HARISH-CHANDRA MODULES FOR YANGIANS

VYACHESLAV FUTORNY, ALEXANDER MOLEV, AND SERGE OVSIENKO

ABSTRACT. We study Harish-Chandra representations of the Yangian $Y(\mathfrak{gl}_2)$ which admit a decomposition with respect to a natural maximal commutative subalgebra Γ and satisfy a polynomial condition. We prove an analogue of Kostant theorem showing that the restricted Yangian $Y_p(\mathfrak{gl}_2)$ is a free module over Γ and show that every character of Γ defines a finite number of irreducible Harish-Chandra modules. We study the categories of generic Harish-Chandra modules, describe their simple modules and indecomposable modules in tame blocks.

Mathematics Subject Classification 17B35, 81R10, 17B67

Contents

1. Introduction	1
2. Preliminaries	3
2.1. Harish-Chandra subalgebras	3
2.2. Special PBW algebras	5
3. Freeness of $Y_p(\mathfrak{gl}_2)$ over its commutative subalgebra	5
4. Harish-Chandra modules for $\mathfrak{gl}(2)$ Yangians	8
4.1. Weight modules	8
5. Properties of Γ as a subalgebra of $Y_p(\mathfrak{gl}_2)$	12
6. Category of Harish-Chandra modules over $Y_p(\mathfrak{gl}_2)$	15
7. Category of generic Harish-Chandra modules	19
7.1. Category of generic weight modules	20
7.2. Support of irreducible generic weight modules	21
7.3. Indecomposable generic weight modules	22
8. Acknowledgment	25
References	25

1. INTRODUCTION

Throughout the paper we fix an algebraically closed field k of characteristic 0.

The notion of a Harish-Chandra module with respect to a certain subalgebra is one of the most important in the representation theory of Lie algebras ([Di]). For example, weight modules are Harish-Chandra modules with respect to a Cartan subalgebra. Also the Gelfand-Tsetlin modules ([DFO1]) over the universal enveloping algebra $U(\mathfrak{gl}_n)$ of the general linear Lie algebra \mathfrak{gl}_n are Harish-Chandra modules with respect to a subalgebra generated by the centers of $U(\mathfrak{gl}_k), k = 1, \ldots, n$ where $\mathfrak{gl}_1 \subset \ldots \subset \mathfrak{gl}_n$. In [DFO2] a general setting has been developed for Harish-Chandra modules over associative algebras. Let U be an associative k-algebra, U - mod be the category of finitely generated left U-modules and $\Gamma \subset U$ be a subalgebra. Denote by $cfs(\Gamma)$ a cofinite spectrum of Γ , i.e. the set of maximal two-sided ideals of Γ of finite codimension. A module $M \in U$ – mod is called Harish-Chandra module (with respect to Γ) if $M = \bigoplus_{\mathbf{m} \in cfs \Gamma} M(\mathbf{m})$, where

$$M(\mathbf{m}) = \{x \in M \mid \text{ there exists } k \ge 0, \text{ such that } \mathbf{m}^k x = 0\}.$$

A key problem in the classification of all irreducible Harish-Chandra modules is to study the liftings from a given $\mathbf{m} \in \operatorname{cfs}(\Gamma)$ to irreducible Harish-Chandra modules M with $M(\mathbf{m}) \neq 0$. When such lifting is unique then irreducible Harish-Chandra modules are parametrized by the elements of $\operatorname{cfs}(\Gamma)$. In the case of Gelfand-Tsetlin modules over \mathfrak{gl}_n it was shown in $[\operatorname{Ov}]$ that the number of nonisomorphic irreducible modules defined by a given $\mathbf{m} \in \operatorname{cfs}(\Gamma)$ is always nonzero and finite.

In this paper we begin a systematic study of Harish-Chandra modules over the Yangians.

The Yangian for \mathfrak{gl}_n is a unital associative algebra $Y(\mathfrak{gl}_n)$ over \Bbbk with countably many generators $t_{ij}^{(1)}$, $t_{ij}^{(2)}$,... where $1 \leq i, j \leq n$, and the defining relations

(1.1)
$$(u-v) [t_{ij}(u), t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u),$$

where

 $\mathbf{2}$

(1.2)
$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \cdots$$

and u, v are formal variables. This algebra originally appeared in the works on the quantum inverse scattering method; see e.g. Takhtajan–Faddeev [TF], Kulish– Sklyanin [KS]. The term "Yangian" and generalizations of $Y(\mathfrak{gl}_n)$ to an arbitrary simple Lie algebra were introduced by Drinfeld [D1]. He then classified finitedimensional irreducible modules over the Yangians in [D2] using earlier results of Tarasov [T1, T2] for the \mathfrak{sl}_2 case. An explicit construction of all such modules over $Y(\mathfrak{sl}_2)$ is given in those papers by Tarasov and also in the work by Chari and Pressley [CP]. Apart from this case, the structure of a general Yangian representation remains unknown. In the case of $Y(\mathfrak{gl}_n)$ a description of "generic" modules was given in [M1] via Gelfand–Tsetlin bases. A more general class of "tame" representations of $Y(\mathfrak{gl}_n)$ was introduced and explicitly constructed by Nazarov and Tarasov [NT]. An important role in these works is played by the *Drinfeld generators* [D2]

(1.3)
$$a_i(u), \quad i = 1, \dots, n, \qquad b_i(u), \quad c_i(u), \quad i = 1, \dots, n-1$$

of the algebra $Y(\mathfrak{gl}_n)$ which are defined as certain quantum minors of the matrix $T(u) = (t_{ij}(u))$. The coefficients of the series $a_i(u)$, $i = 1, \ldots, n$ form a commutative subalgebra of $Y(\mathfrak{gl}_n)$ which can be regarded as an analogue of a Gelfand-Tsetlin subalgebra of the universal enveloping algebra of \mathfrak{gl}_n [DFO1] We shall call a representation of $Y(\mathfrak{gl}_n)$ Harish-Chandra if it is a Harish-Chandra module with respect to this subalgebra. In particular, finite-dimensional Harish-Chandra modules are precisely the tame modules of [NT]. Note that Harish-Chandra modules for $Y(\mathfrak{gl}_n)$ are analogs of Gelfand-Tsetlin modules for \mathfrak{gl}_n [DFO1].

In this paper we are concerned with Harish-Chandra representations of the Yangian $Y(\mathfrak{gl}_2)$. Recall that every irreducible finite-dimensional $Y(\mathfrak{gl}_2)$ -module contains a unique vector ξ annihilated by $t_{12}(u)$ and which is an eigenvector for the Drinfeld generators $a_1(u)$ and $a_2(u)$ defined by

(1.4)
$$a_1(u) = t_{11}(u) t_{22}(u-1) - t_{21}(u) t_{12}(u-1), \quad a_2(u) = t_{22}(u);$$

see [T1, T2] and [CP]. Moreover, there exists an automorphism $t_{ij}(u) \mapsto c(u) t_{ij}(u)$ of $Y(\mathfrak{gl}_2)$, where $c(u) \in 1 + u^{-1} \Bbbk[[u^{-1}]]$, such that the eigenvalues of ξ become polynomials in u^{-1} under the twisted action of the Yangian. This prompts the introduction of the class of *Harish-Chandra polynomial* modules over $Y(\mathfrak{gl}_2)$, i.e., such Harish-Chandra modules where the operators $a_1(u)$ and $a_2(u)$ are polynomials. More precisely, by (1.4) it is natural to require that for some positive integer p the polynomials $a_1(u)$ and $a_2(u)$ have degrees 2p and p, respectively. Note that $a_1(u)$ is the quantum determinant of the matrix T(u) [IK], [KS]. Its coefficients are algebraically independent generators of the center of $Y(\mathfrak{gl}_2)$.

We can interpret the definition of Harish-Chandra polynomial modules using the algebra $Y_p(\mathfrak{gl}_2)$ called the *Yangian of level p*; see Cherednik [C1, C2]. It is defined as the quotient of $Y(\mathfrak{gl}_2)$ by the ideal generated by the elements $t_{ij}^{(r)}$ with $r \ge p+1$. A Harish-Chandra polynomial module over $Y(\mathfrak{gl}_2)$ is just a Harish-Chandra module over $Y_p(\mathfrak{gl}_2)$ for some positive integer p.

For another interpretation consider the Yangian for \mathfrak{sl}_2 which is the subalgebra $Y(\mathfrak{sl}_2)$ of $Y(\mathfrak{gl}_2)$ generated by the coefficients of the series e(u), f(u) and h(u) [D2] defined by

(1.5)

$$e(u) = t_{22}(u)^{-1}t_{12}(u),$$

$$f(u) = t_{21}(u)t_{22}(u)^{-1},$$

$$h(u) = t_{11}(u)t_{22}(u)^{-1} - t_{21}(u)t_{22}(u)^{-1}t_{12}(u)t_{22}(u)^{-1}.$$

Note that the series h(u) can also be given by

(1.6)
$$h(u) = a_1(u) a_2(u)^{-1} a_2(u-1)^{-1}$$

so that the coefficients of h(u) form a commutative subalgebra of $Y(\mathfrak{sl}_2)$. Therefore, the restriction of a Harish-Chandra $Y(\mathfrak{gl}_2)$ -module to $Y(\mathfrak{sl}_2)$ admits an eigenbasis for this subalgebra. We also point out that both the above interpretations extend to an arbitrary Yangian $Y(\mathfrak{gl}_n)$.

In this paper we study Harish-Chandra polynomial modules over $Y(\mathfrak{gl}_2)$. We consider the class of modules admitting a central character so that the coefficients of $a_1(u)$ act as scalars. This class contains all irreducible Harish-Chandra polynomial modules. We study the properties of the subalgebra Γ of $Y(\mathfrak{gl}_2)$ generated by the coefficients of $a_1(u)$ and $a_2(u)$. In particular we show that $Y(\mathfrak{gl}_2)$ is free as a left and as a right Γ -module (Theorem 1) which is an analogue of Kostant theorem [K]. Moreover, we show that Γ is a Harish-Chandra subalgebra (Theorem 3) in the sense of [DFO2] and that each character of Γ extends to a finitely many non-isomorphic irreducible $Y(\mathfrak{gl}_2)$ -modules (Theorem 4). This gives an equivalence between the category $\mathbb{H}(Y(\mathfrak{gl}_2), \Gamma)$ of Harish-Chandra polynomial modules and the category of finitely generated modules over a certain category \mathcal{A} whose objects are the maximal ideals of Γ . A full subcategory $\mathbb{H}W(Y(\mathfrak{gl}_2),\Gamma)$ consisting of weight polynomial Harish-Chandra modules, when the action of $a_2(u)$ is diagonalizable, is equivalent to the category of finitely generated modules over a certain quotient category of \mathcal{A} (see Section 2.1 for details). An important role in our study is played by certain universal weight polynomial Harish-Chandra modules (Section 3, Theorem 2) such that every irreducible module in $\mathbb{H}W(\mathbf{Y}(\mathfrak{gl}_2), \Gamma)$ is a quotient of the corresponding universal module. In section 7 we study a full subcategory in $\mathbb{H}W(Y(\mathfrak{gl}_2),\Gamma)$ of generic modules, this imposes a certain integrability condition on the eigenvalues of $a_2(u)$ while those of $a_1(u)$ are arbitrary. In particular, we give a complete

description of irreducible modules (Theorem 5) and indecomposable modules in tame blocks of this category (Theorem 6).

2. Preliminaries

2.1. Harish-Chandra subalgebras. In the setting of [DFO2] the subalgebra Γ need not to be commutative. But in this paper we will only deal with the commutative case, hence $cfs(\Gamma)$ coincides with the set Specm Γ of all maximal ideals in Γ .

When for all $\mathbf{m} \in \operatorname{Specm} \Gamma$ and all $x \in M(\mathbf{m})$ holds $\mathbf{m}x = 0$ such Harish-Chandra module M is called weight (with respect to Γ).

All Harish-Chandra modules (with respect to Γ) form a full abelian subcategory in the category of U – mod which we will denote by $\mathbb{H}(U,\Gamma)$. A full subcategory of $\mathbb{H}(U,\Gamma)$ consisting of weight modules we denote by $\mathbb{H}W(U,\Gamma)$. The support of a Harish-Chandra module M is a set $\operatorname{Supp} M \subset \operatorname{Specm} \Gamma$ consisting of such \mathbf{m} that $M(\mathbf{m}) \neq 0$. For $D \subset \operatorname{Specm} \Gamma$ denote by $\mathbb{H}(U,\Gamma,D)$ the full subcategory in $\mathbb{H}(U,\Gamma)$ formed by M such that $\operatorname{Supp} M \subset D$. For a given $\mathbf{m} \in \operatorname{Specm} \Gamma$ let $\chi_{\mathbf{m}} : \Gamma \to \Gamma/\mathbf{m}$ be a character of Γ . If there exists an irreducible Harish-Chandra module M with $M(\mathbf{m}) \neq 0$ then we say that $\chi_{\mathbf{m}}$ extends to M.

The notion of a Harish-Chandra subalgebra ([DFO2]) gives an effective tool for the study of the category $\mathbb{H}(U,\Gamma)$. A commutative subalgebra $\Gamma \subset U$ is called a Harish-Chandra subalgebra in U if for any $a \in U$ the Γ -bimodule $\Gamma a\Gamma$ is finitely generated as left and as right Γ -module. In this case for a finite-dimensional Γ -module X the module $U \otimes_{\Gamma} X$ is a Harish-Chandra module.

For $a \in U$ let

$$X_a = \{(\mathbf{m}, \mathbf{n}) \in \operatorname{Specm} \Gamma \times \operatorname{Specm} \Gamma | \Gamma / \mathbf{n} \text{ is a subquotient of } \Gamma a \Gamma / \Gamma a \mathbf{m} \}.$$

Equivalently, $(\mathbf{m}, \mathbf{n}) \in X_a$ if and only if $(\Gamma/\mathbf{n}) \otimes_{\Gamma} \Gamma a \Gamma \otimes_{\Gamma} (\Gamma/\mathbf{m}) \neq 0$. Denote by Δ the minimal equivalence on Specm Γ containing all X_a , $a \in U$ and by $\Delta(A, \Gamma)$ the set of the Δ -equivalence classes on Specm Γ . Then for any $a \in U$ and $\mathbf{m} \in$ Specm Γ holds

(2.7)
$$aM(\mathbf{m}) \subset \sum_{(\mathbf{m},\mathbf{n})\in X_a} M(\mathbf{n}), \quad \mathbb{H}(U,\Gamma) = \bigoplus_{D\in\Delta(U,\Gamma)} \mathbb{H}(U,\Gamma,D).$$

Define a category $\mathcal{A} = \mathcal{A}_{U,\Gamma}$ with $Ob \mathcal{A} = \Gamma$ and the space of morphisms from **m** to **n** being

(2.8)

$$\mathcal{A}(\mathbf{m},\mathbf{n}) = \lim_{\leftarrow n,m} U/(\mathbf{n}^n U + U\mathbf{m}^m) \quad (\text{ equivalently } \lim_{\leftarrow n,m} \Gamma/\mathbf{n}^n \otimes_{\Gamma} U \otimes_{\Gamma} \Gamma/\mathbf{m}^m).$$

Then we have $\mathcal{A} = \bigoplus_{D \in \Delta(U,\Gamma)} \mathcal{A}(D)$, where $\mathcal{A}(D)$ is the restriction of \mathcal{A} on D.

The category \mathcal{A} is endowed with the topology of the inverse limit and the category of k-vector spaces (\mathbb{k} – mod) with the discrete topology. Consider the category $\mathcal{A} - \operatorname{mod}_d$ of continuous functors $M : \mathcal{A} \longrightarrow \mathbb{k} - \operatorname{mod}$ (discrete modules in [DFO2], 1.5). For any discrete \mathcal{A} -module N define a Harish-Chandra U-module $\mathbb{F}(N) = \bigoplus_{\mathbf{m} \in \operatorname{Specm} \Gamma} N(\mathbf{m})$ and for $x \in N(\mathbf{m})$ and $a \in U$ define $ax = \sum_{\mathbf{n} \in \operatorname{Specm} \Gamma} a_{\mathbf{n}} x$ where $a_{\mathbf{n}}$ is the image of a in $\mathcal{A}(\mathbf{m}, \mathbf{n})$. If $f : M \longrightarrow N$ is a morphism in $\mathcal{A} - \operatorname{mod}_d$ then define $\mathbb{F}(f) = \bigoplus_{\mathbf{m} \in \operatorname{Specm} \Gamma} f(\mathbf{m})$. Hence we have a functor $\mathbb{F} : \mathcal{A} - \operatorname{mod}_d \longrightarrow \mathbb{H}(U, \Gamma)$.

4

Proposition 2.1. ([DFO2], Theorem 17) The functor \mathbb{F} is an equivalence.

We will identify a discrete \mathcal{A} -module N with the corresponding Harish-Chandra module $\mathbb{F}(N)$. Let $\Gamma_{\mathbf{m}} = \lim_{\leftarrow m} \Gamma/\mathbf{m}^m$ be the completion of Γ by $\mathbf{m} \in \operatorname{Specm} \Gamma$. Then the space $\mathcal{A}(\mathbf{m}, \mathbf{n})$ has a structure of $\Gamma_{\mathbf{n}} - \Gamma_{\mathbf{m}}$ -bimodule.

For $\mathbf{m} \in \operatorname{Specm} \Gamma$ denote by $\hat{\mathbf{m}}$ a completion of \mathbf{m} . Consider a two-sided ideal $I \subset \mathcal{A}$ generated by $\hat{\mathbf{m}}$ for all $\mathbf{m} \in \operatorname{Specm} \Gamma$ and set $\mathcal{A}_W = \mathcal{A}/I$. Then Proposition 2.1 implies the following statement.

Corollary 1. The categories $\mathbb{H}W(U,\Gamma)$ and $\mathcal{A}_W - \text{mod are equivalent.}$

The subalgebra Γ is called big in $\mathbf{m} \in \operatorname{Specm} \Gamma$ if $\mathcal{A}(\mathbf{m}, \mathbf{m})$ is finitely generated as $\Gamma_{\mathbf{m}}$ -module.

Lemma 2.1. ([DFO2], Corollary 19) If Γ is big in $\mathbf{m} \in \operatorname{Specm} \Gamma$ then there exist finitely many non-isomorphic irreducible Harish-Chandra U-modules M such that $M(\mathbf{m}) \neq 0$. For any such module dim $M(\mathbf{m}) < \infty$.

2.2. **Special PBW algebras.** Let U be an associative algebra over \Bbbk endowed with an increasing filtration $\{U_i\}_{i\in\mathbb{Z}}, U_{-1} = \{0\}, U_0 = \Bbbk, U_iU_j \subset U_{i+j}$. For $u \in U_i \setminus U_{i-1}$ set deg u = i. Let $\overline{U} = \text{gr } U$ be the associated graded algebra $\overline{U} = \bigoplus_{i=0}^{\infty} U_i/U_{i-1}$. For $u \in U$ denote by \overline{u} its image in \overline{U} and for a subset $S \subset U$ set $\overline{S} = \{\overline{s} \mid s \in S\} \subset \overline{U}$. The algebra U is called a *special* PBW algebra if any element of U

(s) s $\in S$ $\subseteq U$. The algebra U is called a special PBW algebra if any element of U can be written uniquely as a linear combination of ordered monomials in some fixed generators of U and if \overline{U} is a polynomial algebra. Such algebras were introduced in [FO].

Let $\Lambda = \Bbbk[X_1, \ldots, X_n]$ be a polynomial algebra. For $g_1, \ldots, g_t \in \Lambda$ denote by $V(g_1, \ldots, g_t)$ a set of all zeroes of the ideal generated by the elements g_1, \ldots, g_t . A sequence $g_1, \ldots, g_t \in \Lambda$ is called regular (in Λ) if the class of g_i in $\Lambda/(g_1, \ldots, g_{i-1})$ is non-invertible and is not a zero divisor for any $i = 1, \ldots, t$.

Next proposition contains the basic properties of regular sequences which can be easily checked or can be found in [BH].

Proposition 2.2. (1) The sequence $X_1, \ldots, X_r, G_1, \ldots, G_t$ with $G_1, \ldots, G_t \in \Lambda$ is regular in Λ if and only if the sequence g_1, \ldots, g_t is regular in $\Bbbk[X_{r+1}, \ldots, X_n]$, where $g_i(X_{r+1}, \ldots, X_n) = G_i(0, \ldots, 0, X_{r+1}, \ldots, X_n)$.

- (2) A sequence g_1, \ldots, g_t is regular in Λ if and only if the variety $V(g_1, \ldots, g_t)$ is equidimensional of dimension n t.
- (3) A sequence $g_1g'_1, g_2, \ldots, g_t$ is regular if and only if the sequences g_1, g_2, \ldots, g_t and g'_1, g_2, \ldots, g_t are regular.

The following analogue of Kostant theorem ([K]) is valid for special PBW algebras.

Proposition 2.3. ([FO]) Let U be a special PBW algebra and let $g_1, \ldots, g_t \in U$ be mutually commuting elements such that $\overline{g}_1, \ldots, \overline{g}_t$ is a regular sequence in \overline{U} , $\Gamma = \Bbbk[g_1, \ldots, g_t]$. Then U is a free left (right) Γ -module. Moreover Γ is a direct summand of U.

VYACHESLAV FUTORNY, ALEXANDER MOLEV, AND SERGE OVSIENKO

3. Freeness of $Y_p(\mathfrak{gl}_2)$ over its commutative subalgebra

Let p be a positive integer. The level p Yangian $Y_p(\mathfrak{gl}_2)$ for the Lie algebra \mathfrak{gl}_2 [C2] can be defined as the algebra over k with generators $t_{ij}^{(1)}, \ldots, t_{ij}^{(p)}, i, j = 1, 2$, subject to the relations

(3.9)
$$[T_{ij}(u), T_{kl}(v)] = \frac{1}{u-v} (T_{kj}(u) T_{il}(v) - T_{kj}(v) T_{il}(u)),$$

where u, v are formal variables and

(3.10)
$$T_{ij}(u) = \delta_{ij} u^p + \sum_{k=1}^p t_{ij}^{(k)} u^{p-k} \in Y_p(\mathfrak{gl}_2)[u].$$

Explicitly, (3.9) reads

6

(3.11)
$$[t_{ij}^{(r)}, t_{kl}^{(s)}] = \sum_{a=1}^{\min(r,s)} \left(t_{kj}^{(a-1)} t_{il}^{(r+s-a)} - t_{kj}^{(r+s-a)} t_{il}^{(a-1)} \right),$$

where $t_{ij}^{(0)} = \delta_{ij}$ and $t_{ij}^{(r)} = 0$ for $r \ge p + 1$. Note that the level 1 Yangian $Y_1(\mathfrak{gl}_2)$ coincides with the universal enveloping algebra $U(\mathfrak{gl}_2)$. Set $\deg t_{ij}^{(k)} = k$ for $i, j, k = 1, \ldots, p$. This defines a natural filtration on the Yangian $Y_p(\mathfrak{gl}_2)$. The corresponding graded algebra will be denoted by $\overline{Y}_p(\mathfrak{gl}_2)$. We have the following analog of the Poincaré–Birkhoff–Witt theorem for the algebra $Y_p(\mathfrak{gl}_2)$.

Proposition 3.1. ([C2]; see also [M2]) Given an arbitrary linear ordering on the set of the generators $t_{ij}^{(k)}$, any element of the algebra $Y_p(\mathfrak{gl}_2)$ is uniquely written as a linear combination of ordered monomials in these generators. Moreover, the algebra $\overline{Y}_p(\mathfrak{gl}_2)$ is a polynomial algebra in generators $\overline{t}_{ij}^{(k)}$.

Proposition 3.1 implies that $\mathbf{Y}_p(\mathfrak{gl}_2)$ is a special PBW algebra. Denote by D(u) the quantum determinant

(3.12)
$$D(u) = T_{11}(u)T_{22}(u-1) - T_{21}(u)T_{12}(u-1) = T_{11}(u-1)T_{22}(u) - T_{12}(u-1)T_{21}(u).$$

It was shown in [C1, C2] (see also [M2] for a different proof) that the coefficients of the polynomial D(u) are algebraically independent generators of the center of the algebra $Y_p(\mathfrak{gl}_2)$.

Denote by Γ the subalgebra of $Y_p(\mathfrak{gl}_2)$ generated by the coefficients of D(u)and $t_{22}^{(k)}$, $k = 1, \ldots, p$. This algebra is obviously commutative. We will show later (Corollary 3) that Γ is a Harish-Chandra subalgebra in $Y_p(\mathfrak{gl}_2)$.

Lemma 3.1. The sequence $\overline{t}_{22}^{(1)}, \ldots, \overline{t}_{22}^{(p)}, \overline{d}_1, \ldots, \overline{d}_{2p}$ of the images of the generators of Γ is regular in $\overline{Y}_p(\mathfrak{gl}_2)$.

Proof. Denote $t_i = \overline{t}_{11}^{(i)} + \overline{t}_{22}^{(i)}$, i = 1, ..., p, $\Delta_{i,j} = \overline{t}_{11}^{(i)} \overline{t}_{22}^{(j)} - \overline{t}_{21}^{(i)} \overline{t}_{12}^{(j)}$, i, j = 1, ..., p, $i \neq j$. It follows from 3.12 that

$$\overline{D}(u) = u^{2p} + \sum_{i=1}^{2p} \overline{d}_i u^{2p-i},$$

where $\overline{d}_i = t_i + \sum_{j=1}^{i-1} \Delta_{j,i-j}$ for $i = 1, \ldots, p$ and $\overline{d}_i = \sum_{j=i-p}^p \Delta_{i,i-j}$ for $i = p+1, \ldots, 2p$. Hence we need to show that the sequence

$$\overline{t}_{22}^{(1)}, \dots, \overline{t}_{22}^{(p)}, t_1, t_2 + \Delta_{11}, \dots, t_p + \sum_{i=1}^{p-1} \Delta_{i,p-i}, \sum_{i=1}^p \Delta_{i,p+1-i}, \dots, \Delta_{pp}$$

is regular. We will denote by ∇_i the result of the substitution $\overline{t}_{22}^{(1)} = \ldots = \overline{t}_{22}^{(p)} = 0$ in \overline{d}_i , $i = 1, \ldots, 2p$. By Proposition 2.2, (1) we only need to show the regularity of the sequence

$$\nabla_1,\ldots,\nabla_{2p}.$$

Consider the following triangular automorphism ϕ of $\overline{Y}_p(\mathfrak{gl}_2)/I$: $\overline{t}_{11}^{(i)} \mapsto \overline{t}_{11}^{(i)} + \sum_{j=1}^{i-1} \Delta_{i,i-j}, \overline{t}_{21}^{(i)} \to \overline{t}_{21}^{(i)}, \overline{t}_{12}^{(i)} \to \overline{t}_{12}^{(i)}, i = 1, \ldots, p$, where I is an ideal generated by $\overline{t}_{22}^{(1)}, \ldots, \overline{t}_{22}^{(p)}$. Applying ϕ^{-1} to the sequence $\nabla_1, \ldots, \nabla_{2p}$ we see that it is enough to show the regularity of the sequence

$$\overline{t}_{11}^{(1)},\ldots,\overline{t}_{11}^{(p)},\nabla_{p+1},\ldots,\nabla_{2p}.$$

Again by Proposition 2.2, (1) this is equivalent to the regularity of the sequence $\nabla_{p+1}, \ldots, \nabla_{2p}$. For each pair $i, j, i, j = 1, \ldots, p, i+j \ge p+1$ consider the following elements of $\mathbb{k}[\overline{t}_{12}^{(i)}, \overline{t}_{21}^{(i)}| i, j = p+1, \ldots, 2p]$ arranged in the table s_{ij} below

$$\begin{pmatrix} \overline{t}_{21}^{(i)}\overline{t}_{12}^{(j)} \\ \overline{t}_{21}^{(i-1)}\overline{t}_{12}^{(j)} + \overline{t}_{21}^{(i)}\overline{t}_{12}^{(j-1)} \\ \overline{t}_{21}^{(i-2)}\overline{t}_{12}^{(j)} + \overline{t}_{21}^{(i-1)}\overline{t}_{12}^{(j-1)} + \overline{t}_{21}^{(i)}\overline{t}_{12}^{(j-2)} \\ \vdots \\ \overline{t}_{21}^{(p+1-j)}\overline{t}_{12}^{(j)} + \overline{t}_{21}^{(p-j)}\overline{t}_{12}^{(j+1)} + \dots + \overline{t}_{21}^{(i+1)}\overline{t}_{12}^{(p-i)} + \overline{t}_{21}^{(i)}\overline{t}_{12}^{(p+1-i)} \end{pmatrix}$$

Note that when i = j = p the rows of the table are exactly the elements ∇_i , $i = p + 1, \ldots, 2p$. We will show by induction on i + j that the rows of this table form a regular sequence. Let i + j = p + 1. Then s_{ij} consists of the unique element $\overline{t}_{21}^{(i)}\overline{t}_{12}^{(j)}$ and the corresponding variety is obviously equidimensional. Hence the statement follows from Proposition 2.2, (2). Applying Proposition 2.2, (3) to the table above we obtain the following two tables s'_{ij} and s''_{ij}

$$\begin{pmatrix} \overline{t}_{21}^{(i)} & \\ \overline{t}_{21}^{(i-1)}\overline{t}_{12}^{(j)} + \overline{t}_{21}^{(i)}\overline{t}_{12}^{(j-1)} \\ \vdots & \\ \overline{t}_{21}^{(p+1-j)}\overline{t}_{12}^{(j)} + \dots + \overline{t}_{21}^{(i)}\overline{t}_{12}^{(p+1-i)} \end{pmatrix}; \begin{pmatrix} \overline{t}_{12}^{(j)} & \\ \overline{t}_{21}^{(i-1)}\overline{t}_{12}^{(j)} + \overline{t}_{21}^{(i)}\overline{t}_{12}^{(j-1)} \\ \vdots & \\ \overline{t}_{21}^{(p+1-j)}\overline{t}_{12}^{(j)} + \dots + \overline{t}_{21}^{(i)}\overline{t}_{12}^{(p+1-i)} \end{pmatrix}$$

Next we apply Proposition 2.2, (1) substituting $\overline{t}_{21}^{(i)} = 0$ in s'_{ij} and $\overline{t}_{12}^{(i)} = 0$ in s''_{ij} . It is easy to see that after the substitution we obtain the tables s_{i-1j} and s_{ij-1} . Applying the induction to these sequences we conclude their regularity which implies the regularity of the sequence s_{ij} for all $i, j = 1, \ldots, p, i + j \ge p + 1$ by

Proposition 2.2, (3). In particular, the sequence s_{pp} is regular which completes the proof.

We immediately obtain the following

8

Corollary 2. The generators $t_{22}^{(1)}, \ldots, t_{22}^{(p)}, d_1, \ldots, d_{2p}$ of Γ are algebraically independent.

We will denote by $K(\Gamma)$ the field of fractions of Γ .

Combining Lemma 3.1 with Proposition 2.3 we obtain the following

- **Theorem 1.** (1) $Y_p(\mathfrak{gl}_2)$ is free as a left (right) module over Γ . Moreover Γ is a direct summand of $Y_p(\mathfrak{gl}_2)$.
 - For any m ∈ Specm Γ the character χ_m extends to an irreducible Y_p(gl₂)module.

For a subset $P \subset Y_p(\mathfrak{gl}_2)$ denote by $\mathbb{D}(P)$ the set of all $x \in Y_p(\mathfrak{gl}_2)$ such that there exists $z \in \Gamma$, $z \neq 0$ for which $zx \in P$.

Corollary 3. Let $P \subset Y_p(\mathfrak{gl}_2)$ be a finitely generated left Γ -module then $\mathbb{D}(P)$ is a finitely generated left Γ -module.

Proof. Since Γ is a domain then $\mathbb{D}(P)$ is a Γ -submodule in $Y_p(\mathfrak{gl}_2)$. Using the fact that $Y_p(\mathfrak{gl}_2)$ is a free left Γ -module we conclude that $Y_p(\mathfrak{gl}_2) \simeq F_P \oplus F$ where F_P and F are free left Γ -modules, F_P has a finite rank and $P \subset F_P$. Then $\mathbb{D}(P) \subset F_P$ and hence it is finitely generated as a module over a noetherian ring. \Box

4. HARISH-CHANDRA MODULES FOR $\mathfrak{gl}(2)$ YANGIANS

Let L be a polynomial algebra in variables $b_1, \ldots, b_p, g_1, \ldots, g_{2p}$. Define a k-monomorphism $i: \Gamma \to L$ such that $i(t_{22}^{(k)}) = \sigma_{k,p}(b_1, \ldots, b_p), i(d_i) = \sigma_{i,2p}(g_1, \ldots, g_{2p})$ where $\sigma_{i,j}$ is the *i*-th elementary symmetric polynomial in *j* variables. We will identify the elements of Γ with their images in L and treat them as polynomials in variables $b_1, \ldots, b_p, g_1, \ldots, g_{2p}$ invariant under the action of the group $S_p \times S_{2p}$. Set $\mathcal{L} =$ Specm L. We will identify \mathcal{L} with \mathbb{k}^{3p} . If $\beta = (\beta_1, \ldots, \beta_p), \gamma = (\gamma_1, \ldots, \gamma_{2p})$ and $\ell = (\beta_1, \ldots, \beta_p, \gamma_1, \ldots, \gamma_{2p})$ then we will write $\ell = (\beta, \gamma)$. The map *i* induces an epimorphism $i^*: \mathcal{L} \to$ Specm Γ . If $\ell \in \mathcal{L}$ and $\mathbf{m} = i^*(\ell)$ then $D(\ell)$ will denote the equivalence class of \mathbf{m} in $\Delta(Y_p(\mathfrak{gl}_2), \Gamma)$.

Let $\mathcal{L}_0 \subset \mathcal{L}, \mathcal{L}_0 \simeq \mathbb{Z}^p$, be a lattice generated by $\delta_i \in \mathbb{k}^{3p}, i = 1, \ldots, p$, where $\delta_i = (\delta_i^1, \ldots, \delta_i^{3p}), \, \delta_i^j = \delta_{ij}, \, j = 1, \ldots, 3p$. Then \mathcal{L}_0 acts on \mathcal{L} by shifting $\delta_i(\ell) := \ell + \delta_i$. Also the group $S_p \times S_{2p}$ acts on \mathcal{L} by permutations. Thus the semidirect product \mathbb{W} of the groups $S_p \times S_{2p}$ and \mathcal{L}_0 acts on \mathcal{L} and L. Denote by S a multiplicative set in L generated by the elements $b_i - b_j - m$ for all $i \neq j$ and all $m \in \mathbb{Z}$ and by \mathbb{L} the localization of L by S. Note that S is invariant under the action of \mathbb{W} and hence \mathbb{W} acts on \mathbb{L} .

Let $\mathcal{L}_1 = \text{Specm } \mathbb{L} \subset \mathcal{L}$, i.e. \mathcal{L}_1 consists of generic 3p-tuples $\ell = (\beta, \gamma)$ such that $\beta_i - \beta_j \notin \mathbb{Z}$ for all $i \neq j$. If $\ell \in \mathcal{L}_1$ then the modules from the category $\mathbb{H}(Y_p(\mathfrak{gl}_2), \Gamma, D(\ell))$ are called generic Harish-Chandra modules.

Fix $\ell = (\beta, \gamma) \in \mathcal{L}$. Let I_{ℓ} be the left ideal of $Y_p(\mathfrak{gl}_2)$ generated by the coefficients of the polynomials $T_{22}(u) - \beta(u)$ and $D(u) - \gamma(u)$. Define the corresponding quotient module over $Y_p(\mathfrak{gl}_2)$ by

$$M(\ell) = \mathbf{Y}_p(\mathfrak{gl}_2) / I_\ell.$$

It follows from Theorem 1 that I_{ℓ} is a proper ideal of $Y_p(\mathfrak{gl}_2)$ and so $M(\ell)$ is a non-trivial module. Therefore, the image of 1 in $M(\ell)$ is nonzero. We shall denote it by ξ . The next proposition shows the universality of the module $M(\ell)$.

Proposition 4.1. Let $\ell = (\beta, \gamma) \in \mathcal{L}$ and let V be a weight $Y_p(\mathfrak{gl}_2)$ -module with a central character γ generated by a nonzero $\eta \in V_\beta$. Then V is a homomorphic image of $M(\ell)$.

Proof. Indeed, there is a homomorphism $f: M(\ell) \to V$ which maps ξ to η . Since η generates V the statement follows.

4.1. Weight modules. For $\ell = (\beta, \gamma) \in \mathcal{L}$ the category $\mathbb{H}W(Y_p(\mathfrak{gl}_2), \Gamma, D(\ell))$ consists of finitely generated weight modules V with central character γ and with $\operatorname{Supp} V \subset D(\ell)$. For simplicity we will denote it by R_ℓ . If $\ell \in \mathcal{L}_1$ then the modules from R_ℓ will be called *generic* weight modules.

Let $\ell = (\beta, \gamma) \in \mathcal{L}, \ \beta = (\beta_1, \dots, \beta_p), \ \gamma = (\gamma_1, \dots, \gamma_{2p}), \ \beta(u) = (u + \beta_1) \dots (u + \beta_p), \ \gamma(u) = (u + \gamma_1) \dots (u + \gamma_{2p}).$

A $Y_p(\mathfrak{gl}_2)$ -module V is an object of R_ℓ if V is a direct sum of its *weight* subspaces:

(4.13)
$$V = \bigoplus_{\ell \in \mathcal{L}} V_{\ell}, \text{ where } V_{\ell} = \{ \eta \in V \mid T_{22}(u)\eta = \beta(u)\eta, \quad D(u)\eta = \gamma(u)\eta \}.$$

If $V \in R_{\ell}$ then we shall simply write V_{β} instead of V_{ℓ} and identify $\operatorname{Supp} V$ with the set of all β such that the subspace V_{β} is nonzero.

Lemma 4.1. (compare with (2.7)) Let V be a generic weight $Y_p(\mathfrak{gl}_2)$ -module and let $\beta = (\beta_1, \ldots, \beta_p) \in \text{Supp } V$. Then

(4.14)
$$T_{21}(u)V_{\beta} \subseteq \sum_{i=1}^{p} V_{\beta+\delta_{i}} \quad and \quad T_{12}(u)V_{\beta} \subseteq \sum_{i=1}^{p} V_{\beta-\delta_{i}}$$

where $\beta \pm \delta_i = (\beta_1, \dots, \beta_i \pm 1, \dots, \beta_p).$

Proof. First we show that $T_{21}(-\beta_i)V_{\beta} \subseteq V_{\beta+\delta_i}$ for all $i = 1, \ldots, p$. Since

$$T_{22}(u-1)T_{21}(u) = T_{21}(u-1)T_{22}(u)$$

we have

$$T_{22}(-\beta_i - 1)T_{21}(-\beta_i)\eta = T_{21}(-\beta_i - 1)T_{22}(-\beta_i)\eta = 0$$

for all $\eta \in V_{\beta}$. Also,

$$T_{22}(-\beta_j)T_{21}(-\beta_i)\eta = (\beta_i - \beta_j)^{-1}(T_{21}(-\beta_i)T_{22}(-\beta_j) - T_{21}(-\beta_j)T_{22}(-\beta_i))\eta + T_{21}(-\beta_i)T_{22}(-\beta_j)\eta = 0$$

since $T_{22}(-\beta_k)\eta = 0$ for all k = 1, ..., p. Using the fact that $\beta_i - \beta_j \notin \mathbb{Z}$ we conclude that $T_{21}(-\beta_i)V_\beta \subseteq V_{\beta+\delta_i}$ for all i = 1, ..., p. Since $T_{21}(u)$ is a polynomial of degree p-1 in u and $\beta_i \neq \beta_j$ if $i \neq j$, we have that $T_{21}(u)V_\beta \subseteq \sum_{i=1}^p V_{\beta+\delta_i}$. The case of $T_{12}(u)$ is treated analogously using the identity $T_{22}(u)T_{12}(u-1) = T_{12}(u)T_{22}(u-1)$.

Corollary 4. If V is indecomposable generic weight module over $Y_p(\mathfrak{gl}_2)$ and $\beta \in$ Supp V then Supp $V \subseteq \beta + \mathbb{Z}^p$. **Lemma 4.2.** If V is a generic weight $Y_p(\mathfrak{gl}_2)$ -module with central character $\gamma(u)$ then for any $\beta = (\beta_1, \ldots, \beta_p) \in \text{Supp } V$ and any $\eta \in V_\beta$ we have

$$T_{12}(-\beta_r)T_{21}(-\beta_s)\eta = T_{21}(-\beta_s)T_{12}(-\beta_r)\eta$$

if $s \neq r$, and

10

$$T_{12}(-\beta_i - 1)T_{21}(-\beta_i) \eta = -\gamma(-\beta_i) \eta, T_{21}(-\beta_i + 1)T_{12}(-\beta_i) \eta = -\gamma(-\beta_i + 1) \eta.$$

Proof. The first equality follows from the defining relations (1.1). The others follow from (3.12).

Corollary 5. Let V be a generic weight $Y_p(\mathfrak{gl}_2)$ -module with a central character γ and let $\beta = (\beta_1, \ldots, \beta_p) \in \operatorname{Supp} V.$

- (i) If $\gamma(-\beta_i) \neq 0$ then Ker $T_{21}(-\beta_i) \cap V_{\beta} = 0$. (ii) If $\gamma(-\beta_i + 1) \neq 0$ then Ker $T_{12}(-\beta_i) \cap V_{\beta} = 0$.
- (iii) If V is indecomposable and $\gamma(-\beta_i + k) \neq 0$ for all $k \in \mathbb{Z}$ then

$$\operatorname{Ker} T_{21}(-\psi_i) \cap V_{\psi} = \operatorname{Ker} T_{12}(-\psi_i) \cap V_{\psi} = 0$$

for all $\psi = (\psi_1, \dots, \psi_p) \in \operatorname{Supp} V$.

Given $(k) = (k_1, \ldots, k_p) \in \mathbb{Z}^p$ define the corresponding vector of the module $M(\ell)$ by

$$\xi^{(k)} = \prod_{i, k_i > 0} T_{21}(-\beta_i - k_i + 1) \cdots T_{21}(-\beta_i - 1) T_{21}(-\beta_i)$$

$$\times \prod_{i, k_i < 0} T_{12}(-\beta_i - k_i - 1) \cdots T_{12}(-\beta_i + 1) T_{12}(-\beta_i) \xi.$$

Theorem 2. The vectors $\xi^{(k)}, (k) \in \mathbb{Z}^p$ form a basis of $M(\ell)$. Moreover, we have the formulas

(4.15)
$$T_{22}(u)\,\xi^{(k)} = \prod_{i=1}^{p} (u+\beta_i+k_i)\,\xi^{(k)},$$

(4.16)

$$T_{21}(u)\,\xi^{(k)} = \sum_{i=1}^{p} A_i(k)\,\frac{(u+\beta_1+k_1)\cdots\wedge_i\cdots(u+\beta_p+k_p)}{(\beta_1-\beta_i+k_1-k_i)\cdots\wedge_i\cdots(\beta_p-\beta_i+k_p-k_i)}\,\xi^{(k+\delta_i)},$$
$$T_{12}(u)\,\xi^{(k)} = \sum_{i=1}^{p} B_i(k)\,\frac{(u+\beta_1+k_1)\cdots\wedge_i\cdots(u+\beta_p+k_p)}{(\beta_1-\beta_i+k_1-k_i)\cdots\wedge_i\cdots(\beta_p-\beta_i+k_p-k_i)}\,\xi^{(k-\delta_i)},$$

where

$$A_i(k) = \begin{cases} 1 & \text{if } k_i \ge 0\\ -\gamma(-\beta_i - k_i) & \text{if } k_i < 0 \end{cases}$$

and

$$B_{i}(k) = \begin{cases} -\gamma(-\beta_{i} - k_{i} + 1) & \text{if } k_{i} > 0\\ 1 & \text{if } k_{i} \le 0. \end{cases}$$

The action of $T_{11}(u)$ is found from the relation

(4.17)
$$\left(T_{11}(u)T_{22}(u-1) - T_{21}(u)T_{12}(u-1) \right) \xi^{(k)} = \gamma(u)\xi^{(k)}.$$

Proof. We start by proving the formulas for the action of the generators of $Y_p(\mathfrak{gl}_2)$. Relation (4.15) follows by induction from the defining relations (1.1). By Lemma 4.2 we have: if $k_i > 0$ then

(4.18)
$$T_{21}(-\beta_i - k_i) \xi^{(k)} = \xi^{(k+\delta_i)},$$
$$T_{12}(-\beta_i - k_i) \xi^{(k)} = -\gamma(-\beta_i - k_i + 1) \xi^{(k-\delta_i)};$$

if $k_i < 0$ then

(4.19)
$$T_{12}(-\beta_i - k_i)\xi^{(k)} = \xi^{(k-\delta_i)}, T_{21}(-\beta_i - k_i)\xi^{(k)} = -\gamma(-\beta_i - k_i)\xi^{(k+\delta_i)};$$

and if $k_i = 0$ then

(4.20)
$$T_{12}(-\beta_i)\,\xi^{(k)} = \xi^{(k-\delta_i)},$$
$$T_{21}(-\beta_i)\,\xi^{(k)} = \xi^{(k+\delta_i)}.$$

Applying the Lagrange interpolation formula we obtain the remaining formulas.

To show that the vectors $\xi^{(k)}$ form a basis of $M(\ell)$, denote by \mathcal{T}_{β} the subspace of $Y_p(\mathfrak{gl}_2)$ spanned by the elements

$$\tau^{(k)} = \prod_{i, k_i > 0} T_{21}(-\beta_i - k_i + 1) \cdots T_{21}(-\beta_i - 1) T_{21}(-\beta_i)$$
$$\times \prod_{i, k_i < 0} T_{12}(-\beta_i - k_i - 1) \cdots T_{12}(-\beta_i + 1) T_{12}(-\beta_i),$$

where (k) runs over \mathbb{Z}^p . It suffices to prove the vector space decomposition

(4.21)
$$Y_p(\mathfrak{gl}_2) = \mathcal{T}_\ell \oplus I_\ell$$

Due to the formulas proved above, $Y_p(\mathfrak{gl}_2) = \mathcal{T}_{\ell} + I_{\ell}$. We now need to show that the vectors $\tau^{(k)}$ are linearly independent modulo the left ideal I_{ℓ} . By (4.15) and the genericity assumption, the elements $\tau^{(k)} \mod I_{\ell}$ are eigenvectors for $T_{22}(u)$ with distinct eigenvalues. So the claim will follow if we demonstrate that each $\tau^{(k)}$ is nonzero modulo I_{ℓ} . Suppose first that γ is generic: $\gamma(-\beta_i - k) \neq 0$ for all $k \in \mathbb{Z}$ and all *i*. Then we deduce from (4.18)–(4.20) that $\tau^{(k)} \neq 0 \mod I_{\ell}$ since $1 \neq 0$ mod I_{ℓ} which gives (4.21) for generic γ .

Let now γ be arbitrary. Suppose that a nonzero element τ belongs to the intersection $\mathcal{T}_{\ell} \cap I_{\ell}$. Then

(4.22)
$$\tau = \sum_{i=1}^{p} a_i \left(t_{22}^{(i)} - \beta^{(i)} \right) + \sum_{i=1}^{2p} b_i \left(D^{(i)} - \gamma^{(i)} \right),$$

where $D^{(i)}$, $\beta^{(i)}$ and $\gamma^{(i)}$ are the coefficients of the polynomials D(u), $\beta(u)$ and $\gamma(u)$, respectively, while $a_i, b_i \in Y_p(\mathfrak{gl}_2)$. Let $\tilde{\gamma}$ be generic. Then we can rewrite (4.22) as

(4.23)
$$\tau = \sum_{i=1}^{p} a_i \left(t_{22}^{(i)} - \beta^{(i)} \right) + \sum_{i=1}^{2p} b_i \left(D^{(i)} - \widetilde{\gamma}^{(i)} \right) + \sum_{i=1}^{2p} b_i \left(\widetilde{\gamma}^{(i)} - \gamma^{(i)} \right).$$

VYACHESLAV FUTORNY, ALEXANDER MOLEV, AND SERGE OVSIENKO

Consider the unique decompositions of the elements b_j in accordance with (4.21) where $\gamma(u)$ is taken to be $\tilde{\gamma}(u)$:

(4.24)
$$b_j = \tau_j + \sum_{i=1}^p a_{ij} \left(t_{22}^{(i)} - \beta^{(i)} \right) + \sum_{i=1}^{2p} b_{ij} \left(D^{(i)} - \widetilde{\gamma}^{(i)} \right)$$

for some $a_{ij}, b_{ij} \in Y_p(\mathfrak{gl}_2)$. Using the decomposition (4.21) for generic $\tilde{\gamma}(u)$ we must have

(4.25)
$$\tau = \sum_{j=1}^{2p} \tau_j \, (\widetilde{\gamma}^{(j)} - \gamma^{(j)}).$$

12

for all such $\tilde{\gamma}(u)$. This means that the \mathcal{T}_{ℓ} -component of each element $b_j (\tilde{\gamma}^{(j)} - \gamma^{(j)})$ is independent of $\tilde{\gamma}(u)$. However, due to the formulas (4.15)–(4.17), this is only possible if all b_j are zero. Finally, the elements a_i must be zero too by the decomposition (4.22) with generic γ . So, (4.21) holds for all $\gamma(u)$.

Remark 1. Given two monic polynomials $\alpha(u)$ and $\beta(u)$ of degree p define the corresponding Verma module $V(\alpha(u), \beta(u))$ as the quotient of $Y_p(\mathfrak{gl}_2)$ by the left ideal generated by the coefficients of the polynomials $T_{11}(u) - \alpha(u), T_{22}(u) - \beta(u)$ and $T_{12}(u)$; cf. [T1, T2]. Then the same argument as above shows that $V(\alpha(u), \beta(u))$ has a basis $\{\xi^{(k)}\}$ parameterized by p-tuples of nonnegative integers $(k) = (k_1, \ldots, k_p)$. The formulas of Theorem 2 hold for the basis vectors $\xi^{(k)}$, where $\gamma(u)$ should be taken to be $\alpha(u) \beta(u-1)$ which defines the central character γ of $V(\alpha(u), \beta(u))$. In fact, $V(\alpha(u), \beta(u))$ is isomorphic to the quotient of the corresponding universal module $M(\ell), \ell = (\beta, \gamma)$ by the submodule spanned by the vectors $\{\xi^{(k)}\}$ such that (k) contains at least one negative component k_i .

Corollary 6. Let $\ell = (\beta, \gamma) \in \mathcal{L}_1$.

- (1) The module $M(\ell)$ is a generic weight $Y_p(\mathfrak{gl}_2)$ -module with central character γ , Supp $M(\ell) = \mathbb{Z}^p$ and all weight spaces are 1-dimensional.
- (2) The module $M(\ell)$ has a unique maximal submodule and hence a unique irreducible quotient.
- (3) The equivalence class $D(\ell)$ coincides with the set $\ell + \mathcal{L}_0$.

Proof. Statement (1) follows immediately from Theorem 2. By Proposition 4.1 the sum of all proper submodules is again a proper submodule. Thus $M(\ell)$ has a unique maximal submodule which implies (2). The statement (3) follows immediately from (1).

We will denote the unique irreducible quotient of $M(\ell)$ by $L(\ell)$. It follows from Corollary 6 that all weight spaces of $L(\ell)$ are 1-dimensional. Using Proposition 4.1 we can now describe all irreducible generic weight $Y_p(\mathfrak{gl}_2)$ -modules.

Corollary 7. Let $\ell = (\beta, \gamma) \in \mathcal{L}_1$.

- (1) There exists an irreducible generic weight $Y_p(\mathfrak{gl}_2)$ -module $L(\ell)$ with $L(\ell)_\beta \neq 0$ and with central character γ . Moreover, dim $L(\ell)_{\psi} = 1$ for all $\psi \in \text{Supp } L(\ell)$.
- (2) Any irreducible weight module over $Y_p(\mathfrak{gl}_2)$ with central character γ generated by a nonzero vector of weight β is isomorphic to $L(\ell)$.

HARISH-CHANDRA MODULES FOR YANGIANS

5. Properties of Γ as a subalgebra of $Y_p(\mathfrak{gl}_2)$

In this section we adapt the results from [DFO2] and [Ov] for the Yangians. In particular, we show that Γ is a Harish-Chandra subalgebra.

For any $\ell_0 \in \mathcal{L}_1$ the module $M(\ell_0)$ has a basis $\xi^{(k)}$, $(k) \in \mathbb{Z}^p$ with the action of generators of $Y(\mathfrak{gl}_2)$ defined by formulas (4.15)–(4.17). Then we can relabel the basis elements of $M(\ell_0)$ by ξ_ℓ , $\ell \in \ell_0 + \mathcal{L}_0$. It follows from Theorem 2 that for every $x \in Y_p(\mathfrak{gl}_2)$ there exists a finite subset $\mathcal{L}_x \subset \mathcal{L}_0$ consisting of elements δ such that

(5.26)
$$\xi_{\ell} = \sum_{\delta \in \mathcal{L}_x} \theta(x, \ell, \delta) \xi_{\ell+\delta}$$

where $\theta(x, \ell, \delta) = \theta(x, \mathbf{b}, \delta)(\ell), \ \theta(x, \mathbf{b}, \delta) \in \mathbb{L}, \ \mathbf{b} = (b_1, \dots, b_p, g_1, \dots, g_{2p})$. Clearly, the set \mathcal{L}_x is $S_p \times S_{2p}$ -invariant. Note that for a given x this formula does not depend on ℓ_0 .

Let $M_{\mathcal{L}_0}(\mathbb{L})$ be the ring of locally finite (with the finite number of non-zero elements in each row and each column) matrices over \mathbb{L} with the entries indexed by the elements of \mathcal{L}_0 . Any $\ell \in \mathcal{L}_1$ defines the evaluation homomorphism $\chi_{\ell} : \mathbb{L} \longrightarrow \mathbb{k}$, which induces the homomorphism of matrix algebras $M_{\mathcal{L}_0}(\ell) : M_{\mathcal{L}_0}(\mathbb{L}) \longrightarrow M_{\mathcal{L}_0}(\mathbb{k})$. For $\ell, \ell' \in \mathcal{L}_0$ denote by $e_{\ell \ell'}$ the corresponding matrix unit in $M_{\mathcal{L}_0}(\mathbb{L})$. The group \mathbb{W} acts on $M_{\mathcal{L}_0}(\mathbb{L})$ as follows: $(w^{-1} \cdot X)_{\ell,\ell'} = w^{-1} \cdot X_{w(\ell)w(\ell')}$ for all $w \in \mathbb{W}$, $X = (X_{\ell \ell'})_{\ell,\ell' \in \mathbb{L}_0}, \ell, \ell' \in \mathcal{L}_0$. Note that this action induces an action of $S_p \times S_{2p}$ on the free \mathbb{L} -module $X_0 = \sum_{\delta \in \mathcal{L}_0} \mathbb{L}e_{\delta,\overline{0}}$ where $\overline{0}$ is a zero element in \mathcal{L}_0 .

Define a map

$$G: Y_p(\mathfrak{gl}_2) \to M_{\mathcal{L}_0}(\mathbb{L})$$

such that for any $x \in Y_p(\mathfrak{gl}_2)$ and any $\ell \in \mathcal{L}_0$, $G(x)_{\ell \ell'} = \theta(x, b + \ell, \delta)$ if $\ell' - \ell = \delta$ and 0 otherwise.

Lemma 5.1. (1) G is a representation of $Y_p(\mathfrak{gl}_2)$.

- (2) G(x) is \mathbb{W} -invariant for any $x \in Y_p(\mathfrak{gl}_2)$. In particular, $G(x)_{\overline{0}\,\overline{0}} \in K(\Gamma)$.
- (3) If $x = x(b_1, \ldots, b_p, g_1, \ldots, g_{2p}) \in \Gamma$ then $G(x)_{\ell\ell} = x(b_1 + l_1, \ldots, b_p + l_p, g_1, \ldots, g_{2p})$ where $\ell = (l_1, \ldots, l_p, 0, \ldots, 0) \in \mathcal{L}_0$.
- (4) G(Γ) consists of \mathbb{W} -invariant diagonal matrices X such that $X_{\overline{0}\overline{0}} \in \Gamma$. In particular, $X_{\overline{0}\overline{0}} \in \Gamma$ determines X.

Proof. Let T be a free (non-commutative) algebra with generators $t_{ij}^{(k)}$, $i, j = 1, 2, k = 1, \ldots, p, \pi : T \to Y_p(\mathfrak{gl}_2), t_{ij}^{(k)} \mapsto t_{ij}^{(k)}$, be a canonical projection. Define a homomorphism $g : T \to M_{\mathcal{L}_0}(\mathbb{L})$ by $g(t_{ij}^{(k)}) = G(t_{ij}^{(k)})$ for all suitable i, j, k. To prove (1) it is enough to show that $g(\operatorname{Ker} \pi) = 0$. Let $f \in \operatorname{Ker} \pi$ and suppose that $g(f)_{\ell'\ell''} \in \mathbb{L}$ is nonzero for some $\ell', \ell'' \in \mathcal{L}_0$. Then $M_{\mathcal{L}_0}(\ell)(g(f)) = 0$ and thus $g(f)_{\ell'\ell''}(\ell) = 0$ for any $\ell \in \mathcal{L}_1$. Since \mathcal{L}_1 is dense in Specm L we conclude that g(f) = 0 implying (1).

The image of G is W-invariant since it holds for the generators of $Y_p(\mathfrak{gl}_2)$ (4.15)– (4.17). For any $\sigma \in S_p \times S_{2p}$, $(\sigma^{-1} \cdot G)(x)_{\overline{0}\overline{0}} = \sigma^{-1}(G(x)_{\sigma(\overline{0})} \sigma_{\overline{0}}) = \sigma^{-1}(G(x)_{\overline{0}\overline{0}})$. Hence $G(x)_{\overline{0}\overline{0}}$ is $S_p \times S_{2p}$ -invariant proving (2). The statement (3) follows from (2) if we apply a shift by $\ell \in \mathcal{L}_0$ to an arbitrary $x \in Y_p(\mathfrak{gl}_2)$. The statement (4) follows immediately from (2) and (3).

14 VYACHESLAV FUTORNY, ALEXANDER MOLEV, AND SERGE OVSIENKO

The composition r_{ℓ} of G and $M_{\mathcal{L}_0}(\ell)$ defines a representation G_{ℓ} of $Y_p(\mathfrak{gl}_2)$. It is easy to see that the corresponding $Y_p(\mathfrak{gl}_2)$ -module coincides with the module $M(\ell)$ from Theorem 2.

Proposition 5.1. The representation $G: Y_p(\mathfrak{gl}_2) \longrightarrow M_{\mathcal{L}_0}(\mathbb{L})$ is faithful.

Proof. It is clear that Ker $G \subset \bigcap_{\ell \in \mathcal{L}_1} \operatorname{Ker} r_{\ell}$. Hence it is enough to prove that

$$\bigcap_{\ell \in \mathcal{L}_1} \operatorname{Ker} r_\ell = 0.$$

Let $\ell = (\beta, \gamma)$. Then Ker $r_{\ell} = \operatorname{Ann} M(\ell)$ dy definition. Since $M(\ell) = Y_p(\mathfrak{gl}_2)/I_\ell$ we have that Ker $r_{\ell} \subset I_{\ell}$. Therefore, it is enough to show that $\bigcap_{\ell \in \mathcal{L}_1} I_{\ell} = 0$. By Theorem 1, (1) the Yangian $Y_p(\mathfrak{gl}_2)$ is free as a right module over Γ . Let $x_i, i \in \mathcal{I}$ be a basis of $Y_p(\mathfrak{gl}_2)$ over Γ . If $x = \sum_{i \in \mathcal{I}} x_i z_i$ for some $z_i \in \Gamma$ then $x \in I_\ell$ if and only if $z_i(\ell) = 0$ for all $i \in \mathcal{I}$. Since \mathcal{L}_1 is dense in \mathcal{L} in Zariski topology it follows immediately that if $x \in \bigcap_{\ell \in \mathcal{L}_1} I_\ell$ then $z_i = 0$ for all $i \in \mathcal{I}$ and thus x = 0. This completes the proof.

Immediately from the proof of the theorem above and the density of \mathcal{L}_1 in \mathcal{L} we obtain the following analogue of the Harish-Chandra Theorem for Lie algebras [Di].

Corollary 8. Let $x \in Y_p(\mathfrak{gl}_2)$ be such that $xM(\ell) = 0$ for any $\ell \in \mathcal{L}_1$. Then x = 0.

Corollary 9. (1) Γ is a maximal commutative subalgebra in $Y_p(\mathfrak{gl}_2)$. (2) If for $x \in Y_p(\mathfrak{gl}_2)$ the matrix G(x) is diagonal then $x \in \Gamma$.

Proof. Consider an element $x \in Y_p(\mathfrak{gl}_2)$ which commutes with every $z \in \Gamma$. Suppose there exist $\ell_1, \ell_2 \in \mathcal{L}_0, \ \ell_1 \neq \ell_2$ such that $G(x)_{\ell_1\ell_2} \neq 0$. There exists $z \in \Gamma$ such that $z(\ell_1) \neq z(\ell_2)$ and thus $G(z)_{\ell_1\ell_1} \neq G(z)_{\ell_2\ell_2}$ by Lemma 5.1, (3). Then we have $G(xz)_{\ell\ell'} = G(x)_{\ell\ell'}G(z)_{\ell'\ell'} = G(zx)_{\ell\ell'} = G(z)_{\ell\ell}G(x)_{\ell\ell'}$ and therefore G(x) is diagonal. To conclude the maximality of Γ it is enough to prove the statement (2). By Lemma 5.1, (2), $G(x)_{\overline{00}} = \frac{f}{g} \in \mathbb{L}$ where $f, g \in \Gamma$ are relatively prime. Suppose that $g \notin \Bbbk$. By Lemma 5.1, (4) we have that G(x)G(g) = G(f) and xg = f by Proposition 5.1. It implies that $x \in \Gamma$ by Theorem 1, (1). This completes the proof. \Box

Corollary 10. Let $p : M_{\mathcal{L}_0}(\mathcal{L}) \longrightarrow X_0$ be the projection. Then the composition $r : Y_p(\mathfrak{gl}_2) \xrightarrow{G} M_{\mathcal{L}_0}(\mathbb{L}) \xrightarrow{p} X_0$ is a monomorphism of $Y_p(\mathfrak{gl}_2)$ -modules. The map p commutes with the action of $S_p \times S_{2p}$ and in particular, $r(Y_p(\mathfrak{gl}_2))$ is $S_p \times S_{2p}$ -invariant.

Proof. Note that for any $x \in Y_p(\mathfrak{gl}_2)$ the matrix $G(x) \in M_{\mathcal{L}_0}(\mathbb{L})$ is determined completely by its column p(G(x)). Thus r(x) = 0 implies G(x) = 0 and x = 0 by faithfulness of G. Hence r is a monomorphism. Other statements follow immediately from the definitions and Lemma 5.1, (2).

As in [DFO2], we identify the $(\Gamma - \Gamma)$ -bimodule structure on $Y_p(\mathfrak{gl}_2)$ with the corresponding $\Gamma \otimes_{\Bbbk} \Gamma$ -module structure. Let $\mathbf{b} = (b_1, \ldots, b_p, g_1, \ldots, g_{2p})$. For any $z \in \Gamma$ and any $S \subset \mathcal{L}$ introduce the following polynomial

$$F_{S,z} = \prod_{\delta \in S} (z \otimes 1 - 1 \otimes z(\mathsf{b} + \delta)) = \sum_{i=0}^{|S|} z^i \otimes a_i, a_i \in \mathbb{L}.$$

Proposition 5.2. ([DFO2], Lemma 25). Let S be a finite S_p×S_{2p}-invariant subset in L and z be any element of Γ, F_{S,z} = ∑_{i=0}^{|S|} zⁱ ⊗ a_i, a_i ∈ L.
(1) a_i ∈ Γ, i = 0,..., |S|.
(2) For any x ∈ Y_p(gl₂) such that L_x ⊂ S holds ∑_{i=0}^q zⁱxa_i = 0.
Proof. If S is S_p × S_{2p}-invariant then the coefficients of the polynomial F_{S,z} are

Proof. If S is $S_p \times S_{2p}$ -invariant then the coefficients of the polynomial $F_{S,z}$ are $S_p \times S_{2p}$ -invariant and hence belong to Γ which proves (1). It is enough to check the statement (2) for $S = \mathcal{L}_x$ since $F_{S,z} = F_{S \setminus \mathcal{L}_x, z} F_{\mathcal{L}_x, z}$. Denote q = |S|. Let $\ell \in \mathcal{L}_1$ and let ξ_ℓ be a basis element of $M(\ell)$. Then

$$\sum_{i=0}^{q} z^{i} x a_{i}(\xi_{\ell}) = \sum_{i=0}^{q} z^{i} x a_{i}(\ell)(\xi_{\ell}) =$$

$$\sum_{i=0}^{q} z^{i} a_{i}(\ell) \sum_{\delta \in \mathcal{L}_{x}} \theta(x, \ell, \delta) \xi_{\ell+\delta} =$$

$$\sum_{\delta \in \mathcal{L}_{x}} \theta(x, \ell, \delta) \sum_{i=0}^{q} a_{i}(\ell)(z^{i}\xi_{\ell+\delta}) =$$

$$\sum_{\delta \in \mathcal{L}_{x}} \theta(x, \ell, \delta) \sum_{i=0}^{q} a_{i}(\ell) z(\ell+\delta)^{i} \xi_{\ell+\delta} = \sum_{\delta \in \mathcal{L}_{x}} \theta(x, \ell, \delta) F_{\mathcal{L}_{x}, z}(z(\ell+\delta), \ell) \xi_{\ell+\delta} = 0$$

since $F_{\mathcal{L}_{x,z}}(z(\ell+\delta),\ell) = 0$ for every $\delta \in \mathcal{L}_x$. Applying Corollary 8 we obtain the statement of the proposition.

The main result of this section is the following

Theorem 3. Γ is a Harish-Chandra subalgebra of $Y_p(\mathfrak{gl}_2)$.

Proof. Following [DFO2], Proposition 8, it is enough to show that a Γ -bimodule $\Gamma t_{ij}^{(k)} \Gamma$ is finitely generated both as left and as right module for every possible choice of indices i, j, k. It is obvious for i = j = 2 since $t_{22}^{(k)} \in \Gamma$. We prove it for i = 2, j = 1. Since d_i is central for every $i = 1, \ldots, 2p$ we have $d_i t_{21}^{(k)} = t_{21}^{(k)} d_i$. From formulas (4.16) follows that $\mathcal{L}_{t_{21}^{(k)}} = \{\delta_i | i = 1, \ldots, p\}$. Then

$$F_{\mathcal{L}_{t_{21}^{(k)}}, t_{22}^{(i)}} = z^{p} \otimes 1 + \sum_{l=0}^{p-1} z^{l} \otimes a_{l}, \ a_{l} \in \Gamma$$

and

(5.27)
$$(t_{22}^{(i)})^p t_{21}^{(k)} + \sum_{l=0}^{p-1} (t_{22}^{(i)})^l t_{21}^{(k)} a_l = 0$$

by Proposition 5.2, (2). Hence the elements $(\prod_{i=1}^{p} (t_{22}^{(i)})^{k_i}) t_{21}^{(k)}, 0 \le k_i < p$ form the generators of $\Gamma t_{21}^{(k)} \Gamma$ as a right Γ -module.

Applying a suitable automorphism we conclude that $\Gamma t_{21}^{(k)}\Gamma$ is finitely generated as a left Γ -module.

The cases i = 1, j = 2 and i = j = 1 can be treated analogously since $\mathcal{L}_{t_{12}^{(k)}} = \{-\delta_i | i = 1, \dots, p\}$ and $\mathcal{L}_{t_{11}^{(k)}} = \{\delta_i - \delta_j | i, j = 1, \dots, p\}$. Hence $\Gamma t_{ij}^{(k)} \Gamma$ is finitely generated as a right and as a left Γ -module.

6. CATEGORY OF HARISH-CHANDRA MODULES OVER $Y_p(\mathfrak{gl}_2)$

Since Γ is a Harish-Chandra subalgebra of $Y_p(\mathfrak{gl}_2)$ we can apply all the statements from Section 2.1. Denote $\mathcal{A} = \mathcal{A}_{Y_p(\mathfrak{gl}_2),\Gamma}$. Then by Proposition 1, the categories $\mathcal{A} - \operatorname{mod}_d$ and $\mathbb{H}(Y_p(\mathfrak{gl}_2),\Gamma)$ are equivalent. Also the full subcategory $\mathbb{H}W(Y_p(\mathfrak{gl}_2),\Gamma)$ consisting of weight modules is equivalent to the module category \mathcal{A}_W -mod. If $\ell \in \mathcal{L}$ then the category R_ℓ is equivalent to the block $\mathcal{A}_W(D(\ell))$ -mod of the category \mathcal{A}_W - mod.

We will show that each character of Γ extends to a finite number of irreducible Harish-Chandra modules over $Y_p(\mathfrak{gl}_2)$. This is an analogue of the corresponding result in the case of a Lie algebra \mathfrak{gl}_n which was conjectured in [DFO1] and proved in [Ov]. In this section we use the techniques of [DFO2] and [Ov].

Lemma 6.1. For any $x \in Y_p(\mathfrak{gl}(2))$, $f \in \Gamma \otimes \Gamma$, ℓ , $\ell' \in \mathcal{L}_0$ holds

$$\begin{split} \mathbf{G}(f \cdot x)_{\ell\ell'} &= f(\mathbf{b} + \ell, \mathbf{b} + \ell') \mathbf{G}(x)_{\ell\ell'}.\\ Proof. \text{ Let } f = \sum_i z_i \otimes z'_i \in \Gamma \otimes \Gamma. \text{ Then } \mathbf{G}(f \cdot x) = \sum_i \mathbf{G}(z_i) \mathbf{G}(x) \mathbf{G}(z'_i) \text{ and hence}\\ \mathbf{G}(f \cdot x)_{\ell\ell'} &= \sum_i \mathbf{G}(z_i)_{\ell \ell} \mathbf{G}(x)_{\ell \ell'} \mathbf{G}(z'_i)_{\ell' \ell'} = \mathbf{G}(x)_{\ell \ell'} \sum_i \mathbf{G}(z_i)_{\ell \ell} \mathbf{G}(z'_i)_{\ell' \ell'} =\\ \mathbf{G}(x)_{\ell \ell'} \sum_i z_i (\mathbf{b} + \ell) z'_i (\mathbf{b} + \ell') = \mathbf{G}(x)_{\ell \ell'} f(\mathbf{b} + \ell, \mathbf{b} + \ell'). \end{split}$$

Lemma 6.2. ([DFO2], Lemma 25). Let $z \in \Gamma$, $S \subset \mathcal{L}$ be a $S_p \times S_{2p}$ -invariant set and $x \in Y_p(\mathfrak{gl}_2)$ be such that $G(x)_{\ell \ell'} = 0$ for all $\ell, \ell', \ell - \ell' \notin S$ then $F \cdot x = 0$.

Proof. Let F in the form $F = \sum_i z^i \otimes a_i$ where $a_i \in L$. If $\ell - \ell' \in S$ then $G(F \cdot x)_{\ell'\ell} = F(b+\ell, b+\ell')G(x)_{\ell\ell'}$ by Lemma 6.1. Then $h = z \otimes 1 - 1 \otimes z(b+\ell-\ell')$ divides F, $h(b+\ell, b+\ell') = 0$, $F(b+\ell, b+\ell') = 0$ and $F \cdot x = 0$.

Let $S \subset \mathcal{L}_0$ be a finite $S_p \times S_{2p}$ -invariant set. Define $Y^S = \{x \in Y_p(\mathfrak{gl}_2) | \mathcal{L}_x \subset S\}$. Clearly Y^S is a Γ -subbimodule in $Y_p(\mathfrak{gl}_2)$. We have the following characterization of the bimodule Y^S .

Lemma 6.3. Let $x \in Y_p(\mathfrak{gl}_2)$. Then

- (1) $x \in Y^S$ if and only if whenever $G(x)_{\ell,\ell'} \neq 0$, for some $\ell, \ell' \in \mathcal{L}_0$, implies that $\ell \ell' \in S$.
- (2) $y = F_{\mathcal{L}_x \setminus S, z} \cdot x \in \mathbf{Y}^S$ for any $z \in \Gamma$.
- (3) \mathbf{Y}^S is a finitely generated left (right) Γ -module and $\mathbf{Y}^S = \mathbb{D}(\mathbf{Y}^S)$.
- (4) $Y^{\{0\}} = \Gamma$.

16

Proof. The statement (1) follows from definitions. Let $F = F_{\mathcal{L}_x \setminus S, z}$. To prove (2) calculate the matrix element $G(y)_{\ell\ell'}$ provided $\ell - \ell' \notin S$. If $\ell - \ell' \notin \mathcal{L}_x$ then $G(x)_{\ell\ell'} = 0$ and hence $G(y)_{\ell\ell'} = 0$. Suppose that $\ell - \ell' \in \mathcal{L}_x \setminus S$ then by Lemma 6.1, $G(y)_{\ell\ell'} = G(F \cdot x)_{\ell\ell'} = F(\mathbf{b} + \ell, \mathbf{b} + \ell')G(x)_{\ell\ell'}$. But

$$F(\mathbf{b} + \ell, \mathbf{b} + \ell') = \prod_{\delta \in \mathcal{L}_x \setminus S} (z(\mathbf{b} + \ell) - z(\mathbf{b} + \ell' + \delta))$$

which is equal to zero. This proves (2).

Let $x \in \mathbb{D}(Y^S)$ and $z \in \Gamma$ is such that $z \neq 0$ and $zx \in Y^S$. Since $G(zx)_{\ell\ell'} = z(\mathbf{b} + \ell)G(x)_{\ell\ell'}$ then $G(zx)_{\ell\ell'} = 0$ if and only if $G(x)_{\ell\ell'} = 0$ implying that $x \in Y^S$. Hence $Y^S = \mathbb{D}(Y^S)$.

Consider $r(\mathbf{Y}^S)$ as a Γ -submodule of X_0 where $r : \mathbf{Y}_p(\mathfrak{gl}_2) \longrightarrow X_0$ is defined in Corollary 10. Then $r(\mathbf{Y}^S)$ belongs to a free \mathbb{L} -submodule of X_0 of finite rank $\sum_{\ell \in S} \mathbb{L}e_{\overline{0}\ell}$. Hence $\mathbb{L} \cdot r(\mathbf{Y}^S)$ is finitely generated \mathcal{L} -module. Without loss of generality we can assume that it is generated by the elements $r(x_1), \ldots, r(x_s) \in r(\mathbf{Y}^S)$, i.e. $\mathbb{L} \cdot r(\mathbf{Y}^S) = \sum_{i=1}^s \mathbb{L} \cdot r(x_i)$. Since $\mathbb{D}(\mathbf{Y}^S) = \mathbf{Y}^S$ we have that $\mathbb{D}(\sum_{i=1}^s \Gamma x_i) \subset$ \mathbf{Y}^S . Fin $\mathbf{x} \in \mathbf{Y}^S$. Then $r(\mathbf{x}) = \sum_{i=1}^s \mathbb{L} \cdot r(x_i)$.

Y^S. Fix $x \in Y^S$. Then $r(x) = \sum_{i=1}^{s} t_i r(x_i), t_i \in \mathbb{L}$. Note that for any $y \in Y^S$ and any $\sigma \in S_p \times S_{2p}, \sigma \cdot r(y) = r(y)$. Hence $p!(2p)!r(x) = \sum_{\sigma \in S_p \times S_{2p}} \sigma \cdot r(x) =$

 $\sum_{\sigma \in S_p \times S_{2p}} \sum_{i=1}^s (\sigma \cdot t_i) \sigma \cdot r(x_i)$ which can be rewritten as follows

$$r(x) = \frac{1}{p!(2p!)} \sum_{i=1}^{s} u_i r(x_i),$$

where $u_i = \sum_{\sigma \in S_p \times S_{2p}} \sigma \cdot t_i$. Since each u_i is $S_p \times S_{2p}$ -invariant then it belongs to the field of fractions $K(\Gamma)$ for all i = 1, ..., s. Multiplying both parts of the last equality by the common denominator of u_i we obtain that $x \in \mathbb{D}(\sum_{i=1}^{s} \Gamma x_i)$ and thus $\mathbb{D}(\sum_{i=1}^{s} \Gamma x_i) = Y^S$. Applying Corollary 3 we conclude that Y^S is finitely generated

over Γ . This proves (3). By the definition of Y^S , $x \in Y^{\{0\}}$ if and only if G(x) is diagonal. Hence $x \in \Gamma$ by Corollary 9, (2).

Let $\mathbf{m}, \mathbf{n} \in \operatorname{Specm} \Gamma, \ell_{\mathbf{m}}, \ell_{\mathbf{n}} \in \mathcal{L}$ are such that $i^*(\ell_{\mathbf{m}}) = \mathbf{m}$ and $i^*(\ell_{\mathbf{n}}) = \mathbf{n}$. Denote

$$S(\mathbf{m},\mathbf{n}) = \{\sigma_1 \ell_{\mathbf{n}} - \sigma_2 \ell_{\mathbf{m}} \,|\, \sigma_1, \sigma_2 \in S_p \times S_{2p}\} \cap \mathcal{L}_0.$$

Consider the following subset in \mathcal{L}

$$\mathcal{L}_2 = \{\ell \in \mathcal{L} \mid \ell_i - \ell_j \notin \mathbb{Z} \setminus \{0\}, i, j = 1, \dots, p\}$$

and set $\Omega = i^*(\mathcal{L}_2)$.

Proposition 6.1. (1) For all \mathbf{m} , $\mathbf{n} \in \operatorname{Specm} \Gamma$ and all $m, n \ge 0$ holds

$$\mathbf{Y}_p(\mathfrak{gl}_2) = \mathbf{Y}^S + \mathbf{n}^n \mathbf{Y}_p(\mathfrak{gl}_2) + \mathbf{Y}_p(\mathfrak{gl}_2)\mathbf{m}^m$$

where $S = S(\mathbf{m}, \mathbf{n})$.

- (2) For all \mathbf{m} , $\mathbf{n} \in \operatorname{Specm} \Gamma$ a system of generators of Y^S as a left Γ -module (as a right Γ -module) generates $\mathcal{A}(\mathbf{m}, \mathbf{n})$ as a left $\Gamma_{\mathbf{n}}$ -module (as a right $\Gamma_{\mathbf{m}}$ -module), i.e. $\mathcal{A}(\mathbf{m}, \mathbf{n})$ is finitely generated as a left $\Gamma_{\mathbf{n}}$ and as a right $\Gamma_{\mathbf{m}}$ -module. In particular, the algebra Γ is big in every $\mathbf{n} \in \operatorname{Ob} \mathcal{A}$.
- (3) If $S(\mathbf{m}, \mathbf{n}) = \emptyset$ then $\mathcal{A}(\mathbf{m}, \mathbf{n}) = 0$ (cf. [DFO2], Corollary 27).

VYACHESLAV FUTORNY, ALEXANDER MOLEV, AND SERGE OVSIENKO

- (4) If $S(\mathbf{m}, \mathbf{n}) = \{0\}$ then $\mathcal{A}(\mathbf{m}, \mathbf{n})$ is generated as a left $\Gamma_{\mathbf{n}}$ and as a right $\Gamma_{\mathbf{m}}$ -module by the image of 1 in $\mathcal{A}(\mathbf{m}, \mathbf{n})$.
- (5) If $S(\mathbf{m}, \mathbf{m}) = \{0\}$ then $\mathbf{m} \in \Omega$, $\mathcal{A}(\mathbf{m}, \mathbf{m})$ is a quotient algebra of Γ and $\chi_{\mathbf{m}}$ extends uniquely to an irreducible $Y_p(\mathfrak{gl}_2)$ -module.
- (6) If $\ell_{\mathbf{m}} \in \mathcal{L}_1$ then $\mathcal{A}(\mathbf{m}, \mathbf{m}) = \Gamma_{\mathbf{m}}$. (7) Let $\ell \in \mathcal{L}_1$, $\mathbf{m} = i^*(\ell)$ and $\mathbf{n} = i^*(\ell + \delta_i)$, $i \in \{1, \ldots, p\}$. Then $\mathcal{A}(\mathbf{m}, \mathbf{n})$ is a free of rank 1 right $\Gamma_{\mathbf{m}}$ - (left $\Gamma_{\mathbf{n}}$ -) module.

Proof. (1) It is enough to show that for any $x \in Y_p(\mathfrak{gl}_2)$ and any $k \ge 1$ there exists $x_k \in \mathbf{Y}^S$ such that

(6.28)
$$x \in x_k + \sum_{i=0}^k \mathbf{n}^{k-i} x \mathbf{m}^i.$$

The statement will follow if we choose k = m + n + 1. We will use induction on k. If $\mathcal{L}_x \subset S$ then $x \in \mathbf{Y}^S$ and there is nothing to prove. Note that by the definition of the set S for any $\ell \in \mathcal{L}_x \setminus S$ the $S_p \times S_{2p}$ -orbits of $\ell_{\mathbf{n}}$ and $\ell_{\mathbf{m}} + \ell$ are disjoint. Hence there exists $z \in \Gamma$ such that $z(\ell_{\mathbf{n}}) \neq z(\ell_{\mathbf{m}} + \ell)$ for any $\ell \in \mathcal{L}_x \setminus S$. Let $F = F_{\mathcal{L}_x \setminus S, z}$. Then $F(\ell_{\mathbf{m}}, \ell_{\mathbf{n}}) = \prod_{\ell \in \mathcal{L}_x \setminus S} (z(\ell_{\mathbf{n}}) - z(\ell_{\mathbf{m}} + \ell)) \neq 0$ since every factor F is non-zero. We can assume that $F(\ell_{\mathbf{m}}, \ell_{\mathbf{n}}) = 1$. Hence we obtain that F = 1 + uwhere $u \in \mathbf{n} \otimes \Gamma + \Gamma \otimes \mathbf{m}$. It follows from Lemma 6.3, (2) that $x_1 = F \cdot x$ belongs to Y^S. Hence we have $x_1 = (1+u) \cdot x \in x + \mathbf{n}x\Gamma + \Gamma x\mathbf{m}$ and $x \in x_1 + \mathbf{n}x\Gamma + \Gamma x\mathbf{m}$. This proves the base of induction. Assume that 6.28 holds for some $k \ge 1$. Then

$$x \in x_k + \sum_{i=0}^k \mathbf{n}^{k-i} (x_k + \sum_{j=0}^k \mathbf{n}^{k-j} x \mathbf{m}^j) \mathbf{m}^i \subset x_k + \sum_{i=0}^k \mathbf{n}^{k-i} x_k \mathbf{m}^i + \sum_{i=0}^{k+1} \mathbf{n}^{k+1-i} x \mathbf{m}^i.$$

Since \mathbf{Y}^S is a Γ -bimodule we conclude that $x_k + \sum_{i=0}^k \mathbf{n}^{k-i} x_k \mathbf{m}^i \subset \mathbf{Y}^S$ which implies the statement (1). In particular,

$$x_{k+1} - x_k \in \sum_{i=0}^k \mathbf{n}^{k-i} \mathbf{Y}^S \mathbf{m}^i$$

(2) We prove the statement for the case of left module, the case of the right module can be treated analogously. By (1) the image \overline{x} of every $x \in Y^S$ in $\mathcal{A}(\mathbf{n}, \mathbf{m})$ is the limit of the sequence $(\overline{x}_k)_{k \ge 1}, x_k \in \mathbf{Y}^S$. Let y_1, \ldots, y_m be a finite system of generators of Y^S as a left Γ -module. Then for every N > 1 there exists a maximal d_N such that

$$y_i \mathbf{m}^N \subset \sum_{j=1}^m \mathbf{n}^{d_N} y_j$$

for all $i = 1, \ldots, m$. Note that by the proof of (1), $x_{k+1} - x_k \in \sum_{i=0}^{k} \mathbf{n}^{k-i} \mathbf{Y}^S \mathbf{m}^i \subset$ $\mathbf{n}^{R_k}\mathbf{Y}^S$ where $R_k = \min\{[k/2], d_{[k/2]}\}$. Since \mathbf{Y}^S is a finitely generated right Γ -

module and Γ is notherian then the intersection $\cap_{k>1} Y^S \mathbf{m}^k = 0$. It follows that

18

 $d_N \to \infty$ while $N \to \infty$. Since

$$\overline{x} = \overline{x}_1 + \sum_{k=1}^{\infty} \overline{(x_{k+1} - x_k)}$$

we have $\overline{x} \in \sum_{k=1}^{\infty} \overline{\mathbf{n}^{R_k} \mathbf{Y}^S} \subset \sum_{l=1}^{m} \Gamma_{\mathbf{n}} \overline{y_l}$. Note that the first sum is well defined since $R_k \to \infty$ when $k \to \infty$. We conclude that $\mathcal{A}(\mathbf{n}, \mathbf{m})$ is finitely generated as left $\Gamma_{\mathbf{n}}$ -module. This completes the proof of (2).

(3) If $S = \emptyset$, then $Y^S = 0$ and the statement follows from (1) and the definition of the category \mathcal{A} (2.8).

(4) By the definition of Y^S for every $x \in Y^{\{0\}}$ the matrix G(x) is diagonal. Following Corollary 9, (2) it means $x \in \Gamma$, in particular $\mathcal{A}(\mathbf{m}, \mathbf{n})$ is generated (both as a left and as a right module) by the image of $1 \in \Gamma$.

(5) By (4), $Y^0 = \Gamma$, i.e. $\mathcal{A}(\mathbf{m}, \mathbf{n})$ is 1-generated as a left $\Gamma_{\mathbf{m}}$ -module. Then the k-algebra homomorphism $\hat{\imath}_{\mathbf{m}} : \Gamma_{\mathbf{m}} \longrightarrow \mathcal{A}(\mathbf{m}, \mathbf{m}), z \longmapsto z \cdot \mathbf{1}_{\mathbf{m}}$, where $\mathbf{1}_{\mathbf{m}}$ is a unit morphism, is an epimorphism which shows that $\mathcal{A}(\mathbf{m}, \mathbf{m})$ is a quotient algebra of $\Gamma_{\mathbf{m}}$. The uniqueness of extension follows from the uniqueness of the simple $\mathcal{A}(\mathbf{m}, \mathbf{m})$ -module and [DFO2], Theorem 18.

(6) Let $\ell = \ell_{\mathbf{m}}$. Since $\ell \in \mathcal{L}_1$ then for any k > 0 there exists a canonical projection $\pi_k : \mathbb{L} \longrightarrow \mathbb{L}/\ell^k \mathbb{L}$. It induces a homomorphism of the matrix algebras $\pi_k : \mathrm{M}_{\mathcal{L}_0}(\mathbb{L}) \longrightarrow \mathrm{M}_{\mathcal{L}_0}(\mathbb{L}/\ell^k)$ and defines a Harish-Chandra module by the following composition

$$Y_p(\mathfrak{gl}_2) \xrightarrow{G} M_{\mathcal{L}_0}(\mathbb{L}) \xrightarrow{\pi_k} M_{\mathcal{L}_0}(\mathbb{L}/\ell^k).$$

For any $x \in \Gamma$ there exists k > 0, such that $x \notin (\ell)^k$. Then $\pi_k G(x)_{\overline{0},\overline{0}} = x + (\ell)^k \neq 0$ that completes the proof.

(7) The proof is analogous to the proof of (6). Let $z \in \Gamma$, $z \neq 0$. Suppose $\mathcal{A}(\mathbf{m}, \mathbf{n})z = 0$. Then by the construction of the equivalence $\mathbb{F} : \mathcal{A} - \operatorname{mod}_d \longrightarrow \mathbb{H}(U,\Gamma)$ for any Harish-Chandra module M and any $x \in Y_p(\mathfrak{gl}_2)$ the linear operator xz on M induces a zero map between $M(\mathbf{m})$ and $M(\mathbf{n})$. It is enough to construct a Harish-Chandra module where this is failed. For $k \geq 1$ consider a natural map $\pi_k : \mathbb{L} \to \mathbb{L}/(\ell)^k$ and a composition $\pi_k \cdot G : Y_p(\mathfrak{gl}_2) \to M_{\mathcal{L}_0}(\mathbb{L}/(\ell)^k)$. It defines a Harish-Chandra module structure on a free $\mathbb{L}/(\ell)^k$ -module $\overline{X} = \sum_{\delta \in \mathcal{L}_0} \mathbb{L}/(\ell)^k e_{\delta,\overline{0}}$. Consider $x \in Y_p(\mathfrak{gl}_2)$ such that $G(x)_{\delta_i\overline{0}} \neq 0$. Then $G(xz)_{\delta_i\overline{0}} = G(x)_{\delta_i\overline{0}}G(z)_{\overline{00}} = G(x)_{\delta_i\overline{0}}Z \neq 0$. Choose k such that $G(xz)_{\delta_i\overline{0}} \notin (\ell)^k$. Hence $(\pi_k \cdot G)(xz)_{\delta_i,\overline{0}} \neq 0$ and the linear operator xz induces a non-zero map between $\overline{X}(\mathbf{m}) = \mathbb{L}/(\ell)^k$ and $\overline{X}(\mathbf{n}) = \mathbb{L}/(\ell + \delta_i)^k$. The obtained contradiction shows that $\mathcal{A}(\mathbf{m}, \mathbf{n})z \neq 0$. The case $z\mathcal{A}(\mathbf{m}, \mathbf{n}) = 0$ is treated analogously.

Now we are in the position to state the main result of this section which follows immediately from Lemma 2.1 and Proposition 6.1, (2).

Theorem 4. Let $\mathbf{m} \in \operatorname{Specm} \Gamma$. Then the left ideal $Y_p(\mathfrak{gl}(2))\mathbf{m}$ is contained in finitely many maximal left ideals of $Y_p(\mathfrak{gl}(2))$. In particular, \mathbf{m} extends to a finitely many (up to an isomorphism) irreducible $Y_p(\mathfrak{gl}(2))$ -modules and for each such module M, dim $M(\mathbf{n}) < \infty$ for all $\mathbf{n} \in \operatorname{Specm} \Gamma$.

VYACHESLAV FUTORNY, ALEXANDER MOLEV, AND SERGE OVSIENKO

20

7. CATEGORY OF GENERIC HARISH-CHANDRA MODULES

Lemma 7.1. Let $\ell \in \mathcal{L}_1$, $\ell = (\beta, \gamma)$, $\mathbf{m} = i^*(\ell) \in \operatorname{Specm} \Gamma$, $\mathbf{n} = i^*(\ell + \delta_i)$, $i \in \{1, \ldots, p\}$. If $\beta_i \notin \{\gamma_1, \ldots, \gamma_{2p}\}$ then the objects of \mathcal{A} represented by \mathbf{m} and \mathbf{n} are isomorphic.

Proof. Choose $z_1, z_2 \in \Gamma$ such that $z_1(\ell+\delta_j) = \delta_{ij}, z_2(\ell+\delta_i-\delta_j) = \delta_{ij}, j = 1, \ldots, p$. Denote $z = z_2 t_{12}^{(1)} z_1 t_{21}^{(1)}$. Then G(z) is diagonal by Lemma 6.1 and hence $z \in \Gamma$ by Corollary 9, (2). We will show that the image of z in $\Gamma_{\mathbf{m}}$ is invertible. Clearly, this is equivalent to the fact that $z(\mathbf{m}) \neq 0$. Note that $z(\mathbf{m}) = z(\ell)$. Thus applying formulas (4.15)–(4.17) we have $z(\mathbf{m}) = \gamma(-\beta_i) \neq 0$ since $\ell \in \mathcal{L}_1$. Denote by T_1 (respectively T_2) the generator of $\hat{\Gamma}$ -bimodule $\mathcal{A}(\mathbf{m}, \mathbf{n})$ (respectively $\mathcal{A}(\mathbf{n}, \mathbf{m})$) (Proposition 6.1, (7)). Then $z_2 t_{12}^{(1)} = z_{\mathbf{m}} T_2, z_1 t_{21}^{(1)} = T_1 z'_{\mathbf{m}}$ for some $z_{\mathbf{m}}, z'_{\mathbf{m}} \in \Gamma_{\mathbf{m}}$ and $z = z_{\mathbf{m}} T_2 T_1 z'_{\mathbf{m}}$. Since $z(\mathbf{m}) \neq 0$ it follows that $z'_{\mathbf{m}}(\mathbf{m}) \neq 0, z_{\mathbf{m}}(\mathbf{m}) \neq 0$ and hence $T_2 T_1 = z_{\mathbf{m}}^{-1} z(z'_{\mathbf{m}})^{-1}$ is invertible in $\Gamma_{\mathbf{m}}$. The similar argument shows that $T_1 T_2$ is invertible in $\Gamma_{\mathbf{n}}$. Therefore the objects \mathbf{m} and \mathbf{n} are isomorphic.

Corollary 11. Let $\ell \in \mathcal{L}_1$, $\ell = (\beta, \gamma)$, $\beta_i - \gamma_j \notin \mathbb{Z}$ and $\mathbf{m} = i^*(\ell) \in \operatorname{Specm} \Gamma$. Then the category $\mathbb{H}(Y_p(\mathfrak{gl}_2), \Gamma, D(\ell))$ is hereditary. Moreover,

$$\dim \operatorname{Ext}^{1}_{\mathbb{H}(Y_{p}(\mathfrak{gl}_{2}),\Gamma,D(\ell))}(L(\ell),L(\ell)) = 3p.$$

Proof. By Lemma 7.1 and our assumptions all objects of the category $\mathcal{A}(D(\ell))$ are isomorphic and hence the category $\mathcal{A}(D(\ell)) - \mod_d$ is equivalent to the category of finite-dimensional modules over $\Gamma_{\mathbf{m}}$. Applying Proposition 2.1 we conclude that the category $\mathbb{H}(Y_p(\mathfrak{gl}_2), \Gamma, D(\ell))$ is hereditary. Since $\Gamma_{\mathbf{m}}$ is an algebra of power series in 3p variables the statement about dim Ext¹ follows.

7.1. Category of generic weight modules. Fix $\ell \in \mathcal{L}_1$, $\mathbf{m} = i^*(\ell)$, $\mathbf{n} = i^*(\ell + \delta_i) \in \operatorname{Specm} \Gamma$, $i \in \{1, \ldots, p\}$. Then $\mathcal{A}_W(\mathbf{m}, \mathbf{m}) \simeq \Gamma_{\mathbf{m}}/\Gamma_{\mathbf{m}}\mathbf{m} \simeq \Bbbk$ by Proposition 6.1, (6) and dim $\mathcal{A}_W(\mathbf{m}, \mathbf{n}) = 1$ by Proposition 6.1, (7). We will give a direct construction of the category $\mathcal{A}_W(D(\ell))$.

Suppose $\ell = (\beta, \gamma), \ \beta = (\beta_1, \dots, \beta_p) \in \mathbb{k}^p, \ \gamma = (\gamma_1, \dots, \gamma_{2p}) \in \mathbb{k}^{2p}$ and

(7.29)
$$\gamma(u) = \prod_{i=1}^{2p} (u + \gamma_i)$$

Since $\ell \in \mathcal{L}_1$ then $\beta_i - \beta_j \notin \mathbb{Z}$ for all $i, j = 1, ..., p, i \neq j$. Consider the following category K_ℓ : Ob $(K_\ell) = \mathbb{Z}^p$ and the morphisms are generated by

(7.30)
$$f_i(k): (k) \mapsto (k+\delta_i)$$
 and $e_i(k): (k) \mapsto (k-\delta_i)$

where i = 1, ..., p and $(k) = (k_1, ..., k_p) \in \mathbb{Z}^p$ with the following relations:

$$f_{j}(k + \delta_{i}) f_{i}(k) = f_{i}(k + \delta_{j}) f_{j}(k),$$

$$e_{j}(k - \delta_{i}) e_{i}(k) = e_{i}(k - \delta_{j}) e_{j}(k),$$

$$e_{i}(k + \delta_{j}) f_{j}(k) = f_{j}(k - \delta_{i}) e_{i}(k) \quad \text{for} \quad i \neq j$$

$$e_{i}(k + \delta_{i}) f_{i}(k) = -\gamma(-\beta_{i} - k_{i}) \mathbf{1}_{(k)},$$

$$f_{i}(k - \delta_{i}) e_{i}(k) = -\gamma(-\beta_{i} - k_{i} + 1) \mathbf{1}_{(k)}.$$

It follows immediately from Lemmas 4.1 and 4.2 that any module in the category R_{ℓ} can be naturally viewed as a module over the category K_{ℓ} which defines a functor $F: R_{\ell} \to K_{\ell}$ -mod. Consider the cyclic subalgebra $C_{\ell}(a) = \operatorname{Hom}_{K_{\ell}}(a, a)$ for any

 $a \in \mathbb{Z}^p$. Clearly, $C_{\ell}(a) \simeq \Bbbk$ for any $a \in \mathbb{Z}^p$ due to the defining relations of K_{ℓ} . For any $a = (k_1, \ldots, k_p) \in \mathbb{Z}^p$ we can construct a universal module $M(\ell, a) \in K_{\ell}$ -mod. Consider \Bbbk as a $C_{\ell}(a)$ -module with

$$e_i(k+\delta_i) f_i(k) = -\gamma(-\beta_i - k_i),$$

$$f_i(k-\delta_i) e_i(k) = -\gamma(-\beta_i - k_i + 1).$$

Let $A_{\ell,a}$ be an algebra of paths in K_{ℓ} originating in a. Now construct a \mathbb{Z}^{p} -graded K_{ℓ} -module

$$M(\ell, a) = A_{\ell, a} \otimes_{C_{\ell}(a)} \mathbb{k}.$$

Clearly, all graded components of $M(\ell, a)$ are 1-dimensional and $M(\ell, a)_a = 1_a \otimes \Bbbk$. A module $M(\ell, a)$ contains a unique maximal \mathbb{Z}^p -graded submodule which intersects $M(\ell, a)_a$ trivially and hence has a unique irreducible quotient $L(\ell, a)$ with $L(\ell, a)_a \simeq \Bbbk$ and dim $L(\ell, a)_b \leq 1$ for all $b \in \mathbb{Z}^p$. If V is another irreducible K_{ℓ} -module with $V_a \neq 0$ then there exists a non-trivial $C_{\ell}(a)$ -homomorphism from \Bbbk to V_a which can be extended to an epimorphism from $M(\ell, a)$ to V. Since V is irreducible we conclude that $V \simeq L(\ell, a)$.

Obviously, we can view $M(\ell)$ as a module over the category K_{ℓ} with a natural action of the morphisms of K_{ℓ} and $F(M(\ell)) = M(\ell, \beta)$. Thus a K_{ℓ} -module $M(\ell, \beta)$ can be extended to a $Y_p(\mathfrak{gl}_2)$ -module $M(\ell)$. Moreover, the functor F preserves the submodule structure of $M(\ell)$. In particular, $F(L(\ell)) = L(\ell, \beta)$.

Proposition 7.1. If $\ell \in \mathcal{L}_1$ then the categories K_ℓ -mod and R_ℓ are equivalent.

Proof. Let $\ell = (\beta, \gamma)$. We already have a functor $F : R_{\ell} \to K_{\ell}$ -mod. Suppose that $V \in K_{\ell}$ -mod. We want to show that V can be extended to a $Y_p(\mathfrak{gl}_2)$ -module. Fix $v \in V_{(k)} \setminus \{0\}$. Let $W \subseteq V$ be a submodule generated by v. Then $W_{(k)} = \Bbbk v$ and there is an epimorphism from $M(\ell, a)$ to W, where $a = (k_1, \ldots, k_p)$, which maps $1_a \otimes 1$ to v. Since $F(M(\ell')) = M(\ell, a)$, where $\ell' = (\beta + a, \gamma)$, then W can be extended to a corresponding quotient of $M(\ell')$. Since v was an arbitrary element of V we conclude that V can be extended to a $Y_p(\mathfrak{gl}_2)$ -module and will denote that module by G(V). Clearly, G defines a functor from K_{ℓ} -mod to R_{ℓ} (action on morphisms is obvious). One can easily see that the functors F and G define an equivalence between the categories K_{ℓ} -mod and R_{ℓ} .

7.2. Support of irreducible generic weight modules. To complete the classification of irreducible modules we have to know when two irreducible modules $L(\ell)$ and $L(\ell')$ are isomorphic. For that we need to describe the support Supp $L(\ell)$.

We shall say that the weight subspaces $M(\ell)_{\psi}$ and $M(\ell)_{\psi+\delta_i}$ are strongly isomorphic if $\gamma(-\psi_i) \neq 0$ where $\psi = (\psi_1, \ldots, \psi_p)$. This implies

 $f_i(\psi_1,\ldots,\psi_p) M(\ell)_{\psi} \neq 0$ and $e_i(\psi_1,\ldots,\psi_i+1,\ldots,\psi_p) M(\ell)_{\psi+\delta_i} \neq 0.$

The statement below follows immediately from the relations in K_{ℓ} (cf. also Corollary 5).

Lemma 7.2. If $M(\ell)_{\psi}$ and $M(\ell)_{\psi+\delta_i}$ are strongly isomorphic, then $M(\ell)_{\psi\pm\delta_j}$ and $M(\ell)_{\psi+\delta_i\pm\delta_j}$ are strongly isomorphic for all $i, j = 1, ..., p, i \neq j$. Moreover, if

$$f_i(\psi_1, \dots, \psi_p) M(\ell)_{\psi} = 0 \qquad or \qquad e_i(\psi_1, \dots, \psi_p) M(\ell)_{\psi} = 0$$

then

$$f_i(\psi_1, \dots, \psi_j \pm 1, \dots, \psi_p) M(\ell)_{\psi \pm \delta_j} = 0 \qquad or$$
$$e_i(\psi_1, \dots, \psi_j + 1, \dots, \psi_p) M(\ell)_{\psi \pm \delta_j} = 0,$$

respectively, for all $j \neq i$.

22

Let $a_i, a'_i \in \mathbb{Z} \cup \{\pm \infty\}, a_i \leq a'_i, i \in \{1, \dots, p\}$. Denote

 $P(a_1, \dots, a_p, a'_1, \dots, a'_p) = \{(x_1, \dots, x_p) \in \mathbb{Z}^p \mid a_i \le x_i \le a'_i, i = 1, \dots, p\},\$

a parallelepiped in \mathbb{Z}^p . Note that some faces of the parallelepiped can be infinite in some directions. In particular, in the case $a_i = -\infty$, $a'_i = \infty$ for all *i*, the parallelepiped coincides with \mathbb{Z}^p .

Theorem 5. For any irreducible weight module $L(\ell)$ over $Y_p(\mathfrak{gl}_2)$ there exist elements $a_i, b_i \in \mathbb{Z} \cup \{\pm \infty\}, a_i \leq a'_i, i \in \{1, \ldots, p\}$ such that

$$\operatorname{Supp} L(\ell) = P(a_1, \ldots, a_p, a'_1, \ldots, a'_p).$$

Proof. Let $\ell = (\beta, \gamma) \in \mathcal{L}_1$. Fix $i \in \{1, \ldots, p\}$. If $\gamma(-\beta_i + k) \neq 0$ for all $k \in \mathbb{Z}$ then $(k_1, \ldots, k_i + m, \ldots, k_p) \in \operatorname{Supp} L(\ell)$ as soon as $(k_1, \ldots, k_p) \in \operatorname{Supp} L(\ell)$. This follows immediately from Lemma 7.2. In this case we set $a_i = -\infty$ and $a'_i = \infty$. Let now $\gamma(-\beta_i + k) = 0$ for some $k \in \mathbb{Z}$. Let $m \geq 0$ be the smallest integer (if exists) such that $\gamma(-\beta_i - m) = 0$ and let $n \leq 0$ be the largest integer (if exists) such that $\gamma(-\beta_i - n + 1) = 0$. It follows from Lemma 7.2 that

$$\operatorname{Supp} L(\ell) \cap \{\beta + k\delta_i \mid k \in \mathbb{Z}\} = \{\beta + n\delta_i, \dots, \beta, \dots, \beta + m\delta_i\}$$

If $\beta + s\delta_i \in \text{Supp } L(\ell), \ j \neq i$ then

Supp $L(\ell) \cap \{\beta + s\delta_j + k\delta_i \mid k \in \mathbb{Z}\} = \{\beta + s\delta_j + n\delta_i, \dots, \beta + s\delta_j, \dots, \beta + s\delta_j + m\delta_i\}.$ In this case we set $a_i = \beta_i + n$ and $a'_i = \beta_i + m$. The statement of the theorem now follows.

7.3. Indecomposable generic weight modules. Fix $\ell = (\beta, \gamma) \in \mathcal{L}_1$. A full subcategory $S \subseteq K_\ell$ is called a *skeleton* of K_ℓ provided the objects of S are pairwise non-isomorphic and any object of K_ℓ is isomorphic to some object of S. In this case the categories of K_ℓ -mod and S-mod are equivalent.

For each $i \in \{1, ..., p\}$ consider a set $I_i = \{k \in \mathbb{Z} \mid \gamma(-\beta_i - k) = 0\}$. Define a category S_ℓ as a k-category with the set of objects

$$S_0 = \{0, \dots, |I_1|\} \times \dots \times \{0, \dots, |I_p|\}$$

and with morphisms generated by

$$r_{(i_1,\ldots,i_p)}^k: (i_1,\ldots,i_p) \mapsto (i_1,\ldots,i_k+1,\ldots,i_p), \\ s_{(j_1,\ldots,j_p)}^k: (j_1,\ldots,j_p) \mapsto (j_1,\ldots,j_k-1,\ldots,j_p),$$

where $k \in \{1, ..., p\}$ is such that $I_k \neq \emptyset$, $i_k < |I_k|$, $j_k > 0$, subject to the relations:

$$s_{(i_1,\dots,i_k+1,\dots,i_p)}^k r_{(i_1,\dots,i_p)}^k = r_{(i_1,\dots,i_p)}^k s_{(i_1,\dots,i_k+1,\dots,i_p)}^k = 0$$

and

$$x_{(a_1,\dots,a_p)}^k y_{(e_1,\dots,e_p)}^r = y_{(c_1,\dots,c_p)}^r x_{(e_1,\dots,e_p)}^k$$

for all $k \neq r$ and all possible $x, y \in \{r, s\}$, $a_i, e_i, c_i, 1 \leq i \leq p$ for which this equality makes sense.

It follows from the construction that S_{ℓ} is the skeleton of the category K_{ℓ} . Note that the corresponding algebra is finite-dimensional. In particular, S_{ℓ} is semisimple when $I_k = \emptyset$ for all $1 \leq k \leq p$, i.e. when $\gamma(-\beta_k + r) \neq 0$ for all $k \in \mathbb{Z}$ and all $i = 1, \ldots, p$. Hence it is enough to describe all indecomposable modules over S_{ℓ} .

Fix $a \in S_0$ and define a simple S_ℓ -module S_a such that $S_a(b) = \delta_{a,b} \mathbb{k}$ for all $b \in S_0$ and all morphisms are trivial. Since S_ℓ defines a finite-dimensional algebra we have the following

Proposition 7.2. Any simple module over S_{ℓ} is isomorphic to S_a for some $a \in S_0$.

This is another confirmation of the fact that all weight spaces in any irreducible generic weight $Y_p(\mathfrak{gl}_2)$ -module are 1-dimensional. But this need not to be the case for indecomposable modules. We restrict ourselves to a full subcategory $R_\ell^f \subseteq R_\ell$ which consists of weight modules V with dim $V_{\psi} < \infty$ for all $\psi \in \text{Supp } V$. We will establish the representation type of the category R_ℓ^f (finite, tame or wild). For necessary definitions we refer to [Dr].

To establish the representation type of the category R_{ℓ}^{f} it is enough to consider the category S_{ℓ} -mod^f, of modules over the category S_{ℓ} with finite-dimensional weight spaces. Denote $X_{\ell} = \{k \in \{1, \ldots, p\} \mid I_{k} \neq \emptyset\}.$

7.3.1. Indecomposable modules in the case $|X_{\ell}| = 1$. In this section we describe all indecomposable modules over S_{ℓ} in the case $|X_{\ell}| = 1$. Let $X_{\ell} = \{i\}$ and let $|I_i| = r > 0$. In this case the category S_{ℓ} has the following quiver **A** with relations:

$$1 \quad a_1 \quad 2 \quad r \quad a_r \quad r+1$$

$$\circ \underbrace{\longrightarrow}_{b_1} \circ \ldots \quad \circ \underbrace{\longrightarrow}_{b_r} \circ \qquad \qquad a_i \quad b_i = b_i \quad a_i = 0$$

We denote by $S_i, i \in \{1, \ldots, r+1\}$, the simple module corresponding to the point *i*. These modules correspond to all irreducible modules in R_{ℓ}^{f} by Proposition 7.2. Now describe remaining indecomposable modules for a quiver above. Fix integers $1 \leq k_1 < k_2 \leq r+1$ and a function $\xi_{k_1,k_2} : \{k_1, k_1+1, \ldots, k_2\} \rightarrow \{0,1\}$. Define a module $M = M(k_1, k_2, \xi_{k_1,k_2})$ as follows: $M(i) = \Bbbk e_i, \ k_1 \leq i \leq k_2, \ M(j) = 0$ otherwise, $a_i e_i = e_{i+1}, \ b_i e_{i+1} = 0$ if $\xi_{k_1,k_2}(i) = 1$ and $a_i e_i = 0, \ b_i e_{i+1} = e_i$ if $\xi_{k_1,k_2}(i) = 0$ for all $1 \leq i < k_2$.

The proof of the following proposition is standard; see e.g. [GR].

Proposition 7.3. The modules S_i , $1 \le i \le r+1$ and $M(k_1, k_2, \xi_{k_1, k_2})$ with $1 \le k_1 < k_2 \le r+1$ and

$$\xi_{k_1,k_2}: \{k_1,k_1+1,\ldots,k_2\} \to \{0,1\},\$$

exhaust all non-isomorphic indecomposable modules for A.

7.3.2. Indecomposable modules in the case $|X|_{\ell} = 2$. In this section we describe the indecomposable modules for S_{ℓ} when $|X|_{\ell} = 2$ and $|I_k| = 1$ for each $k \in X_{\ell}$. Then S_{ℓ} is isomorphic to the following category **B** considered in [BB].

$$\mathbf{B}: \qquad \begin{array}{c} 1 \circ \overbrace{b_1}{a_0} \circ 2 \\ b_0 \middle| \overbrace{a_0}{a_2} \middle| \overbrace{b_2}{a_3} \circ 3 \end{array} \qquad \begin{array}{c} a_i b_i = b_i a_i = 0, \qquad i = 0, \dots, 3, \\ a_i a_j = b_l b_m \quad \text{for any} \quad i, j, l, m \in \{0, 1, 2, 3\}, \\ \text{where possible.} \end{array}$$

By Proposition 7.2 this category has four non-isomorphic simple modules S_i , $0 \le i \le 3$, with a support in a chosen point *i*. The indecomposable modules were described in [BB]. For the sake of completeness we repeat here this classification.

We will treat the objects of **B** as elements of $\mathbb{Z}/4\mathbb{Z}$. Consider the following three families of non-simple indecomposable modules.

Finite family. Fix an $0 \le i \le 3$ and define the **B**-module M_i such that $M_i(j) = \Bbbk e_j$ for each $j = 0, \ldots, 3$ and $a_i e_i = e_{i+1}, a_{i+1}e_{i+1} = e_{i+2}, b_{i-1}e_i = e_{i-2}, b_{i-2}e_{i-1} = e_{i-2}$ and $u_j e_k = 0$ for all other cases of $u \in \{a, b\}$ and $j, k = 0, \ldots, 3$. Obviously, M_i is indecomposable module for any i.

Infinite discrete families. Let $n \in \mathbb{N}$, n > 1, and $j \in \mathbb{Z}_4$. Define a **B**-module $M_{n,j,1}$ (resp., $M_{n,j,2}$) as follows. Consider n elements e_1, \ldots, e_n . A k-basis of the vector space $M_{n,j,1}(l)$ (resp., $M_{n,j,2}(l)$) is the set of e_k such that $j + k - 1 \equiv l \pmod{4}$. The elements a_l and b_{l-1} act as follows:

$$a_l e_k = \begin{cases} e_{k+1}, & \text{if } l \text{ is even (resp., odd)}, \ k < n \text{ and } j+k-1 \equiv l(mod 4); \\ 0, & \text{otherwise.} \end{cases}$$

 $b_{l-1}e_k = \begin{cases} e_{k-1}, & \text{if } l \text{ is even (resp., odd)}, k > 1 \text{ and } j+k-1 \equiv l(mod 4); \\ 0, & \text{otherwise.} \end{cases}$

All modules $M_{n,j,1}$ and $M_{n,j,2}$, n > 1, $0 \le j \le 3$ are non-isomorphic indecomposable **B**-modules.

Infinite continuous families. For each $\lambda \in \mathbb{k}$, $\lambda \neq 0$, and $d \in \mathbb{Z}$, d > 0 define the **B**-modules $M_{d,\lambda,1}$ and $M_{d,\lambda,2}$ as follows. Set

$$M_{d,\lambda,1}(i) = \mathbb{k}^{d},$$

$$M_{d,\lambda,1}(a_{0}) = M_{d,\lambda,1}(a_{2}) = M_{d,\lambda,1}(b_{1}) = \mathbf{I}_{d},$$

$$M_{d,\lambda,1}(b_{0}) = M_{d,\lambda,1}(b_{2}) = M_{d,\lambda,1}(a_{1}) = M_{d,\lambda,1}(a_{3}) = 0,$$

$$M_{d,\lambda,1}(b_{3}) = J_{d,\lambda}$$

and

24

$$M_{d,\lambda,2}(i) = \mathbb{k}^{d},$$

$$M_{d,\lambda,2}(b_{0}) = M_{d,\lambda,2}(b_{2}) = M_{d,\lambda,2}(a_{1}) = \mathbf{I}_{d},$$

$$M_{d,\lambda,2}(a_{0}) = M_{d,\lambda,2}(a_{2}) = M_{d,\lambda,2}(b_{1}) = M_{d,\lambda,2}(b_{3}) = 0,$$

$$M_{d,\lambda,2}(a_{3}) = J_{d,\lambda},$$

where $J_{d,\lambda}$ is the Jordan cell of dimension d with the eigenvalue λ .

All modules $M_{d,\lambda,k}$, k = 1, 2 are indecomposable and corresponding indecomposable modules in R_{ℓ}^{f} have all weight spaces of dimension d.

Proposition 7.4. ([BB], Proposition 3.3.1). The modules S_i , M_i , $M_{n,i,1}$, $M_{n,i,2}$, $M_{d,\lambda,1}$, $M_{d,\lambda,2}$ where $0 \le i \le 3$, d is a positive integer, $\lambda \in \mathbb{k}$, $\lambda \ne 0$, and $n \ge 2$ is an integer, constitute an exhaustive list of pairwise non-isomorphic indecomposable **B**-modules.

The following theorem which describes the representation type of R_{ℓ}^{f} .

Theorem 6. (i) If $|X_{\ell}| = 0$ then R_{ℓ}^{f} is a semisimple category with a unique indecomposable (=irreducible) module;

- (ii) If $|X_{\ell}| = 1$ then R_{ℓ}^{f} has finite representation type;
- (iii) If $|X_{\ell}| = 2$ then R_{ℓ}^{f} has tame representation type if and only if $|I_{k}| = 1$ for all $k \in X$. Otherwise, R_{ℓ}^{f} has wild representation type;

(iv) If $|X_{\ell}| > 2$ then R_{ℓ}^{f} has wild representation type.

Proof. In the case when $|X_{\ell}| = 1$ all indecomposable modules for S_{ℓ} are described in Proposition 7.3. Hence R_{ℓ}^{f} has finite representation type. If $|X_{\ell}| = 2$ and $|I_{k}| = 1$ for each $k \in X$ then all indecomposable modules for S_{ℓ} are described in Proposition 7.4. It follows from the definition that R_{ℓ}^{f} has tame representation type in this case. If $|I_{k}| > 1$ for at least one k then it is easy to construct a family of indecomposable modules that depends on two continuous parameters. Hence, in this case R_{ℓ}^{f} has wild representation type. Suppose now that $|X_{\ell}| > 2$. Then S_{ℓ} contains a full subcategory of wild representation type considered in [BB], Theorem 1. We immediately conclude that R_{ℓ}^{f} has wild representation type. This completes the proof.

Corollary 12. (1) If $|X_{\ell}| = 0$ then the category R_{ℓ} is a semisimple category with a unique indecomposable module.

(2) If $|X_{\ell}| = 1$ then R_{ℓ} has finite representation type with indecomposable modules as in Proposition 7.3.

Proof. Since cases $|X_{\ell}| \leq 1$ correspond to finite representation type then the corresponding categories do not admit infinite-dimensional indecomposable modules by [A] and hence every indecomposable module belongs to R_{ℓ}^{f} .

8. Acknowledgment

The first author is a Regular Associate of the ICTP and is supported by the CNPq grant (Processo 300679/97-1) The second and the third authors are grateful to FAPESP for the financial support (Processos 2001/13973-0 and 2002/01866-7) and to the University of São Paulo for the hospitality during their visits.

References

- [A] Auslander M., Representation theory of artin algebras II, Comm. Algebra 2 (1974), 269–310.
- [BB] Bavula V., Bekkert V., Indecomposable representations of generalized Weyl algebras, Comm. Algebra, to appear.
- [BBF] Bekkert V., Benkart G. and Futorny V., Weyl algebra modules, MSRI Preprint, 2002-009.
 [BH] Bruns W., Herzog J. Cohen-Macauley rings, Cambridge Studies in Adv. Math. 39, Camb. Univ. Press, 1993.
- [CP] Chari V., Pressley A., Yangians and R-matrices, L'Enseign. Math. 36 (1990), 267–302.
- [C1] Cherednik I.V., A new interpretation of Gelfand-Tzetlin bases, Duke Math. J. 54 (1987), 563-577.
- [C2] Cherednik I.V., Quantum groups as hidden symmetries of classic representation theory, in "Differential Geometric Methods in Physics" (A. I. Solomon, Ed.), World Scientific, Singapore, 1989, pp. 47–54.
- [Di] Dixmier J., Algèbres Enveloppantes. Paris: Gauthier-Villars, 1974.
- [D1] Drinfeld V.G., Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254–258.
- [D2] Drinfeld V.G., A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 (1988), 212–216.
- [Dr] Drozd Yu.A. Tame and wild matrix problem, Springer LNM 832 (1980), 242-258.
- [DFO1] Drozd Yu.A., Ovsienko S.A., Futorny V.M. On Gelfand-Zetlin modules, Suppl. Rend. Circ. Mat. Palermo, 26 (1991), 143-147.
- [DFO2] Drozd Yu.A., Ovsienko S.A., Futorny V.M., Harish Chandra subalgebras and Gelfand Zetlin modules, in: "Finite dimensional algebras and related topics", NATO ASI Ser. C., Math. and Phys. Sci., 424, (1994), 79-93.

- [FO] Futorny V., Ovsienko S., Kostant theorem for special PBW algebras, Preprint, RT-MAT 2002-28.
- [GR] Gabriel P., Roiter A.V., Representations of finite-dimensional algebras, in "Encyclopedia of the Mathematical Sciences", Vol. 73, Algebra VIII, (A. I. Kostrikin and I. R. Shafarevich, Eds), Berlin, Heidelberg, New York, 1992.
- [Ge] Geoffriau F., Une propriété des algèbres de Takiff, C. R. Acad. Sci. Paris 319 (1994), Série I, 11–14.
- [IK] Izergin A.G., Korepin V.E., A lattice model related to the nonlinear Schrödinger equation, Sov. Phys. Dokl. 26 (1981) 653–654.
- [K] Kostant B. Lie groups representations on polynomial rings. Amer.J.Math. 85, (1963), 327-404.
- [KS] Kulish P., Sklyanin E., Quantum spectral transform method: recent developments, in "Integrable Quantum Field Theories", Lecture Notes in Phys. 151 Springer, Berlin-Heidelberg, 1982, pp. 61–119.
- [M1] Molev A.I., Gelfand-Tsetlin basis for representations of Yangians, Lett. Math. Phys. 30 (1994), 53–60.
- [M2] Molev A.I., Casimir elements for certain polynomial current Lie algebras, in "Group 21, Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras," Vol. 1, (H.-D. Doebner, W. Scherer, P. Nattermann, Eds). World Scientific, Singapore, 1997, 172–176.
- [NT] Nazarov M., Tarasov V., Representations of Yangians with Gelfand–Zetlin bases, J. Reine Angew. Math. 496 (1998), 181–212.
- [Ov] Ovsienko S. Finiteness statements for Gelfand-Tsetlin modules, In: Algebraic structures and their applications, Math. Inst., Kiev, 2002.
- [TF] Takhtajan L.A., Faddeev L.D., Quantum inverse scattering method and the Heisenberg XYZ-model, Russian Math. Surv. 34 (1979), no. 5, 11–68.
- [T1] Tarasov V., Structure of quantum L-operators for the R-matrix of the XXZ-model, Theor. Math. Phys. 61 (1984), 1065–1071.
- [T2] Tarasov V., Irreducible monodromy matrices for the R-matrix of the XXZ-model and lattice local quantum Hamiltonians, Theor. Math. Phys. 63 (1985), 440–454.

UNIVERSIDADE DE SÃO PAULO, CAIXA POSTAL 66281- CEP 05315-970, SÃO PAULO, BRAZIL $E\text{-}mail\ address:\ \texttt{futorny@ime.usp.br}$

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia $E\text{-}mail\ address: \texttt{alexm@maths.usyd.edu.au}$

FACULTY OF MECHANICS AND MATHEMATICS, KIEV TARAS SHEVCHENKO UNIVERSITY, VLADI-MIRSKAYA 64, 00133, KIEV, UKRAINE

E-mail address: ovsienko@sita.kiev.ua