 235 0.00 0.86 056 0.56 0.87 0.00 031 0.31 1.17 1.17 0.59
RBFnet 223 204 0.31 0.86 1.48 1.3 1.48 1.42 1.11 1.67 1.11 1.36
Savg 212 180 116 151 154 163 | 193 176 136 1.80 1.63 1.69

Classifier BWSS GA/KNN

5 10 20 30 40 Cavg 5 10 20 30 40 Cavg
J4.8 483 6.37 501 501 501 5.2 483 501 501 5.01 5.01 4.97
1-NN 513 458 259 346 2.28 3.61 3.77 4.07 0.56 0.56 2.22 2.24
3-NN 334 315 198 228 253 2.66 3.34 259 0.56 1.11 1.67 1.85
7-NN 3.34 370 1.98 1.98 222 264 253 290 1.67 2.22 2.22 2.31
NB 402 427 228 228 198 297 290 352 235 2.28 2.28 2.67
SVM 3.34 253 173 259 0.56 215 253 235 0.56 0.00 0.56 1.%0
MLP 483 463 204 228 142 3.04 346 235 235 1.11 1.11 2.04
RF 452 427 3.96 347 371 3.99 599 285 347 2.54 1.48 3.27

Logistic | 6.12 562 377 352 142 409 475 475 1.85 0.62 0.62 2.52
RBFnet | 433 544 390 3.04 248 3.84 4.02 427 253 1.42 1.42 2.73
Savg 438 446 292 299 236 342 | 3.81 347 2.09 1.69 1.86 2.58

Classifier Information Gain ReliefF

5 10 20 30 40 Cavg 5 10 20 30 40 Cavg
J4.8 544 501 501 501 501 5.10 4.83 6.37 5.01 5.01 5.01 5.2§
1-NN 7.17 458 352 291 284 420 5.13 6.31 3.10 4.01 3.28 4.37
3-NN 421 365 291 279 253 3.22 334 446 3.34 2.84 3.40 3.48
7-NN 421 365 259 198 253 299 334 390 253 2.53 2.78 3.07
NB 402 371 291 291 198 3.11 4.02 427 228 2.59 2.28 3.09
SVM 446 259 291 259 228 297/ 334 334 198 1.98 1.67 246
MLP 569 321 291 228 1.98 3.21 4.83 458 259 1.98 1.42 3.08
RF 6.06 3.71 4.09 4.02 4.95 457 4.52 4.58 3.41 4.27 3.71 4.1Q

Logistic | 5.75 458 352 291 2.28 3.81 6.12 7.48 4.38 3.15 2.65 4.76

RBFnet | 3.71 279 396 334 279 3.32 433 4.89 3.90 3.70 4.01 4.17
Savg 507 375 343 3.07 292 365 | 438 502 325 321 3.02 3.78

achieve the lowest grand mean error rates (which is the kighassification accura-
cy) in all four MS datasets. Specifically, grand mean errtesaf FCGE(BWSS) and
FCGE((?) in OC-WCX2, OC-WCX2-PBSllI-a, and OC-WCX2-PBSlII-b dat&selas-
sification are 4.09, 1.63, 1.10, and 4.03, 1.69, 1.34, reésedg which are consistently
better than those obtained by G&NIN, BWSS, Information Gain, and ReliefF. As for
the PC-H4-PBS1 dataset, the improvement is about 3% tki4/ 5-6% to BWSS
and ReliefF algorithms, and a significant 16% over Infororatsain.

It is also clear that the classification results of FCGE(BW&S] FCGE?) are
very similar. The results indicate that the effect of diffier filter algorithms is similar
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Table 7.4: OC-WCX2-PBSII-b dataset. Error rate comparsosix different m/z fea-
ture selection algorithms using 10 different classifierggize of the top ranked m/z

features from 5 to 40

Classifier FCGE(BWSS) FCGE?)

5 10 20 30 40 Cavg 5 10 20 30 40 Cavg
J4.8 4.27 4.27 3.46 3.46 3.46 3.78 5.86 3.46 3.46 3.45 3.46 3.94
1-NN 1.68 0.56 0.00 0.56 0.56 0.671 1.68 0.56 056 1.11 1.11 1.0Q
3-NN 142 1.11 056 0.00 0.00 0.624 1.68 000 056 0.56 0.56 0.67
7-NN 1.11 1.11 0.56 0.00 0.56 0.671 1.68 1.11 0.56 0.56 0.56 0.89
NB 265 056 0.31 0.31 0.31 0.83 1.79 0.62 0.86 1.17 1.17 1.12
SVM 1.67 0.56 0.00 0.00 0.00 0.44 1.68 000 056 056 0.56 0.67
MLP 142 056 0.00 0.00 0.00 040l 062 000 056 056 056 046
RF 448 111 3.70 1.98 1.62 2.58 3.77 2.53 253 2.22 2.28 2.6

Logistic 2.04 0.00 0.31 0.00 0.00 0.471 1.23 0.31 0.31 0.86 1.17 0.78
RBFnet 1.17 0.00 0.31 0.31 0.62 0.48 1.17 0.56 1.11 1.67 1.73 1.25
Savg 219 098 092 066 0.71 1.10 212 0.9r 110 1.27 1.31 1.34

Classifier BWSS GA/KNN

5 10 20 30 40 Cavg 5 10 20 30 40 Cavg
J4.8 3.41 341 414 4.14 4.14 3.8 3.10 383 3.83 383 3.83 3.68
1-NN 427 268 111 2.17 0.56 2.14 3.29 2.79 111 1.11 1.11 1.88
3-NN 3.80 2.68 1.11 1.11 1.11 1.9 2.79 1.73 1.11 1.11 1.11 1.57
7-NN 354 299 1.11 1.62 2.73 2.4Q 2.79 2.23 111 1.11 1.67 1.78
NB 3.71 3.71 1.42 1.42 1.42 2.34 3.41 2.35 1.48 1.42 1.98 2.13
SVM 405 299 111 1.11 0.56 1.9 3.10 1.73 111 1.11 0.56 1.52
MLP 354 173 08 086 056 151/ 268 086 0.00 056 056 0.3
RF 349 299 4.15 4.44 2.22 3.44 3.74 4.21 4.20 4.52 1.98 3.73

Logistic 4.47 3.77 2.35 2.04 1.17 2.76 6.11 2.35 1.23 0.62 0.31 2.17
RBFnet 3.10 321 142 1.98 1.98 2.34 3.10 1.73 0.86 1.67 1.11 1.69
Savg 3.74 299 1.88 2.09 1.64 247 3.41 2.38 1.60 1.70 148 211

Classifier Information Gain ReliefF

5 10 20 30 40 Cavg 5 10 20 30 40 Cavg
J4.8 3.10 259 3.83 3.83 3.83 3.44 3.15 3.15 4.38 4.38 4.38 3.89
1-NN 3.10 254 1.73 1.11 1.67 2.03 4.27 1.98 1.67 1.67 1.67 2.25
3-NN 5,03 223 2.23 1.11 1.11 2.34 3.80 1.42 3.79 273 2.72 2.89
7-NN 416 3.85 2.74 2.12 2.17 3.01 3.54 2.48 3.79 273 2.72 3.0§
NB 4.64 3.16 1.73 1.98 1.98 2.7 3.71 2.59 3.46 2.28 2.53 2.91
SVM 491 279 1.73 1.11 1.11 2.33 3.74 1.92 1.11 0.56 0.56 1.58
MLP 2.68 142 1.42 0.86 0.56 1.89| 354 0.56 111 1.11 1.11 1.h9
RF 3.71 315 420 5.01 3.33 3.8 349 248 475 3.04 3.09 3.37

Logistic 595 290 2.35 2.04 2.04 3.06 4.47 2.10 0.86 0.86 1.17 1.89

RBFnet 341 321 223 1.42 2.28 2.51 3.10 1.42 1.67 2.53 2.53 2.25
Savg 4.07 278 242 2.06 2.01 2.67 3.68 20r 266 219 2.25 256

for the purpose of prefiltering, and obtaining a size of orté fif m/z features in pre-
filtering is large enough to preserve most useful m/z feattoefollowup classification
processing.

We marked the lowesE value for finding the best classifier and the lowgsalue
for finding the best m/z feature size for each MS datasetemsely. One interest-
ing finding is that an association seems to exist betweenyfheedf the classifier and
the dataset. In OC-WCX2 dataset and OC-WCX2-PBSll-a datdesssification, SVM
classifier is identified as the best classifier consistenitiy all six m/z feature selec-
tion algorithms, while MLP is identified as the best classifiensistently for the OC-
WCX2-PBSII-b dataset. As for the PC-H4-PBS1 dataset, tis¢ dassifier is 1-NN
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Table 7.5: PC-H4-PBS1 dataset. Error rate comparison dafiferent m/z feature se-
lection algorithms using 10 different classifiers with sif¢he top ranked m/z features

from 5 to 40

Classifier FCGE(BWSS) FCGE{?)

5 10 20 30 40 Cavg 5 10 20 30 40 Cavg
J4.8 3149 3394 3517 3371 33.77 33.6 39.57 3290 29.41 31.42 35.23 33.7
1-NN 30.43 27.75 19.29 16.28 16.26 22700 39.58 2559 22.03 20.19 1827 2501
3-NN 29.49 26.08 23.65 19.52 21.67 24.0838.81 27.34 2321 2439 23.30 27.4
7-NN 36.03 31.01 27.94 31.51 31.75 31.6p42.73 33.15 30.42 30.73 29.69 33.3

NB 28.69 27.85 25.18 24.15 23.97 2597 37.66 28.44 26.87 21.21 20.81 26.9
SVM 44.82 43.09 24.11 18.67 20.50 30.24 42.69 43.57 25.44 20.44 21.12 30.6
MLP 29.27 25.11 20.08 27.92 21.98 2487 37.09 3161 2485 19.75 20.66 26.7|

RF 28.98 28.45 29.80 29.40 30.57 29.44 39.84 28,57 34.05 36.81 29.95 33.8

Logistic | 35.54 3456 3295 34.89 33.69 34.3337.91 3221 3561 31.09 28.26 33.0

RBFnet | 40.15 37.24 26.69 28.27 35.41 33.5539.14 35.01 2548 29.39 25.65 30.9
Savg 33.49 3151 26.48 26.43 26.96 28.97 | 39.50 31.84 27.74 26.54 2529 30.18

Classifier BWSS GA/KNN

5 10 20 30 40 Cavg 5 10 20 30 40 Cavg
J4.8 33.68 33.18 3519 35.09 35.22 34.47 36.42 41.72 3522 3590 33.72 36.6
1-NN 35.11 3226 34.46  34.07 30.29 33.2436.36 23.15 17.43 17.35 16.92 22024
3-NN 33,59 29.93 3442 3511 37.59 34.1837.74 33.78 26.61 24.36 21.74 28.8
7-NN 38.74 3573 40.60 39.73 42.19 39.4D42.82 4560 37.51 32.03 32.19 38.0

NB 33.02 3595 37.06 33.79 34.71 34.9141.74 37.74 33.08 30.81 25.17 33.7
SVM 55.76  45.27 42.86  35.60 30.28 41.9555.25 41.43 31.88 25.42 22.45 35.2
MLP 3157 26.94 3457 29.06 27.10 29'8% 35.63 29.38 27.23 2581 26.18 28.8

RF 33.98 3219 3253 35.83 34.78 33.8642.98 33.80 31.30 30.99 34.44 34.7

Logistic | 34.20 34.06 37.21 3043 32.48 33.6842.22 40.51 30.65 35.70 31.15 36.0

RBFnet | 33.72 39.74 38.03 37.77 41.58 38.1745.29 39.90 32.98 31.37 28.15 35.5
Savg 36.34 3453 36.69 34.65 34.62 3537 | 41.64 36.70 30.39 28.97 2721 32.98

Classifier Information Gain ReliefF

5 10 20 30 40 Cavg 5 10 20 30 40 Cavg

Ja.8 48.22 4488 44.70 42.39 42.16 44.4f7 30.23 35.06 34.12 33.01 32.74 33.0
1-NN 50.04 4254 46.27 46.91 44.48 46.0534.89 24.64 2596 29.11 28.75 28.6
3-NN 50.16 41.68 46.07 44.68 45.21 4556 35.51 32.32 38.45 37.51 35.29 35.8
7-NN 49.22 43.39 4881 49.76 45.76 47.3934.95 41.28 43.34 42.09 41.67 40.6

NB 4553  45.02 44.84 4551 46.25 45483 33.59 35.25 37.34 39.80 39.54 37.1

SVM 56.75 56.06 53.94 49.74 47.79 52.8648.51 41.32 38.07 38.60 38.34 40.9
MLP 48.49  39.37 4447  43.18 37.17 42'54 32.01 3051 26.67 25.87 2344 27'7

RF 50.03 46.12 43.43 44.65 46.68 46.1840.39 41.18 36.83 39.56 33.63 38.3

Logistic | 48.19 4485 51.07 41.87 41.66 4553 34.37 41.99 36.20 32.38 31.50 35.2

RBFnet 47.89 46.94 47.11 46.93 46.07 46.99 37.75 42.15 39.15 37.14 40.77 39.3

Savg 49.45 45.09 47.07 4556 4432 46.30 | 36.22 36.57 35.61 3551 3457 35.70

=
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when using FCGE(BWSS), FCGI®) and GAKNN, while the classifier of MLP is the
most successful when using BWSS, Information Gain, andeReklgorithms. Since
the number of datasets is limited, it is hard to interpret thlbethere is a classifier-
dataset specific relationship. Nonetheless, it is argudiale SVM and MLP are the
most competitive classifiers for MS data classification. FOGE hybrid algorithm, the
lowest error rates are achieved in all three ovarian caragsdts using only 10 to 30
top ranked m/z features. This indicates that the FCGE hyddgdrithm is capable of
selecting the most important m/z features that can effelgtirepresent the underlying
patterns.
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Lastly, we applied a pairwidetest to calculat@-values for BWSS, GANN, Infor-
mation Gain, and ReliefF against FCGE(BWSS) and FOGE (espectively. Suppose
the error rates given by a feature selection algorifinasing classifiersc L'lL'n > are
< e‘l...t-:jn >. Then, the difference between two feature selection algos with respect
to sample classification can be representeDids =< e"1 — e’le'n — eA >. Given the
null hypothesiHp : Dif f = 0 and the alternative hypothedis : Diff > 0, we can
evaluate whether the error rates given by a feature seteglirithmF' are significant-
ly higher thanF!. Table7.6 shows thep-values for each pairwise test. It is clear that
in most cases the error rates given by FCGE(BWSS) and FgGBfe significantly
lower than those given by alternative methods<(0.05).



Table 7.6: Significance test of error rate for feature seacilgorithms in terms of sample classification using each détaset,
respectively. The calculations are performed using 5-4€cted m/z features, respectively. Each number gsvalue calculated
using a pairwise one-tail Studentest to 3 decimal places.

OC-WCX2 5 10 20 30 40
BWSS vs FCGE(BWSS); FCGEf) 0.686; 0.097 0.070;0.062 0.046;0.007 0.001;0.011 0.02%10
GA/KNN vs FCGE(BWSS); FCGB() 0.431;0.018 0.582;0.644 0.008;0.001 0.007;0.069 0.0389D0
Information Gain vs FCGE(BWSS); FCGE) | 0.911; 0.200 0.427;0.453 0.015;0.000 0.001;0.006 0.0.0630
ReliefF vs FCGE(BWSS); FCGE{) 0.442;0.077 0.047;0.050 0.002;0.000 0.000;0.002 0.00010
OC-WCX2-PBSll-a 5 10 20 30 40
BWSS vs FCGE(BWSS); FCGEf) 0.000; 0.000 0.000;0.000 0.000;0.001 0.000;0.001 0.00010
GA/KNN vs FCGE(BWSS); FCGB() 0.000; 0.000 0.003;0.002 0.001;0.016 0.231;0.671 0.18240
Information Gain vs FCGE(BWSS); FCGE) | 0.000; 0.000 0.000; 0.000 0.000;0.000 0.000;0.000 0.0000
ReliefF vs FCGE(BWSS); FCGE{) 0.000; 0.000 0.000;0.000 0.001;0.000 0.000;0.000 0.00000
OC-WCX2-PBSlI-b 5 10 20 30 40
BWSS vs FCGE(BWSS); FCGEf) 0.003; 0.007 0.000; 0.000 0.000;0.001 0.000;0.000 0.00940
GA/KNN vs FCGE(BWSS); FCGB() 0.012; 0.029 0.001;0.000 0.000;0.014 0.000;0.000 0.0@0
Information Gain vs FCGE(BWSS); FCGE) | 0.003; 0.007 0.001;0.000 0.000;0.000 0.000;0.009 0.0000
ReliefF vs FCGE(BWSS); FCGE{) 0.004; 0.010 0.005;0.000 0.000;0.001 0.000;0.001 0.00010
PC-H4-PBS1 5 10 20 30 40
BWSS vs FCGE(BWSS); FCGEf) 0.037; 0.942 0.002;0.017 0.000; 0.003 0.000;0.000 0.00000
GA/KNN vs FCGE(BWSS); FCGB() 0.000; 0.101 0.007;0.009 0.010;0.009 0.061;0.000 0.40230
Information Gain vs FCGE(BWSS); FCGE) | 0.000; 0.000 0.000; 0.000 0.000; 0.000 0.000; 0.000 0.0000
ReliefF vs FCGE(BWSS); FCGE{) 0.037;0.981 0.005; 0.000 0.000;0.003 0.000;0.000 0.00610
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7.5.3 Correlation reduction

In our previous work, th&means clustering component was employed in the hope that
the correlation of the selected m/z features would be retlimeredundancy control.
However, no measure has been proposed to assess the lewgbtdiions of the select-
ed m/z features. In order to compare the correlation leviil@top ranked m/z features
with each m/z ranking algorithm, in this study, we quanthg torrelation among m/z
features by calculating the Pearson correlation coefficirea pairwise manner using
each selection algorithm. The ranking size of the m/z festuagain, ranges from 5 to
40, and the correlation values of each pair of m/z featureswagraged for comparison
using Equatiory.8 This value ranges from 0 to 1 with the low value indicating/lo
overall correlation and the high value indicating high @lecorrelation. The results
grouped by selection algorithms and m/z feature size asepted in Tabl&.7. Figure
7.4is the visualization of the results.

Itis easily observed that the proposed FCGE system is abéeltace the overall cor-
relation among the selected m/z features considerablaréetovarian cancer datasets
classification, essentially, the correlation decreasés the increase of the m/z feature
size. As for the prostate dataset, no significant changesroélation with respect to
different m/z feature sizes are observed.

Table 7.7: Correlation evaluation details. Pearson catiogl of the m/z feature selec-
tion results are calculated in a pairwise manner and grobygetie type of selection
algorithm and the feature size.

OC-WCX2 OC-WCX2-PBSll-a

5 10 20 30 40 5 10 20 30 40
FCGE (BWSS)| 0.235 0.295 0.283 0.279 0.2430.532 0.517 0.464 0.408 0.363
FCGE (x?) 0.404 0.357 0.274 0.254 0.2350.462 0.435 0.377 0.363 0.349
GA/KNN 0.659 0.598 0.510 0.461 0.4380.906 0.811 0.700 0.635 0.577
BWSS 0.688 0.609 0.580 0.549 0.5320.968 0.903 0.777 0.742 0.684
ReliefF 0.582 0.543 0.518 0.512 0.5090.973 0.888 0.765 0.698 0.658
InfoGain 0.612 0.604 0.581 0.546 0.5180.964 0.852 0.776 0.730 0.683

OC-WCX2-PBSlI-b PC-H4-PBS1

5 10 20 30 40 5 10 20 30 40
FCGE (BWSS)| 0.451 0.473 0.438 0.394 0.3570.163 0.241 0.244 0.245 0.219
FCGE (x?) 0.540 0.443 0.401 0.362 0.3470.184 0.229 0.221 0.234 0.243
GA/KNN 0.905 0.825 0.698 0.638 0.5560.349 0.292 0.295 0.285 0.273
BWSS 0.948 0.911 0.754 0.752 0.6670.379 0.423 0.416 0.402 0.422
ReliefF 0.973 0.852 0.778 0.695 0.6580.276 0.420 0.450 0.427 0.441
InfoGain 0.957 0.876 0.782 0.729 0.68§70.781 0.793 0.778 0.776 0.760
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Figure 7.4: Correlation evaluation. Different correlatievels are plotted by m/z subset
size and selection algorithms in a pairwise manner.

Comparing the correlation of the selection results and tier eate in sample clas-
sification according to m/z feature ranking algorithms, vl fihat there is a positive
association in that the increase of the correlation godstivé increase of the error rate.
That is, the ranking algorithm that generates lower cotigglaesults can often achieve
higher sample classification accuracy. Although most @étsagveal a decrease of the
correlation with the increase of the m/z feature size, asvesl in Table3.2-7.5the in-
crease of the m/z feature size does not always bring highssification accuracy. This
implies that the decrease of the correlation does not al@egsmpany the increase of
the classification accuracy within a given m/z feature ragkilgorithm. This is natural
because not all m/z features are informative/useful in $amipssification. Although,
including those low correlated m/z features will decredsedverall correlation of the
selection results, they will not bring any gain in samplessification because they lack
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relevance to the trait we are investigating.

7.6 Discussion and summary

In PC-H4-PBS1 dataset analysis, we see that that Inform&#on algorithm performs
much worse than the other ranking algorithms. This resglgests a lack of power for
univariate methods in multi-classes data classificatiome BWSS algorithm and the
multivariate ReliefF algorithm are able to improve the feby 11%, and the wrapper-
based GAKNN algorithm gives an improvement of nearly 13%. However, BGGE
algorithm provides an even better result with another 3-4¥6¢nt improvement over
GA/KNN. This could be attributed to the use lefneans clustering for correlation re-
duction and the use of ensemble of classifiers for m/z featelextion and ranking.

The advantage of using ensemble classifier for featuretgmiaran be justified by
the assumption that different classification models temdiszlassify a different portion
of samples if the proper integration strategies are employaese model combination
and model averaging strategies have long been known in tbhinelearning commu-
nity [53,199], and determining which attributes should bedias the input is important
for improvement of overall classification accuracy [145]hM¥ genetic ensemble hy-
brid aims to select useful m/z features to improve the olelassification accuracy, it
provides a natural way to identify biologically significamiz biomarkers. As a con-
sequence, since the m/z feature selection and evaluatoacmomplished by using
multiple classifiers, they are less subject to the bias dhoemductive algorithms but
more likely to reflect the genuine association with the diseaf interest.

By viewing the sample classification results and the caticelaeduction results, we
have the following conclusion: correlation reduction maytbe key to promote sam-
ple classification and the identification of disease assettibiomarkers from the bio-
pathway level, but evidently not all pathway informatiorassociated with the disease
of interest. Therefore, algorithms that use all represemmthe that together minimize
the correlation to the minimum may not only include redurayaout could also exert
negative effects on the selection and classification resdlihe FCGE hybrid system
provides a framework to incorporate correlation minimizaias an intermediate step,
which circumvents the disadvantage of relying solely ondbeelation reduction by
using it as an information enrichment and pattern enhanoemeasure.
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In summary, we proposedkameans clustering-based feature extraction and selec-
tion approach for the analysis of MS dataset. This hybridesgsncorporated filter-
based prefilteringk-means clustering-based correlation reduction and reptatve
selection, and genetic ensemble-based wrapper selectioegqures. Thie-means clus-
tering process serves as the bridge between filter-basestfwetion and wrapper-based
feature selection processes. It helps to decrease the siomatity of the pre-filtered
dataset while also reducing the correlation of the seleotéd features, outputting
a noise-reduced and information-enriched dataset. Theremental results suggest
that the proposed FCGE system has good capability in sangdsification and m/z
biomarker identification for MS dataset analysis.



Chapter 8
Conclusions and Future Work

In this chapter, we summarize the thesis and propose paltéurttire research directions
that could be extended from this thesis.

8.1 Conclusions of the thesis

Computational and systems biology is a fast growing re$ei@etd, driven by the con-

tinuous development in both high-throughput technologrescomputational methods.
This thesis focuses in particular on ensemble learning oastland hybrid algorithms
and their application to some of the most representativgarel topics in computation-
al and systems biology.

e In Chapter3, we studied the reproducibility and success rate in funetli@GNP
and SNP pair filtering from GWA studies using both simulateord real-world
datasets. We demonstrated that some of the most popular [ENiRd algorithms
such as ReliefF and TuRF are sensitive to the order of thelsarmpthe dataset,
causing a significant change of SNP rankings when the ordéreafamples are
changed. Such an undesirable artifact originated fromkthearest neighbour
algorithm employed by ReliefF and TuRF for choosing leagrégxamples. By
harnessing this artificial effect as the diversity of theeankle learning models,
we proposed an ensemble of filters that is capable of overgpthie low repro-
ducibility of the original filter algorithms while also impving the success rate
on functional SNP and SNP interaction pair filtering.

131
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¢ In Chapter4, we developed a genetic ensemble (GE) algorithm for idg@ntf

gene-gene interaction and gene-environmental factoractien. The GE algo-
rithm incorporates multiple classification algorithms igemetic framework using
three integration functions, namely blocking, majoritying, and double fault di-
versity. Blocking and majority voting were used to combihe prediction from
multiple classifiers, whereas double fault diversity waesdt® promote diversities
among these classifiers. We showed that the GE algorithm hels higher power
in terms of identifying interactions compared to any singlssifiers. Further-
more, we proposed a novel function for evaluating the degifeemplementarity
of results generated by different gene-gene interactientitication algorithms.
We demonstrated that the proposed GE algorithm gives congpitary results to
other algorithms such as MDR and PIA whereas the results M&R and PIA
are very similar to each other. Therefore, the proposed @& ig#hm provides a
unique means to identify many more gene-gene interactitrewsed together
with other identification algorithms.

We moved to the transcriptomic level in ChapSawhere the focus is on select-
ing gene sets from microarray-based expression profilingigease and normal
sample classification. In this chapter, we introduced aespwpping method for
combining multiple filter algorithms with the GE algorithnmithe system, called
“MF-GE”, is able to fuse the pre-filtering scores of each gemputed by each
filter algorithm to the initialization and mutation operts of the genetic algo-
rithms. MF-GE is therefore fast in terms of convergence arabie to identify s-
maller gene subsets that give higher prediction power. ifldisates that MF-GE
is capable of selecting the most discriminative genes wdide reducing the re-
dundant ones. The selected gene subsets may contain kegrkennfor disease
diagnosis and prevention, and are potential candidatdslfowup validation.

Chapter6 focused on post-processing spectrum-peptide matchesgPger-
ated from MS-based proteomics studies. In this chapterhoeead that a semi-
supervised learning algorithm called “Percolator” is sgéresto the initial PSM
ranking in PSM filtering. It performs suboptimally when thetial PSMs are
ranked poorly. We extended Percolator for X!Tandem (an cgmmce search
algorithm) and proposed a cascade ensemble learning abpiaraPercolator in
PSM filtering. We named this algorithm “self-boosted” Péator because the
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algorithm boosts its performance by repeatedly learniedittering model using
the outputs from its previous iterations. By comparing theppsed algorith-
m with the state-of-the-art algorithms such as an empinoadielling algorithm

called “PeptideProphet” and the original Percolator atbar on a ground truth
dataset and two complex sample datasets, we demonstratexthboosted Per-
colator identifies many more PSMs at the same level of falseodtery rate.

e Chapter7 dealt with feature selection and sample classification f\M8tbased
proteomics studies. Specifically, we described that higblyelated genes and
proteins may dominate the feature selection result whamusanventional fea-
ture selection algorithms. By introducingkameans clustering procedure, we
can bridge filter and wrapper algorithms and at the same tedeae the corre-
lation of features by selecting dissimilar features froroheeature cluster. This
hybrid system is called “FCGE” because it combines filterialgstering, and
genetic ensemble learning components. We demonstrate&@GE enhances
the biological signal in the dataset by extracting dissamih/z markers, and per-
forms consistently better than several other feature sefealgorithms across a
large number of classification algorithms in all four tesié8-based proteomics
datasets.

8.2 Future directions

While this thesis has presented a number of novel ensembleodseand hybrid al-
gorithms for a variety of applications in computational ay$tems biology, it also
indicates promising research directions that can be egtéfat our future work.

e Itis widely accepted that diversity among the individualdals is the key driving
force for ensemble learning. For example, in ensemble i@lzegson, different
classifiers are encouraged to give different predictiormsgiven sample, provided
the classification accuracy is maintained at a relativegjhevel [108]. While
there are several studies on model diversity in ensembssiélzation [24, 30,
108], the effect of diversity in ensemble feature selectian not been explored
and warrants further studies.

e Ensemble size is a key parameter in any ensemble learnindetdtmines the



134

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

number of base models used to form the ensemble model, arefdtee may
significantly affect the performance of the ensemble modélere are several
approaches for determining ensemble size. One approactpredefine the en-
semble size based on some prior knowledge. Another soligitmntest different
ensemble sizes and select the size that appears to be tleebeaisting to certain
criteria. While the first approach is inflexible and is unlikeo be optimal in all
cases and studies, the second trial and error approachers @fimputationally
intensive and subject to the evaluation criteria used foinapation. Therefore,
finding a computationally efficient approach that optimitessensemble size in a
case-by-case manner could be a key to improve the perfoeraribe ensemble
model.

Beside measuring and analysing gene expressions andrpguiantitations, in-
creasingly more studies have been done on global profilimgy dtiological molecules
such as phosphorylation of proteins [211] and microRNA l&iions [176]. These
added layers introduce complexity and new challenges ia daalysis. Nov-

el computational algorithms are required to fully utilizedaintegrate those new
high-throughput datasets with large-scale gene expmssid proteomics data to
reveal the connections and regulations of biological systand signalling.

Numerous studies have generated the gene, transcriptratesprofiles of var-
ious biological systems and diseases. Those studies amditmgutational anal-
ysis associated with them are often performed separatbbteTlis a strong need
for combining multiple data types generated from two or msystems for in-
tegrative analysis. We saw a fast growth in this researaction as evidenced
by several recent publications [47, 163, 185]. However,dbésign of effective
computational approaches for general integrative aralgsstill at its infancy.
Research effort in this direction is critical to understémel biological systems at
their full scale.



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, andaéys. Robust biomark-
er identification for cancer diagnosis with ensemble feagelection methods.
Bioinformatics 26(3):392-398, 2010.

R. Aebersold and M. Mann. Mass spectrometry-based prnoites. Nature
422(6928):198-207, 2003.

D.W. Aha, D. Kibler, and M.K. Albert. Instance-basedie&g algorithms Ma-
chine learning 6(1):37—-66, 1991.

D.B. Allison, X. Cui, G.P. Page, and M. Sabripour. Microgy data analysis:
from disarray to consolidation and consenduature Reviews Geneticg(1):55—
65, 2006.

U. Alon, N. Barkai, DA Notterman, K. Gish, S. Ybarra, D. il and AJ Levine.

Broad patterns of gene expression revealed by clusterialysia of tumor and

normal colon tissues probed by oligonucleotide arréysoceedings of the Na-
tional Academy of Sciences of the United States of Amepages 6745—-6750,
1999.

N.L. Anderson and N.G. Anderson. Proteome and protesnmew technologies,
new concepts, and new wordslectrophoresis19(11):1853-1861, 1998.

[7] A.S. Andrew, J. Gui, A.C. Sanderson, R.A. Mason, E.V. Mok, A.R. Schned,

[8]

K.T. Kelsey, C.J. Marsit, J.H. Moore, and M.R. Karagas. Bkdcancer SNP
panel predicts susceptibility and survivelum. Genet.125(5):527-539, 2009.

P.J. Antsaklis and X.D. Koutsoukos. Hybrid systemsieevand recent progress.
Software-Enabled Contrppages 273-298, 2003.

135



136

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

BIBLIOGRAPHY

S.A. Armstrong, J.E. Staunton, L.B. Silverman, R. Pigt®1.L. den Boer, M.D.

Minden, S.E. Sallan, E.S. Lander, T.R. Golub, and S.J. Keyan MI| translo-

cations specify a distinct gene expression profile thatrgdjsishes a unique
leukemia.Nature Genetics30(1):41-47, 2002.

B.M. Balgley, T. Laudeman, L. Yang, T. Song, and C.S. L&omparative e-
valuation of tandem MS search algorithms using a targetysearch strategy.
Molecular & Cellular Proteomics6(9):1599, 2007.

J C Barrett, B Fry, J Maller, and M J Daly. Haploview: ays$ and visualization
of |d and haplotype map®ioinformatics 21:263—-265, 2005.

A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schuerrand Z. Yakhini.
Tissue classification with gene expression profildsurnal of Computational
Biology, 7(3-4):559-583, 2000.

A. Ben-Hur, C.S. Ong, S. Sonnenburg, B. Scholkopf, endRatsch. Support
vector machines and kernels for computational biology.0S Computational
Biology, 4(10):e1000173, 2008.

M. Bern, Y. Cai, and D. Goldberg. Lookup peaks: a hybridie novo sequenc-
ing and database search for protein identification by tane@ss spectrometry.
Analytical Chemistry79(4):1393-1400, 2007.

A. Beygelzimer, S. Kakade, and J. Langford. Cover tfeesearest neighbor. In
Proceedings of the 23rd International Conference on Maghiaarning pages
97-104. ACM, 2006.

N. Blow. Transcriptomics: The digital generatioNature 458(7235):239-242,
2009.

A.L. Blum and P. Langley. Selection of relevant featis;d examples in ma-
chine learning Artificial Intelligence 97(1-2):245-271, 1997.

G Bontempi. A blocking strategy to improve gene selatfior classification of
gene expression datdEEE/ACM Transactions on Computational Biology and
Bioinformatcis 4:293-300, 2007.



BIBLIOGRAPHY 137

[19] A.L. Boulesteix and M. Slawski. Stability and aggregatof ranked gene lists.
Briefings in Bioinformatics10(5):556-568, 2009.

[20] L. Breiman. Bagging predictordachine Learning24(2):123-140, 1996.
[21] L. Breiman. Random forest84achine Learning45(1):5-32, 2001.

[22] L Briollais, Y Wang, | Rajendram, V Onay, E Shi, J Knigland H Ozcelik.
Methodological issues in detecting gene-gene interastiofreast cancer sus-
ceptibility: a population-based study in ontar®MC Medicine 5:22, 2007.

[23] M. Brosch, L. Yu, T. Hubbard, and J. Choudhary. Accuiatd sensitive peptide
identification with Mascot Percolataournal of Proteome Researd(6):3176—
3181, 20009.

[24] G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity ctiea methods: a survey
and categorisatiorinformation Fusion6(1):5-20, 2005.

[25] A. Bureau, J. Dupuis, K. Falls, K.L. Lunetta, B. Haywar@.P. Keith, and
P. Van Eerdewegh. Identifying snps predictive of phenotygrg random forest-
s. Genetic Epidemiology8(2):171-182, 2005.

[26] A. Bureau, J. Dupuis, B. Hayward, K. Falls, and P. Vandegregh. Mapping
complex traits using random foresBMC Genetics4(Suppl 1):S64, 2003.

[27] C.J.C. Burges. A tutorial on support vector machinaspattern recognition.
Data mining and knowledge discoveB(2):121-167, 1998.

[28] Z. Cai, R. Goebel, M. Salavatipour, and G. Lin. Selegtthssimilar genes for
multi-class classification, an application in cancer spisty. BMC Bioinformat-
ics, 8(1):206, 2007.

[29] S Cantor and M Kattan. Determining the area under thecuvee for a binary
diagnostic testMedical Decision Making20:468-470, 2000.

[30] A.M.P. Canuto, M.C.C. Abreu, L. de Melo Oliveira, J.Ca¥Xer, et al. Inves-
tigating the influence of the choice of the ensemble membreexcuracy and
diversity of selection-based and fusion-based methoderisembles.Pattern
Recognition Letter28(4):472-486, 2007.



138

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

BIBLIOGRAPHY

B. Carvalho, H. Bengtsson, T.P. Speed, and R.A. InzarExploration, nor-
malization, and genotype calls of high-density oligonatite snp array data.
Biostatistics 8(2):485—-499, 2007.

Tsong Yueh Chen, Joshua W. K. Ho, Huai Liu, and Xiaoyu&n An innovative
approach for testing bioinformatics programs using metaimo testing.BMC
Bioinformatics 10:24, 2009.

X. Chen, S.T. Cheung, S. So, S.T. Fan, C. Barry, J. HgigiaM. Lai, J. Ji,
S. Dudoit, I.O.L. Ng, et al. Gene expression patterns in huiher cancers.
Molecular Biology of the Cell13(6):1929-1939, 2002.

X. Chen, C.T. Liu, M. Zhang, and H. Zhang. A forest-bas@groach to identi-
fying gene and gene—gene interactioRsoceedings of the National Academy of
Sciencesl104(49):19199-19203, 2007.

H. Choi, D. Ghosh, and A.l. Nesvizhskii. Statisticalidation of peptide identifi-
cations in large-scale proteomics using the target-deatgbdise search strategy
and flexible mixture modelingJournal of Proteome Research(01):286—292,
2007.

L.Y. Chuang, C.H. Yang, J.C. Li, and C.H. Yang. A hybri@80-CGA approach
for gene selection and classification of microarray dadarnal of Computation-
al Biology, page ahead of print, 2011.

J.G. Cleary and L.E. Trigg. K*: An instance-based learnsing an entropic
distance measure. IRroceedings of the Twelfth International Conference on
Machine Learningpages 108-114, 1995.

J. Colinge and K.L. Bennett. Introduction to computatil proteomics.PL0S
Computational Biology3(7):e114, 2007.

F.S. Collins, E.D. Green, A.E. Guttmacher, and M.S. &uyA vision for the
future of genomics researchature 422(6934):835-847, 2003.

E. Corchado, A. Abraham, and J.M. Corchatlmovations in hybrid intelligent
systemsSpringer Verlag, 2007.



BIBLIOGRAPHY 139

[41] H.J. Cordell. Epistasis: what it means, what it doesnédan, and statistical
methods to detect it in humanduman Molecular Geneti¢41(20):2463, 2002.

[42] H.J. Cordell. Detecting gene—gene interactions thmateulie human diseases.
Nature Reviews Genetict0(6):392—-404, 2009.

[43] J. Cox, N. Neuhauser, A. Michalski, R.A. Scheltema, D\éen, and M. Mann.
Andromeda: a peptide search engine integrated into the naat@nvironment.
Journal of Proteome Researcth0(4):1794-1805, 2011.

[44] R. Craig and R.C. Beavis. TANDEM: matching proteinshwtdindem mass spec-
tra. Bioinformatics 20(9):1466-1467, 2004.

[45] R. Craig, JC Cortens, D. Fenyo, and RC Beavis. Using &ted peptide mass
spectrum libraries for protein identificationJournal of Proteome Research
5(8):1843-1849, 2006.

[46] F. Crick. Central dogma of molecular biologyNature 227(5258):561-563,
1970.

[47] B.T.S. Da Wei Huang and R.A. Lempicki. Systematic artégmative analysis of
large gene lists using david bioinformatics resourééesture Protocols4(1):44—
57, 2008.

[48] M. Dash and H. Liu. Feature selection for classificatibtelligent Data Analy-
sis 1(3):131-156, 1997.

[49] J.L. DeRisi, V.R. lyer, and P.O. Brown. Exploring the taeolic and genetic
control of gene expression on a genomic scaeience 278(5338):680-686,
1997.

[50] M. Dettling and P. Buhlmann. Boosting for tumor cld&sition with gene ex-
pression dataBioinformatics 19(9):1061-1069, 2003.

[51] E.W. Deutsch, L. Mendoza, D. Shteynberg, T. Farrah, Hml. N. Tasman,
Z.Sun, E. Nilsson, B. Pratt, B. Prazen, et al. A guided todhefrans-proteomic
pipeline. Proteomics10(6):1150-1159, 2010.

[52] R. Diaz-Uriarte and S.A. De Andres. Gene selection eadsification of mi-
croarray data using random foreBiMC Bioinformatics7(1):3, 2006.



140

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

BIBLIOGRAPHY

T.G. Dietterich. Ensemble methods in machine learning Proceedings of
the First International Workshop on Multiple Classifier &as pages 1-15.
Springer-Verlag, 2000.

T.G. Dietterich. An experimental comparison of threethods for constructing
ensembles of decision trees: Bagging, boosting, and raizdtion. Machine
Learning 40(2):139-157, 2000.

C. Ding and H. Peng. Minimum redundancy feature sebactiom microarray
gene expression dataJournal of Bioinformatics and Computational Biolggy
3(2):185-205, 2005.

S. Dudoit, J. Fridlyand, and T.P. Speed. Comparisonisdranination meth-
ods for the classification of tumors using gene expressita dwurnal of the
American Statistical Associatip@7(457):77-87, 2002.

S. Dudoit, Y.H. Yang, M.J. Callow, and T.P. Speed. Statal methods for iden-
tifying differentially expressed genes in replicated cdmaroarray experiments.
Statistica Sinical2(1):111-140, 2002.

K. Dunne, P. Cunningham, and F. Azuaje. Solutions tdaindity problems
with sequential wrapper-based approaches to featurdisgletechnical Report
TCD-CS-2002-28, Department of Computer Science, TrindleGe, Dublin,
Ireland, 2002.

E.E. Eichler, J. Flint, G. Gibson, A. Kong, S.M. LealHJ.Moore, and J.H.
Nadeau. Missing heritability and strategies for finding tinelerlying causes of
complex diseaseNature Reviews Genetick1(6):446—450, 2010.

E. Elbeltagi, T. Hegazy, and D. Grierson. Comparisommagifive evolutionary-
based optimization algorithmAdvanced Engineering Informatics9(1):43-53,
2005.

J.E. Elias and S.P. Gygi. Target-decoy search stratmgycreased confidence
in large-scale protein identifications by mass spectromeiature Methods
4(3):207-214, 2007.



BIBLIOGRAPHY 141

[62] J.K. Eng, A.L. McCormack, and J.R. Yates Ill. An apprbac correlate tandem
mass spectral data of peptides with amino acid sequencegrotein database.
Journal of the American Society for Mass Spectroméify1):976—989, 1994.

[63] S Fisher, A Rivera, L Fritsche, G Babadjanova, S Petiod B Weber. Assess-
ment of the contribution of cfh and chromosome 10926 amdeqigulity loci
in a russian population isolat&ritish Journal of Ophthalmology©1:576-578,
2007.

[64] A.M. Frank, M.M. Savitski, M.L. Nielsen, R.A. Zubareand P.A. Pevzner. De
novo peptide sequencing and identification with precisiassnspectrometry.
Journal Proteome Research(1):114-123, 2007.

[65] Y. Freund and L. Mason. The alternating decision treerleng algorithm. IrPro-
ceedings of the Sixteenth International Conference on Madbearning pages
124-133, 1999.

[66] L.Y. Geer, S.P. Markey, J.A. Kowalak, L. Wagner, M. Xu,ND Maynard,
X. Yang, W. Shi, and S.H. Bryant. Open mass spectrometrycbeagorithm.
Journal of Proteome ResearcB(5):958-964, 2004.

[67] J. Gertheiss and G. Tutz. Supervised feature seleationass spectrometry-
based proteomic profiling by blockwise boostingioinformatics 25(8):1076—
1077, 2009.

[68] G. Getz, E. Levine, and E. Domany. Coupled two-way @tsg analysis
of gene microarray dataProceedings of the National Academy of Sciences
97(22):12079-12084, 2000.

[69] P. Geurts, M. Fillet, D. De Seny, M.A. Meuwis, M. Malaj9d.P. Merville, and
L. Wehenkel. Proteomic mass spectra classification usicgioa tree based
ensemble method&ioinformatics 21(14):3138-3145, 2005.

[70] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasss¥) J.P. Mesirov,
H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, et al. Metular classifica-
tion of cancer: class discovery and class prediction by gepeession monitor-
ing. Science286(5439):531-537, 1999.



142

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

BIBLIOGRAPHY

C.S. Greene, N.M. Penrod, J. Kiralis, and J.H. Mooreatily uniform ReliefF
(SURF) for computationally-efficient filtering of gene-geimteractionsBioDa-
ta Mining, 2(1):5, 2009.

K.L. Gunderson, F.J. Steemers, G. Lee, L.G. Mendozd, MtS. Chee. A
genome-wide scalable SNP genotyping assay using micyoechanology.Na-
ture Genetics37(5):549-554, 2005.

I. Guyon and A. Elisseeff. An introduction to variabledifeature selectionfhe
Journal of Machine Learning Researc311157-1182, 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Geneestibn for cancer clas-
sification using support vector machinedachine Learning 46(1):389-422,
2002.

M.T. Hagan, H.B. Demuth, M.H. Beale, and Boulder Ungigr of Colorado.
Neural network designPWS Pub, 1996.

L W Hahn, M D Ritchie, and J H Moore. Multifactor dimensality reduction
software for detecting gene-gene and gene-environmesraictions. Bioinfor-
matics 19:376-382, 2003.

J L Haines, M A Hauser, S Schmidt, W K Scott, and L M Olsorantplement
factor h variant increases the risk of age-related macwgenderationScience
308:419-421, 2005.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemand |.H. Witten. The
WEKA data mining software: an updateaCM SIGKDD Explorations Newslet-
ter, 11(1):10-18, 2009.

X. Han, A. Aslanian, and J.R. Yates lll. Mass spectramdbr proteomics.
Current Opinion in Chemical BiologyL2(5):483-490, 2008.

B. Hanczar, M. Courtine, A. Benis, C. Hennegar, K. Cé&t and J.D. Zucker.
Improving classification of microarray data using prot@ymased feature selec-
tion. ACM SIGKDD Explorations Newslettes(2):23—30, 2003.

T. Hastie, R. Tibshirani, and J. Friedman. Ensemblenieg. The Elements of
Statistical Learningpages 605-624, 2009.



BIBLIOGRAPHY 143

[82] Z. He and W. Yu. Review article: Stable feature seletfar biomarker discov-
ery. Computational Biology and Chemisti§4(4):215-225, 2010.

[83] A G Heidema, J M Boer, N Nagelkerke, E C Mariman, A D L varr,dand
E J Feskens. The challenge for genetic epidemiologiests:tb@nalyze large
numbers of snps in relation to complex disea®dC Genetics7:23, 2006.

[84] M. Hilario and A. Kalousis. Approaches to dimensiohateduction in proteom-
ic biomarker studiesBriefings in Bioinformatics9(2):102-118, 2008.

[85] J.N. Hirschhorn, M.J. Daly, et al. Genome-wide asstmiestudies for common
diseases and complex traitdature Reviews Geneti0§(2):95-108, 2005.

[86] T.K.Ho. The random subspace method for constructirgsiten forests.|EEE
Transactions on Pattern Analysis and Machine Intelligen26(8):832—844,
1998.

[87] J. Hoh, A. Wille, and J. Ott. Trimming, weighting, andogiping SNPs in human
case-control association studi€@enome Resl11(12):2115-2119, 2001.

[88] M.M. lles. What can genome-wide association studidsiteabout the genetics
of common diseasePLoS Genef4(2):e33, 2008.

[89] G. Izmirlian. Application of the random forest classétion algorithm to a seldi-
tof proteomics study in the setting of a cancer preventi@h tAnnals of the New
York Academy of Science20(1):154-174, 2004.

[90] J. Jaeger, R. Sengupta, and WL Ruzzo. Improved genetisgi¢or classification
of microarrays. IrPacific Symposium on Biocomputjmmages 53—-64, 2003.

[91] R.Jiang, W. Tang, X. Wu, and W. Fu. A random forest apphda the detection
of epistatic interactions in case-control studi®\VIC Bioinformatics 10(Suppl
1):S65, 2009.

[92] T. Jirapech-Umpai and S. Aitken. Feature selection eladsification for mi-
croarray data analysis: Evolutionary methods for idemtdypredictive genes.
BMC Bioinformatics6(1):148, 2005.



144 BIBLIOGRAPHY

[93] K. Jong, J. Mary, A. Cornuégjols, E. Marchiori, and M.li3g. Ensemble fea-
ture ranking. InProceedings of the 8th European Conference on Principles an
Practice of Knowledge Discovery in Databaspages 267—-278. Springer-Verlag
New York, Inc., 2004.

[94] L. Kall, J.D. Canterbury, J. Weston, W.S. Noble, andJMMacCoss. Semi-
supervised learning for peptide identification from shotguoteomics datasets.
Nature Methods4(11):923-925, 2007.

[95] M. Kallberg and H. Lu. An improved machine learning ool for the identifi-
cation of correct sequest search resuBsIC bioinformatics11(1):591, 2010.

[96] A. Kalousis, J. Prados, and M. Hilario. Stability of faee selection algorithm-
s: a study on high-dimensional spacdsnowledge and Information Systems
12(1):95-116, 2007.

[97] E.A. Kapp, F. Schitz, L.M. Connolly, J.A. Chakel, JMeza, C.A. Miller,
D. Fenyo, J.K. Eng, J.N. Adkins, G.S. Omenn, et al. An evabnatcompari-
son, and accurate benchmarking of several publicly availals/ms search algo-
rithms: sensitivity and specificity analysBroteomics5(13):3475-3490, 2005.

[98] E.Keedwell and A. Narayanan. Discovering gene netwavith a neural-genetic
hybrid. IEEE/ACM Transactions on Computational Biology and Biormiatics
2(3):231-242, 2005.

[99] E. Keedwell and A. Narayanaimtelligent bioinformaticsWiley Online Library,
2005.

[100] A. Keller, J. Eng, N. Zhang, X. Li, and R. Aebersold. Aif@nm proteomic-
s ms/ms analysis platform utilizing open xml file formatglolecular Systems
Biology, 1(1), 2005.

[101] A. Keller, Al Nesvizhskii, E. Kolker, and R. AebersoldEmpirical statistical
model to estimate the accuracy of peptide identificationdertay MS/MS and
database searcnalytical Chemistry74(20):5383-5392, 2002.

[102] J Kittler, M Hatef, R P Duin, and J Mates. On combiningsdifiers. IEEE
Transactions on Pattern Analysis and Machine Intelliger2€e226—-239, 1998.



BIBLIOGRAPHY 145

[103] R.J. Klein, C. Zeiss, E.Y. Chew, J.Y. Tsai, R.S. Sack: Haynes, A.K. Hen-
ning, J.P. SanGiovanni, S.M. Mane, S.T. Mayne, et al. Cometd factor H
polymorphism in age-related macular degenerati@tience 308(5720):385—
389, 2005.

[104] R. Kohavi and G.H. John. Wrappers for feature subdetsen. Artificial Intel-
ligence 97(1-2):273-324, 1997.

[105] M. Kudo and J. Sklansky. Comparison of algorithms tbelect features for
pattern classifiersPattern Recognition33(1):25-41, 2000.

[106] L I Kuncheva and L C Jain. Designing classifier fusiostsyn by genetic algo-
rithms. IEEE Transactions on Evolutionary Computatj@n327-336, 2000.

[107] L.I. Kuncheva.Combining pattern classifiers: methods and algorithméley-
Interscience, 2004.

[108] L.I. Kuncheva and C.J. Whitaker. Measures of divgr8it classifier ensem-
bles and their relationship with the ensemble accuratyachine Learning
51(2):181-207, 2003.

[109] H. Lam, E.W. Deutsch, J.S. Eddes, J.K. Eng, N. King,. Stein, and R. Ae-
bersold. Development and validation of a spectral libragrshing method for
peptide identification from ms/m&roteomics7(5):655-667, 2007.

[110] L. Lam and SY Suen. Application of majority voting totf@&n recognition: An
analysis of its behavior and performand&EE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Huma&7¢5):553-568, 1997.

[111] P. Larrafaga, B. Calvo, R. Santana, C. Bielza, J.@ad] I. Inza, J.A. Lozano,
R. Armafanzas, G. Santafé, A. Pérez, et al. Machine ileguin bioinformatics.
Briefings in Bioinformatics7(1):86-112, 2006.

[112] J.W. Lee, J.B. Lee, M. Park, and S.H. Song. An extensiraparison of recent
classification tools applied to microarray da@omputational Statistics & Data
Analysis 48(4):869-885, 2005.



146 BIBLIOGRAPHY

[113] K.E. Lee, N. Sha, E.R. Dougherty, M. Vannucci, and BMallick. Gene se-
lection: a bayesian variable selection approa&ioinformatics 19(1):90-97,
2003.

[114] I. Levner. Feature selection and nearest centroissdiaation for protein mass
spectrometryBMC Bioinformatics6(1):68, 2005.

[115] L. Li, T.A. Darden, CR Weingberg, AJ Levine, and L.G.deesen. Gene
assessment and sample classification for gene expresdiarusiag a genet-
ic algorithm/k-nearest neighbor methodCombinatorial Chemistry & High
Throughput Screening(8):727-739, 2001.

[116] L. Li, D.M. Umbach, P. Terry, and J.A. Taylor. Applicam of the ga/knn method
to seldi proteomics dat&ioinformatics 20(10):1638-1640, 2004.

[117] L.Li, C.R. Weinberg, T.A. Darden, and L.G. Pedersean&selection for sample
classification based on gene expression data: study oftiségsio choice of
parameters of the ga/knn methdgloinformatics 17(12):1131-1142, 2001.

[118] B. Liu, Q. Cui, T. Jiang, and S. Ma. A combinational i&&t selection and
ensemble neural network method for classification of gepesssion dataBMC
bioinformatics 5(1):136, 2004.

[119] H. Liu, R.G. Sadygov, and J.R. Yates Ill. A model fordam sampling and es-
timation of relative protein abundance in shotgun protesnAnalytical Chem-
istry, 76(14):4193-4201, 2004.

[120] P.M. Long and V.B. Vega. Boosting and microarray datéachine Learning
52(1):31-44, 2003.

[121] K. Lunetta, L.B. Hayward, J. Segal, and P. Van Eerddwe§creening large-
scale association study data: exploiting interactionsgishndom forestsBMC
Genetics5(1):32, 2004.

[122] M.I. McCarthy, G.R. Abecasis, L.R. Cardon, D.B. Ga#ls, J. Little, JP loan-
nidis, and J.N. Hirschhorn. Genome-wide association stufdir complex traits:
consensus, uncertainty and challendéature Reviews Genetic3(5):356—-369,
2008.



BIBLIOGRAPHY 147

[123] B.A. McKinney, J.E. Crowe Jr, J. Guo, and D. Tian. Cajiy the spectrum of
interaction effects in genetic association studies by kied evaporative cooling
network analysisPL0oS Genet5(3):€1000432, 2009.

[124] B.A. McKinney, D.M. Reif, M.D. Ritchie, and J.H. Moor#achine learning for
detecting gene-gene interactions: a revidpplied Bioinformatics5(2):77—-88,
2006.

[125] BA McKinney, DM Reif, BC White, JE Crowe Jr, and JH MoorEvaporative
cooling feature selection for genotypic data involvingnatctions Bioinformat-
ics, 23(16):2113-2120, 2007.

[126] J.A. Mead, L. Bianco, and C. Bessant. Recent developsne public proteomic
MS repositories and pipelineBroteomics9(4):861-881, 2009.

[127] L E Mechanic, B T Luke, J E Goodman, S J Chanock, and C CigidPolymor-
phism interaction analysis (pia): a method for inverstigatomplex gene-gene
interactions BMC Bioinformatics9:146, 2008.

[128] Y. Meng, Y. Yu, L.A. Cupples, L. Farrer, and K. LunetRerformance of random
forest when snps are in linkage disequilibriuBIMC Bioinformatics 10(1):78,
2009.

[129] T.M. Mitchell. Machine Learning McGraw Hill, 1997.

[130] J. Moore and B. White. Tuning relieff for genome-widengtic analysisEvo-
lutionary Computation, Machine Learning and Data MiningBroinformatics
pages 166-175, 2007.

[131] J.H. Moore, F.W. Asselbergs, and S.M. Williams. Bioimatics challenges for
genome-wide association studi@oinformatics 26(4):445-455, 2010.

[132] J.H. Moore, L.W. Hahn, M.D. Ritchie, T.A. Thornton,&B.C. White. Appli-
cation of genetic algorithms to the discovery of complex gledor simulation
studies in human genetics. Rtoceedings of the Genetic and Evolutionary Com-
putation Conferenggages 1150-1155, 2002.

[133] J.H. Moore and S.M. Williams. Epistasis and its imations for personal genet-
ics. Am. J. Hum. Genet85(3):309-320, 2009.



148 BIBLIOGRAPHY

[134] A A Motsinger and M D Ritchie. Multifactor dimensiongireduction: an analy-
sis strategy for modelling and detecting gene-gene intierasin human genetics
and pharmacogenomics studiéikiman Genomic:318-328, 2006.

[135] A.A. Motsinger-Reif, S.M. Dudek, L.W. Hahn, and M.Ditéhie. Compari-
son of approaches for machine-learning optimization ofaleuwetworks for de-
tecting gene-gene interactions in genetic epidemioldggnetic Epidemiology
32(4):325-340, 2008.

[136] S.K. Musani, D. Shriner, N. Liu, R. Feng, C.S. Coffey, Y, H.K. Tiwari, and
D.B. Allison. Detection of gene gene interactions in genome-wide association
studies of human population datdum. Hered.63(2):67-84, 2007.

[137] N. Nagarajan and G. Yona. Automatic prediction of pmotdomains from se-
guence information using a hybrid learning syst@&ininformatics 20(9):1335—
1360, 2004.

[138] M R Nelson, S L Kardia, R E Ferrell, and C F Sing. A comlbangal partitioning
method to identify multilocus genotypic partitions thaegict quantitative trait
variation. Genome Researcth1:458-470, 2001.

[139] A.l. Nesvizhskii and R. Aebersold. Interpretationgfotgun proteomic data:
the problem inference problenMolecular & Cellular Proteomics4(10):1419—
1440, 2005.

[140] A.l. Nesvizhskii, A. Keller, E. Kolker, and R. Aebelso A statistical model
for identifying proteins by tandem mass spectrometAnalytical Chemistry
75(17):4646-4658, 2003.

[141] A.l. Nesvizhskii, F.F. Roos, J. Grossmann, M. Vogalzal.S. Eddes, W. Gruis-
sem, S. Baginsky, and R. Aebersold. Dynamic spectrum guadgessment and
iterative computational analysis of shotgun proteomiaditolecular & Cellu-
lar Proteomics5(4):652, 2006.

[142] D.M. Nielsen, M.G. Ehm, and B.S. Weir. Detecting marllesease association
by testing for hardy-weinberg disequilibrium at a markesus. The American
Journal of Human Geneti¢c$3(5):1531-1540, 1998.



BIBLIOGRAPHY 149

[143] W.M. Old, K. Meyer-Arendt, L. Aveline-Wolf, K.G. Piee, A. Mendoza, J.R.
Sevinsky, K.A. Resing, and N.G. Ahn. Comparison of labekfmethods for
quantifying human proteins by shotgun proteomigklecular & Cellular Pro-
teomics4(10):1487-1502, 2005.

[144] S.E. Ong, B. Blagoev, I. Kratchmarova, D.B. Kristemskl. Steen, A. Pandey,
and M. Mann. Stable isotope labeling by amino acids in cdtluce, silac, as a
simple and accurate approach to expression proteorMosecular & Cellular
Proteomics1(5):376-386, 2002.

[145] D. Opitz and R. Maclin. Popular ensemble methods: Apieical study.Journal
of Artificial Intelligence Researgti1(1):169-198, 1999.

[146] M.Y. Park and T. Hastie. Penalized logistic regresdar detecting gene inter-
actions.Biostatistics 9(1):30-50, 2008.

[147] S.D. Patterson and R.H. Aebersold. Proteomics: tisé decade and beyond.
Nature Genetics33:311-323, 2003.

[148] T.A. Pearson and T.A. Manolio. How to interpret a gemewide association
study. JAMA: the journal of the American Medical Associati@99(11):1335—
1344, 2008.

[149] S. Peng, Q. Xu, X.B. Ling, X. Peng, W. Du, and L. Chen. Btllar classi-
fication of cancer types from microarray data using the cowatimn of genetic
algorithms and support vector machinE&EBS Letters555(2):358-362, 2003.

[150] D.N. Perkins, D.J.C. Pappin, D.M. Creasy, and J.Str€lat Probability-based
protein identification by searching sequence databasieg uosass spectrometry
data.Electrophoresis20(18):3551-3567, 1999.

[151] E.F. Petricoin and L.A. Liotta. Seldi-tof-based serproteomic pattern diagnos-
tics for early detection of canceCurrent Opinion in Biotechnologyl5(1):24—
30, 2004.

[152] E.F. Petricoin, D.K. Ornstein, C.P. Paweletz, A. Addei, P.S. Hackett, B.A.
Hitt, A. Velassco, C. Trucco, L. Wiegand, K. Wood, et al. Sarproteomic
patterns for detection of prostate candaurnal of the National Cancer Institute
94(20):1576-1578, 2002.



150 BIBLIOGRAPHY

[153] E.F. Petricoin Ill, A.M. Ardekani, B.A. Hitt, P.J. Laéwve, V.A. Fusaro, S.M. Stein-
berg, G.B. Mills, C. Simone, D.A. Fishman, E.C. Kohn, et akeldf proteomic
patterns in serum to identify ovarian cancéihe Lancet359(9306):572-577,
2002.

[154] P.C. Phillips. Epistasis — The essential role of generactions in the structure
and evolution of genetic systemdat. Rev. Genet9(11):855-867, 2008.

[155] F. Pompanon, A. Bonin, E. Bellemain, and P. Taberlein@yping errors: caus-
es, consequences and solutiadature Reviews Genetid$(11):847-846, 2005.

[156] G. Potamias, L. Koumakis, and V. Moustakis. Gene s$ieleovia discretized
gene-expression profiles and greedy feature-eliminatibethods and Applica-
tions of Artificial Intelligencepages 256-266, 2004.

[157] J. Prados, A. Kalousis, J.C. Sanchez, L. Allard, O.r&#, and M. Hilario.
Mining mass spectra for diagnosis and biomarker discoviesgrebral accidents.
Proteomics4(8):2320-2332, 2004.

[158] Y. Qi, W. Niu, T. Zhu, W. Zhou, and C. Qiu. Synergistidesft of the genet-
ic polymorphisms of the renin—angiotensin—aldosteros¢esy on high-altitude
pulmonary edema: a study from Qinghai-Tibet altitudBur. J. Epidemiol.
23(2):143-152, 2008.

[159] VY. Qu, B.L. Adam, Y. Yasui, M.D. Ward, L.H. Cazares, P3chellhammer,
Z. Feng, 0.J. Semmes, and G.L. Wright Jr. Boosted decisiea analy-
sis of surface-enhanced laser desorption/ionization rspsstral serum pro-
files discriminates prostate cancer from noncancer pati€iinical Chemistry
48(10):1835-1843, 2002.

[160] J. Quackenbush. Microarray data normalization aaddfiormation Nature Ge-
netics 32(supp):496-501, 2002.

[161] N. Rabbee and T.P. Speed. A genotype calling algoriitmaffymetrix SNP
arrays.Bioinformatics 22(1):7-12, 2005.

[162] HW Ressom, RS Varghese, SK Drake, GL Hortin, M. Abdeahtid, CA Lof-
fredo, and R. Goldman. Peak selection from maldi-tof magstsp using ant
colony optimization Bioinformatics 23(5):619-626, 2007.



BIBLIOGRAPHY 151

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

D.R. Rhodes and A.M. Chinnaiyan. Integrative anaydithe cancer transcrip-
tome. Nature Genetics37:5S31-S37, 2005.

M.D. Ritchie, L.W. Hahn, and J.H. Moore. Power of miattor dimensionality
reduction for detecting gene-gene interactions in thegores of genotyping er-
ror, missing data, phenocopy, and genetic heteroger@éypetic Epidemiology
24(2):150-157, 2003.

M.D. Ritchie, B.C. White, J.S. Parker, L.W. Hahn, and.JMoore. Optimiza-
tion of neural network architecture using genetic prograngnimproves detec-
tion and modeling of gene-gene interactions in studies ofdrudisease8BMC
bioinformatics 4:28, 2003.

M. Robnik-éikonja and |. Kononenko. Theoretical and empirical analy$
ReliefF and RReliefFMachine Learning53(1):23-69, 2003.

P.L. Ross, Y.N. Huang, J.N. Marchese, B. Williamson,Rarker, S. Hattan,
N. Khainovski, S. Pillai, S. Dey, S. Daniels, et al. Multipézl protein quantita-
tion in saccharomyces cerevisiae using amine-reacti@amsotagging reagents.
Molecular & Cellular Proteomics3(12):1154-1169, 2004.

R. Ruiz, J.C. Riquelme, and J.S. Aguilar-Ruiz. Incemtal wrapper-based gene
selection from microarray data for cancer classificatidtattern Recognition
39(12):2383-2392, 2006.

D Ruta and B Gabrys. Application of the evolutionargaithms for classifier
selection in multiple classifier systems with majority vofi In Proceedings of
MCS 2001, LNCS 209fages 399-408, 2001.

D Ruta and B Gabrys. Classifier selection for majoribtig. Information
Fusion 6:63-81, 2005.

Y. Saeys, T. Abeel, and Y. Peer. Robust feature seleaising ensemble fea-
ture selection techniques. FProceedings of the European conference on Ma-
chine Learning and Knowledge Discovery in Databases-Rapgdges 313—-325.
Springer-Verlag, 2008.

Y. Saeys, I. Inza, and P. Larraiaga. A review of feagglection techniques in
bioinformatics.Bioinformatics 23(19):2507-2517, 2007.



152 BIBLIOGRAPHY

[173] R.E. Schapire and Y. Singer. Improved boosting athars using confidence-
rated predictionsMachine Learning37(3):297-336, 1999.

[174] M. Schena, D. Shalon, RW Davis, and PO Brown. Quaintgatonitoring
of gene expression patterns with a complementary dna nireripa Science
270(5235):467-470, 1995.

[175] S Schmidt, M A Hauser, W K Scott, E A Postel, and A Agarwa&igarette
smoking strongly modifies the association of loc387715 ay&dralated macular
degenerationThe American Journal of Human Geneti¢8:852—-864, 2006.

[176] R. Shalgi, D. Lieber, M. Oren, and Y. Pilpel. Global dndal architecture of the
mammalian microrna—transcription factor regulatory reetv PLoS Computa-
tional Biology, 3(7):e131, 2007.

[177] Q. Shen, W.M. Shi, and W. Kong. Hybrid particle swarntigjzation and tabu
search approach for selecting genes for tumor classificatsing gene expres-
sion data.Computational Biology and Chemis}r$2(1):53-60, 2008.

[178] Q. Shen, W.M. Shi, W. Kong, and B.X. Ye. A combinationmddified particle
swarm optimization algorithm and support vector machimgéme selection and
tumor classificationTalanta 71(4):1679-1683, 2007.

[179] I.V. Shilov, S.L. Seymour, A.A. Patel, A. Loboda, W.Fang, S.P. Keating, C.L.
Hunter, L.M. Nuwaysir, and D.A. Schaeffer. The paragon atgm, a next gen-
eration search engine that uses sequence temperaturs eaddeature prob-
abilities to identify peptides from tandem mass speciilecular & Cellular
Proteomics6(9):1638-1655, 2007.

[180] R. Sladek, G. Rocheleau, J. Rung, C. Dina, L. Shen, BeSE. Boutin, D. Vin-
cent, A. Belisle, S. Hadjadj, et al. A genome-wide assommsitudy identifies
novel risk loci for type 2 diabeteNature 445(7130):881-885, 2007.

[181] G.K. Smyth. Linear models and empirical bayes metHodsssessing differ-
ential expression in microarray experimerfatistical Applications in Genetics
and Molecular Biology3(1):3, 2004.



BIBLIOGRAPHY 153

[182] R.L. Somorijai, B. Dolenko, and R. Baumgartner. Clagslction and discovery
using gene microarray and proteomics mass spectroscopy datses, caveats,
cautions.Bioinformatics 19(12):1484-1491, 2003.

[183] M. Spivak, J. Weston, L. Bottou, L. Kall, and W.S. Nebl Improvements to
the percolator algorithm for peptide identification fronosfun proteomics data
sets.Journal of Proteome ReseardB(7):3737-3745, 20009.

[184] D. Stekel.Microarray bioinformatics Cambridge University Press, 2003.

[185] K. Stemke-Hale, A.M. Gonzalez-Angulo, A. Lluch, R.Mleve, W.L. Kuo,
M. Davies, M. Carey, Z. Hu, Y. Guan, A. Sahin, et al. An inteay&genom-
ic and proteomic analysis of pik3ca, pten, and akt mutatiorisreast cancer.
Cancer Researct68(15):6084, 2008.

[186] A. Sturn, J. Quackenbush, and Z. Trajanoski. Geneasisster analysis of mi-
croarray dataBioinformatics 18(1):207-208, 2002.

[187] A. Subramanian, P. Tamayo, V.K. Mootha, S. MukherjBd,. Ebert, M.A.
Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lancet al. Gene set
enrichment analysis: a knowledge-based approach fopirgigng genome-wide
expression profiles.Proceedings of the National Academy of Sciences of the
United States of Ameri¢d02(43):15545-15550, 2005.

[188] AC Syvanen. Accessing genetic variation: genoty@imgle nucleotide poly-
morphisms.Nature Reviews Genetic®(12):930-942, 2001.

[189] A.C. Tan and D. Gilbert. Ensemble machine learning enggexpression data
for cancer classificatiorApplied Bioinformatics2:75-84, 2003.

[190] The Wellcome Trust Case Control Consortium. Genonuewassociation study
of 14,000 cases of seven common diseases and 3,000 shateslscoNature
447:661-678, 2007.

[191] D. Thomas. Gene—environment-wide association sgidtmerging approaches.
Nat. Rev. Genetl1:259-272, 2010.

[192] Y Tomita, S Tomida, Y Hasegawa, Y Suzuki, T Shirakawadbayashi, and
H Honda. Artificial neural network approach for selectiorsasceptible single



154 BIBLIOGRAPHY

nucleotide polymorphisms and construction of predictioodel on childhood
allergic asthmaBMC Bioinformatics5:120, 2004.

[193] A. Tsymbal, M. Pechenizkiy, and P. Cunningham. Diitgrs search strategies
for ensemble feature selectioimformation Fusion6(1):83-98, 2005.

[194] D.R. Velez, B.C. White, A.A. Motsinger, W.S. Bush, M.Ritchie, S.M.
Williams, and J.H. Moore. A balanced accuracy function fpistasis model-
ing in imbalanced datasets using multifactor dimensityatiduction. Genetic
Epidemiology31(4):306—-315, 2007.

[195] P. Wang, P. Yang, J. Arthur, and J.Y.H. Yang. A dynamavelet-based al-
gorithm for pre-processing tandem mass spectrometry d&@ainformatics
26(18):2242-2249, 2010.

[196] Y. Wang, F.S. Makedon, J.C. Ford, and J. Pearlman. Ely&ga hybrid approach
for selecting marker genes for phenotype classificationgusiicroarray gene
expression dataBioinformatics 21(8):1530-1537, 2005.

[197] G.I. Webb and Z. Zheng. Multistrategy ensemble leagniReducing error by
combining ensemble learning techniquEsEE Transactions on Knowledge and
Data Engineering16(8):980-991, 2004.

[198] I.H. Witten and E. FrankData Mining: Practical machine learning tools and
techniquesMorgan Kaufmann, 2005.

[199] D.H. Wolpert. Stacked generalizatiomeural Networks5(2):241-259, 1992.

[200] B. Wu, T. Abbott, D. Fishman, W. McMurray, G. Mor, K. $te, D. Ward,
K. Williams, and H. Zhao. Comparison of statistical methéafsclassification
of ovarian cancer using mass spectrometry d&i@informatics 19(13):1636—
1643, 2003.

[201] E.P. Xing, M.l. Jordan, and R.M. Karp. Feature setaciior high-dimensional
genomic microarray data. Proceedings of the Eighteenth International Confer-
ence on Machine Learningages 601-608. Morgan Kaufmann Publishers Inc.,
2001.



BIBLIOGRAPHY 155

[202] J. Yang and V.G. Honavar. Feature subset selectiorgusigenetic algorithm.
IEEE Intelligent System43(2):44-49, 1998.

[203] P. Yang, J. Ho, Y. Yang, and B. Zhou. Gene-gene interadiltering with en-
semble of filtersBMC Bioinformatics12(Suppl 1):S10, 2011.

[204] P. Yang and Z. Zhang. A clustering based hybrid sysit@nmfass spectrometry
data analysis. IfProceedings of the Third IAPR International Conference on
Pattern Recognition in Bioinformaticpages 98—-109. Springer-Verlag, 2008.

[205] Y.H. Yang, S. Dudoit, P. Luu, D.M. Lin, V. Peng, J. Ngand T.P. Speed. Nor-
malization for cdna microarray data: a robust compositédhoweaddressing sin-
gle and multiple slide systematic variatioNucleic acids researg80(4):e15,
2002.

[206] Y.H. Yang, Y. Xiao, and M.R. Segal. Identifying diffemtially expressed genes
from microarray experiments via statistic syntheBiginformatics 21(7):1084—
1093, 2005.

[207] Y. Yasui, M. Pepe, M.L. Thompson, B.L. Adam, G.L. Wrigh. Qu, J.D. Potter,
M. Winget, M. Thornquist, and Z. Feng. A data-analytic st for protein
biomarker discovery: profiling of high-dimensional prat@io data for cancer
detection.Biostatistics 4(3):449-463, 2003.

[208] Y. Ye, X. Zhong, and H. Zhang. A genome-wide tree-ang$t-based associa-
tion analysis of comorbidity of alcoholism and smokiBiMC Genetics6(Suppl
1):S135, 2005.

[209] K.Y. Yeung, R.E. Bumgarner, and A.E. Raftery. Bayasiaodel averaging: de-
velopment of an improved multi-class, gene selection aassdiication tool for
microarray dataBioinformatics 21(10):2394-2402, 2005.

[210] J. Yu and X.W. Chen. Bayesian neural network approgatbeovarian can-
cer identification from high-resolution mass spectrometta. Bioinformatics
21(suppl 1):i487, 2005.

[211] Y. Yu, S.O. Yoon, G. Poulogiannis, Q. Yang, X.M. Ma, Jll&h, N. Kubica, G.R.
Hoffman, L.C. Cantley, S.P. Gygi, et al. Phosphoproteomalysis identifies



156 BIBLIOGRAPHY

grb10 as an mtorcl substrate that negatively regulateBnrsgnaling. Science
332(6035):1322-1326, 2011.

[212] H. Zhang and G. Bonney. Use of classification trees &soaiation studies.
Genetic Epidemiologyl9(4):323-332, 2000.

[213] H. Zhang, C.Y. Yu, and B. Singer. Cell and tumor clasatiion using gene
expression data: construction of foresBroceedings of the National Academy
of Sciencesl00(7):4168-4172, 2003.

[214] K. Zhang, Z.S. Qin, J.S. Liu, T. Chen, M.S. Watermarg &1Sun. Haplotype
block partitioning and tag snp selection using genotypa dad their applica-
tions to association studie&enome Researcth4(5):908, 2004.

[215] X.Zhang, X. Lu, Q. Shi, X. Xu, H. Leung, L. Harris, J. &flart, A. Miron, J. Liu,
and W. Wong. Recursive SVM feature selection and samplesitilzetion for
mass-spectrometry and microarray d&&1C Bioinformatics7(1):197, 2006.

[216] Z. Zhang, P. Yang, X. Wu, and C. Zhang. An agent-basdatitlysystem for
microarray data analysigntelligent Systems, IEER4(5):53-63, 2009.

[217] Z. Zhang, S. Zhang, M.Y. Wong, N.J. Wareham, and Q. 3imeensemble learn-
ing approach jointly modeling main and interaction effentgenetic association
studies.Genetic Epidemiologyd2(4):285-300, 2008.



Index

bagging,15

base classified,3

blocking,50, 78

boosting,16
AdaBoost17
LogitBoost,17

combinatorial method9, 44
curse-of-dimensionality8, 72
curse-of-sparsity28, 72

decision treel6, 56
differentially expressed (DE) genéds,

ensemble method,1

false discovery rate (FDR)2
feature,13
filter, 19
X2-test, 77
gain ratio,78
information gain,77, 119
ReliefF, 30, 119
symmetrical uncertainty;,7

gene-gene interactiond, 24, 29, 44
genetic algorithm24
genetic ensemble (GB3, 46, 73

multi-filter enhanced genetic ensemble
(MF-GE), 73
genome2
genome-wide association (GWA3, 28
genomics2

hybrid algorithm 12, 25
hypothesis13

instability, 19

majority voting,14, 51, 78
mass spectrometry (M0

MS-based proteomic8, 90
mass-to-charge (m/z)06
microarray3, 71

nearest neighboud0, 56

proteome2
proteomics2, 90
peptide identification90
peptide-spectrum matches (PSM),
PSM post-processing2
PeptideProphef2
Percolator92
self-boosted Percolatd®d?2

filtering, clustering, and genetic ensemandom forestsl3, 56, 76, 120

ble selection (FCGE).08

random subspacéb

157



158 INDEX

single nucleotide polymorphism (SNBR),
28,45
stability, 19
support vector machine (SVM92, 120
SVM-RFE,21

transcriptome2, 71
transcriptomics2, 71



	
	Abstract
	Statement of Originality
	Publications
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Methods in computational and systems biology
	Genome-wide association (GWA) studies
	Gene expression microarray
	Mass spectrometry (MS)-based proteomics
	Ensemble methods and hybrid algorithms

	Contributions and organization of the thesis

	Ensemble & Hybrid Algorithms in Computational Biology
	Ensemble methods
	Ensemble methods for classification
	Ensemble methods for feature selection

	Hybrid algorithms

	Gene-Gene Interaction Filtering
	Gene-gene interaction in GWA studies
	Filtering gene-gene interactions
	ReliefF algorithm
	Tuned ReliefF (TuRF)
	Instability of ReliefF-based algorithm

	Ensemble of filters for gene-gene interaction filtering
	Experiment on simulation and real-world GWA data
	The effect of the sample order dependency
	The origin of the sample order dependency
	Determination of ensemble size
	Ensemble approach to improve success rate in SNP filtering

	Summary
	Software availability

	Gene-Gene Interaction Identification
	Combinatorial testing for gene-gene interaction identification
	Genetic ensemble hybrid algorithm
	Genetic component
	Integration functions
	Selecting classifiers

	Evaluation datasets
	Evaluation statistics
	Evaluation statistics for single algorithm
	Evaluation statistics for combining algorithms

	Experiments and results
	Classifier selection for ensemble construction
	Simulation results
	Real-world data application

	Summary
	Software availability

	Gene Sets Selection From Microarray
	Microarray data from a computational viewpoint
	Hybrid approach for gene set selection
	Multiple filter enhanced genetic ensemble
	Multiple filtering algorithms score mapping

	Filters and classifiers
	Filter algorithms
	Classification components

	Experiment designs and results
	Datasets and data pre-processing
	Implementation
	Results

	Summary

	Post-processing MS-based Proteomics Data
	Peptide-spectrum match post-processing
	Experiment settings and implementations
	Evaluation datasets
	Database searching
	Percolator for X!Tandem search results
	Semi-supervised learning on creating training dataset
	Self-boosted Percolator
	Performance comparison on PSM post-processing

	Results and discussion
	Percolator is sensitive to PSM ranking
	Determining the number of boost runs
	PSM post-processing
	Protein identification

	Summary
	Software availability

	Extracting Complementary Proteomics Biomarkers
	Biomarker discovery from MS-based proteomics data
	Feature correlation and complementary feature selection
	A clustering-based hybrid approach
	Filter-based prefiltering
	k-means clustering
	Cluster feature extraction and representative selection
	Using genetic ensemble for m/z biomarker identification

	Evaluation datasets and experiment designs
	Datasets
	Data pre-processing
	Results evaluation

	Experimental results
	Evaluating k value of k-means clustering
	Sample classification
	Correlation reduction

	Discussion and summary

	Conclusions and Future Work
	Conclusions of the thesis
	Future directions

	Bibliography

