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Abstract. We study Harish-Chandra representations of the Yangian Y(gl
2
)

which admit a decomposition with respect to a natural maximal commutative
subalgebra Γ and satisfy a polynomial condition. We prove an analogue of
Kostant theorem showing that the restricted Yangian Yp(gl

2
) is a free module

over Γ and show that every character of Γ defines a finite number of irreducible
Harish-Chandra modules. We study the categories of generic Harish-Chandra
modules, describe their simple modules and indecomposable modules in tame
blocks.
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1. Introduction

Throughout the paper we fix an algebraically closed field k of characteristic 0.
The notion of a Harish-Chandra module with respect to a certain subalgebra is

one of the most important in the representation theory of Lie algebras ([Di]). For
example, weight modules are Harish-Chandra modules with respect to a Cartan
subalgebra. Also the Gelfand-Tsetlin modules ([DFO1]) over the universal envelop-
ing algebra U(gln) of the general linear Lie algebra gln are Harish-Chandra modules
with respect to a subalgebra generated by the centers of U(glk), k = 1, . . . , n where
gl1 ⊂ . . . ⊂ gln. In [DFO2] a general setting has been developed for Harish-Chandra
modules over associative algebras. Let U be an associative k-algebra, U − mod be
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the category of finitely generated left U -modules and Γ ⊂ U be a subalgebra. De-
note by cfs(Γ) a cofinite spectrum of Γ, i.e. the set of maximal two-sided ideals of
Γ of finite codimension. A module M ∈ U −mod is called Harish-Chandra module
(with respect to Γ) if M = ⊕m∈cfsΓM(m), where

M(m) = {x ∈M | there exists k > 0, such that mkx = 0}.

A key problem in the classification of all irreducible Harish-Chandra modules is to
study the liftings from a given m ∈ cfs(Γ) to irreducible Harish-Chandra modules
M with M(m) 6= 0. When such lifting is unique then irreducible Harish-Chandra
modules are parametrized by the elements of cfs(Γ). In the case of Gelfand-Tsetlin
modules over gln it was shown in [Ov] that the number of nonisomorphic irreducible
modules defined by a given m ∈ cfs(Γ) is always nonzero and finite.

In this paper we begin a systematic study of Harish-Chandra modules over the
Yangians.

The Yangian for gln is a unital associative algebra Y(gln) over k with countably

many generators t
(1)
ij , t

(2)
ij , . . . where 1 ≤ i, j ≤ n, and the defining relations

(1.1) (u− v) [tij(u), tkl(v)] = tkj(u) til(v) − tkj(v) til(u),

where

(1.2) tij(u) = δij + t
(1)
ij u

−1 + t
(2)
ij u

−2 + · · ·

and u, v are formal variables. This algebra originally appeared in the works on
the quantum inverse scattering method ; see e.g. Takhtajan–Faddeev [TF], Kulish–
Sklyanin [KS]. The term “Yangian” and generalizations of Y(gln) to an arbitrary
simple Lie algebra were introduced by Drinfeld [D1]. He then classified finite-
dimensional irreducible modules over the Yangians in [D2] using earlier results of
Tarasov [T1, T2] for the sl2 case. An explicit construction of all such modules
over Y(sl2) is given in those papers by Tarasov and also in the work by Chari and
Pressley [CP]. Apart from this case, the structure of a general Yangian represen-
tation remains unknown. In the case of Y(gln) a description of “generic” modules
was given in [M1] via Gelfand–Tsetlin bases. A more general class of “tame” rep-
resentations of Y(gln) was introduced and explicitly constructed by Nazarov and
Tarasov [NT]. An important role in these works is played by the Drinfeld genera-
tors [D2]

(1.3) ai(u), i = 1, . . . , n, bi(u), ci(u), i = 1, . . . , n− 1

of the algebra Y(gln) which are defined as certain quantum minors of the matrix
T (u) =

(
tij(u)

)
. The coefficients of the series ai(u), i = 1, . . . , n form a commuta-

tive subalgebra of Y(gln) which can be regarded as an analogue of a Gelfand-Tsetlin
subalgebra of the universal enveloping algebra of gln [DFO1] We shall call a repre-
sentation of Y(gln) Harish-Chandra if it is a Harish-Chandra module with respect
to this subalgebra. In particular, finite-dimensional Harish-Chandra modules are
precisely the tame modules of [NT]. Note that Harish-Chandra modules for Y(gln)
are analogs of Gelfand-Tsetlin modules for gln [DFO1].

In this paper we are concerned with Harish-Chandra representations of the Yan-
gian Y(gl2). Recall that every irreducible finite-dimensional Y(gl2)-module contains
a unique vector ξ annihilated by t12(u) and which is an eigenvector for the Drinfeld
generators a1(u) and a2(u) defined by

(1.4) a1(u) = t11(u) t22(u− 1) − t21(u) t12(u− 1), a2(u) = t22(u);
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see [T1, T2] and [CP]. Moreover, there exists an automorphism tij(u) 7→ c(u) tij(u)
of Y(gl2), where c(u) ∈ 1 + u−1

k[[u−1]], such that the eigenvalues of ξ become
polynomials in u−1 under the twisted action of the Yangian. This prompts the
introduction of the class of Harish-Chandra polynomial modules over Y(gl2), i.e.,
such Harish-Chandra modules where the operators a1(u) and a2(u) are polynomials.
More precisely, by (1.4) it is natural to require that for some positive integer p the
polynomials a1(u) and a2(u) have degrees 2p and p, respectively. Note that a1(u)
is the quantum determinant of the matrix T (u) [IK], [KS]. Its coefficients are
algebraically independent generators of the center of Y(gl2).

We can interpret the definition of Harish-Chandra polynomial modules using the
algebra Yp(gl2) called the Yangian of level p; see Cherednik [C1, C2]. It is defined

as the quotient of Y(gl2) by the ideal generated by the elements t
(r)
ij with r ≥ p+1.

A Harish-Chandra polynomial module over Y(gl2) is just a Harish-Chandra module
over Yp(gl2) for some positive integer p.

For another interpretation consider the Yangian for sl2 which is the subalgebra
Y(sl2) of Y(gl2) generated by the coefficients of the series e(u), f(u) and h(u) [D2]
defined by

(1.5)

e(u) = t22(u)
−1t12(u),

f(u) = t21(u) t22(u)
−1,

h(u) = t11(u) t22(u)
−1 − t21(u) t22(u)

−1t12(u) t22(u)
−1.

Note that the series h(u) can also be given by

(1.6) h(u) = a1(u) a2(u)
−1a2(u− 1)−1

so that the coefficients of h(u) form a commutative subalgebra of Y(sl2). Therefore,
the restriction of a Harish-Chandra Y(gl2)-module to Y(sl2) admits an eigenbasis
for this subalgebra. We also point out that both the above interpretations extend
to an arbitrary Yangian Y(gln).

In this paper we study Harish-Chandra polynomial modules over Y(gl2). We
consider the class of modules admitting a central character so that the coefficients of
a1(u) act as scalars. This class contains all irreducible Harish-Chandra polynomial
modules. We study the properties of the subalgebra Γ of Y(gl2) generated by the
coefficients of a1(u) and a2(u). In particular we show that Y(gl2) is free as a left
and as a right Γ-module (Theorem 1) which is an analogue of Kostant theorem [K].
Moreover, we show that Γ is a Harish-Chandra subalgebra (Theorem 3) in the sense
of [DFO2] and that each character of Γ extends to a finitely many non-isomorphic
irreducible Y(gl2)-modules (Theorem 4). This gives an equivalence between the
category H(Y(gl2),Γ) of Harish-Chandra polynomial modules and the category of
finitely generated modules over a certain category A whose objects are the maximal
ideals of Γ. A full subcategory HW (Y(gl2),Γ) consisting of weight polynomial
Harish-Chandra modules, when the action of a2(u) is diagonalizable, is equivalent
to the category of finitely generated modules over a certain quotient category of A

(see Section 2.1 for details). An important role in our study is played by certain
universal weight polynomial Harish-Chandra modules (Section 3, Theorem 2) such
that every irreducible module in HW (Y(gl2),Γ) is a quotient of the corresponding
universal module. In section 7 we study a full subcategory in HW (Y(gl2),Γ) of
generic modules, this imposes a certain integrability condition on the eigenvalues
of a2(u) while those of a1(u) are arbitrary. In particular, we give a complete
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description of irreducible modules (Theorem 5) and indecomposable modules in
tame blocks of this category (Theorem 6).

2. Preliminaries

2.1. Harish-Chandra subalgebras. In the setting of [DFO2] the subalgebra Γ
need not to be commutative. But in this paper we will only deal with the com-
mutative case, hence cfs(Γ) coincides with the set Specm Γ of all maximal ideals in
Γ.

When for all m ∈ Specm Γ and all x ∈M(m) holds mx = 0 such Harish-Chandra
module M is called weight (with respect to Γ).

All Harish-Chandra modules (with respect to Γ) form a full abelian subcategory
in the category of U − mod which we will denote by H(U,Γ). A full subcategory
of H(U,Γ) consisting of weight modules we denote by HW (U,Γ). The support of a
Harish-Chandra module M is a set SuppM ⊂ Specm Γ consisting of such m that
M(m) 6= 0. For D ⊂ Specm Γ denote by H(U,Γ, D) the full subcategory in H(U,Γ)
formed by M such that SuppM ⊂ D. For a given m ∈ Specm Γ let χm : Γ → Γ/m
be a character of Γ. If there exists an irreducible Harish-Chandra module M with
M(m) 6= 0 then we say that χm extends to M .

The notion of a Harish-Chandra subalgebra ([DFO2]) gives an effective tool for
the study of the category H(U,Γ). A commutative subalgebra Γ ⊂ U is called a
Harish-Chandra subalgebra in U if for any a ∈ U the Γ−bimodule ΓaΓ is finitely
generated as left and as right Γ−module. In this case for a finite-dimensional
Γ−module X the module U ⊗Γ X is a Harish-Chandra module.

For a ∈ U let

Xa = {(m,n) ∈ Specm Γ × Specm Γ |Γ/n is a subquotient of ΓaΓ/Γam}.

Equivalently, (m,n) ∈ Xa if and only if (Γ/n) ⊗Γ ΓaΓ ⊗Γ (Γ/m) 6= 0. Denote by
∆ the minimal equivalence on Specm Γ containing all Xa, a ∈ U and by ∆(A,Γ)
the set of the ∆−equivalence classes on Specm Γ. Then for any a ∈ U and m ∈
Specm Γ holds

(2.7) aM(m) ⊂
∑

(m,n)∈Xa

M(n), H(U,Γ) =
⊕

D∈∆(U,Γ)

H(U,Γ, D).

Define a category A = AU,Γ with Ob A = Γ and the space of morphisms from m

to n being

(2.8)
A(m,n) = lim

←n,m
U/(nnU + Umm) ( equivalently lim

←n,m
Γ/nn ⊗Γ U ⊗Γ Γ/mm).

Then we have A =
⊕

D∈∆(U,Γ)

A(D), where A(D) is the restriction of A on D.

The category A is endowed with the topology of the inverse limit and the category
of k-vector spaces (k − mod) with the discrete topology. Consider the category
A −modd of continuous functors M : A−→k − mod ( discrete modules in [DFO2],
1.5). For any discrete A−module N define a Harish-Chandra U−module F(N) =
⊕m∈SpecmΓN(m) and for x ∈ N(m) and a ∈ U define ax =

∑
n∈SpecmΓ anx where

an is the image of a in A(m,n). If f : M−→N is a morphism in A − modd then
define F(f) = ⊕m∈SpecmΓf(m). Hence we have a functor F : A−modd −→ H(U,Γ).
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Proposition 2.1. ([DFO2], Theorem 17) The functor F is an equivalence.

We will identify a discrete A-module N with the corresponding Harish-Chandra
module F(N). Let Γm = lim

←m
Γ/mm be the completion of Γ by m ∈ Specm Γ. Then

the space A(m,n) has a structure of Γn − Γm-bimodule.
For m ∈ Specm Γ denote by m̂ a completion of m. Consider a two-sided ideal

I ⊂ A generated by m̂ for all m ∈ Specm Γ and set AW = A/I . Then Proposition
2.1 implies the following statement.

Corollary 1. The categories HW (U,Γ) and AW − mod are equivalent.

The subalgebra Γ is called big in m ∈ Specm Γ if A(m,m) is finitely generated
as Γm−module.

Lemma 2.1. ([DFO2], Corollary 19) If Γ is big in m ∈ Specm Γ then there exist
finitely many non-isomorphic irreducible Harish-Chandra U−modules M such that
M(m) 6= 0. For any such module dimM(m) <∞.

2.2. Special PBW algebras. Let U be an associative algebra over k endowed
with an increasing filtration {Ui}i∈Z, U−1 = {0}, U0 = k, UiUj ⊂ Ui+j . For

u ∈ Ui \ Ui−1 set deg u = i. Let U = gr U be the associated graded algebra U =
∞⊕

i=0

Ui/Ui−1. For u ∈ U denote by u its image in U and for a subset S ⊂ U set S =

{s | s ∈ S} ⊂ U . The algebra U is called a special PBW algebra if any element of U
can be written uniquely as a linear combination of ordered monomials in some fixed
generators of U and if U is a polynomial algebra. Such algebras were introduced
in [FO].

Let Λ = k[X1, . . . , Xn] be a polynomial algebra. For g1, . . . , gt ∈ Λ denote by
V(g1, . . . , gt) a set of all zeroes of the ideal generated by the elements g1, . . . , gt. A
sequence g1, . . ., gt ∈ Λ is called regular (in Λ) if the class of gi in Λ/(g1, . . . , gi−1)
is non-invertible and is not a zero divisor for any i = 1, . . . , t.

Next proposition contains the basic properties of regular sequences which can be
easily checked or can be found in [BH].

Proposition 2.2. (1) The sequence X1, . . . , Xr, G1, . . .Gt with G1, . . . , Gt ∈
Λ is regular in Λ if and only if the sequence g1, . . . , gt is regular in k[Xr+1,
. . . , Xn], where gi(Xr+1, . . . , Xn) = Gi(0, . . . , 0, Xr+1, . . . , Xn).

(2) A sequence g1, . . . gt is regular in Λ if and only if the variety V (g1, . . . , gt)
is equidimensional of dimension n− t.

(3) A sequence g1g
′
1, g2, . . . , gt is regular if and only if the sequences g1, g2, . . . , gt

and g′1, g2, . . . , gt are regular.

The following analogue of Kostant theorem ([K]) is valid for special PBW alge-
bras.

Proposition 2.3. ([FO]) Let U be a special PBW algebra and let g1, . . ., gt ∈ U
be mutually commuting elements such that g1, . . ., gt is a regular sequence in U ,
Γ = k[g1, . . . , gt]. Then U is a free left (right) Γ−module. Moreover Γ is a direct
summand of U .



6 VYACHESLAV FUTORNY, ALEXANDER MOLEV, AND SERGE OVSIENKO

3. Freeness of Yp(gl2) over its commutative subalgebra

Let p be a positive integer. The level p Yangian Yp(gl2) for the Lie algebra gl2

[C2] can be defined as the algebra over k with generators t
(1)
ij , . . . , t

(p)
ij , i, j = 1, 2,

subject to the relations

(3.9) [Tij(u), Tkl(v)] =
1

u− v
(Tkj(u)Til(v) − Tkj(v)Til(u)),

where u, v are formal variables and

(3.10) Tij(u) = δij u
p +

p∑

k=1

t
(k)
ij up−k ∈ Yp(gl2)[u].

Explicitly, (3.9) reads

(3.11) [t
(r)
ij , t

(s)
kl ] =

min(r,s)∑

a=1

(
t
(a−1)
kj t

(r+s−a)
il − t

(r+s−a)
kj t

(a−1)
il

)
,

where t
(0)
ij = δij and t

(r)
ij = 0 for r ≥ p + 1. Note that the level 1 Yangian

Y1(gl2) coincides with the universal enveloping algebra U(gl2). Set deg t
(k)
ij = k

for i, j, k = 1, . . . , p. This defines a natural filtration on the Yangian Yp(gl2). The

corresponding graded algebra will be denoted by Yp(gl2). We have the following
analog of the Poincaré–Birkhoff–Witt theorem for the algebra Yp(gl2).

Proposition 3.1. ([C2]; see also [M2]) Given an arbitrary linear ordering on the

set of the generators t
(k)
ij , any element of the algebra Yp(gl2) is uniquely written

as a linear combination of ordered monomials in these generators. Moreover, the

algebra Yp(gl2) is a polynomial algebra in generators t
(k)
ij .

Proposition 3.1 implies that Yp(gl2) is a special PBW algebra. Denote by D(u)
the quantum determinant

(3.12)
D(u) = T11(u)T22(u− 1) − T21(u)T12(u− 1)

= T11(u− 1)T22(u) − T12(u− 1)T21(u).

It was shown in [C1, C2] (see also [M2] for a different proof) that the coefficients of
the polynomial D(u) are algebraically independent generators of the center of the
algebra Yp(gl2).

Denote by Γ the subalgebra of Yp(gl2) generated by the coefficients of D(u)

and t
(k)
22 , k = 1, . . . , p. This algebra is obviously commutative. We will show later

(Corollary 3) that Γ is a Harish-Chandra subalgebra in Yp(gl2).

Lemma 3.1. The sequence t
(1)
22 , . . . , t

(p)
22 , d1, . . . , d2p of the images of the generators

of Γ is regular in Yp(gl2).

Proof. Denote ti = t
(i)
11 + t

(i)
22 , i = 1, . . . , p, ∆i,j = t

(i)
11 t

(j)
22 − t

(i)
21 t

(j)
12 , i, j = 1, . . . , p,

i 6= j. It follows from 3.12 that

D(u) = u2p +

2p∑

i=1

diu
2p−i,
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where di = ti +
∑i−1
j=1 ∆j,i−j for i = 1, . . . , p and di =

∑p
j=i−p ∆i,i−j for i =

p+ 1, . . . , 2p. Hence we need to show that the sequence

t
(1)
22 , . . . , t

(p)
22 , t1, t2 + ∆11, . . . , tp +

p−1∑

i=1

∆i,p−i,

p∑

i=1

∆i,p+1−i, . . . ,∆pp

is regular. We will denote by ∇i the result of the substitution t
(1)
22 = . . . = t

(p)
22 = 0

in di, i = 1, . . . , 2p. By Proposition 2.2, (1) we only need to show the regularity of
the sequence

∇1, . . . ,∇2p.

Consider the following triangular automorphism φ of Yp(gl2)/I : t
(i)
11 7→ t

(i)
11 +

∑i−1
j=1 ∆i,i−j , t

(i)
21 → t

(i)
21 , t

(i)
12 → t

(i)
12 , i = 1, . . . , p, where I is an ideal generated

by t
(1)
22 , . . . , t

(p)
22 . Applying φ−1 to the sequence ∇1, . . . ,∇2p we see that it is enough

to show the regularity of the sequence

t
(1)
11 , . . . , t

(p)
11 ,∇p+1, . . . ,∇2p.

Again by Proposition 2.2, (1) this is equivalent to the regularity of the sequence
∇p+1, . . . , ∇2p. For each pair i, j, i, j = 1, . . . , p, i+j ≥ p+1 consider the following

elements of k[t
(i)
12 , t

(i)
21 | i, j = p+ 1, . . . , 2p] arranged in the table sij below




t
(i)
21 t

(j)
12

t
(i−1)
21 t

(j)
12 + t

(i)
21 t

(j−1)
12

t
(i−2)
21 t

(j)
12 + t

(i−1)
21 t

(j−1)
12 + t

(i)
21 t

(j−2)
12

...

t
(p+1−j)
21 t

(j)
12 + t

(p−j)
21 t

(j+1)
12 + . . . . . .+ t

(i+1)
21 t

(p−i)
12 + t

(i)
21 t

(p+1−i)
12




Note that when i = j = p the rows of the table are exactly the elements ∇i,
i = p + 1, . . . , 2p. We will show by induction on i + j that the rows of this table
form a regular sequence. Let i + j = p + 1. Then sij consists of the unique

element t
(i)
21 t

(j)
12 and the corresponding variety is obviously equidimensional. Hence

the statement follows from Proposition 2.2, (2). Applying Proposition 2.2, (3) to
the table above we obtain the following two tables s′ij and s′′ij




t
(i)
21

t
(i−1)
21 t

(j)
12 + t

(i)
21 t

(j−1)
12

...

t
(p+1−j)
21 t

(j)
12 + . . .+ t

(i)
21 t

(p+1−i)
12




;




t
(j)
12

t
(i−1)
21 t

(j)
12 + t

(i)
21 t

(j−1)
12

...

t
(p+1−j)
21 t

(j)
12 + . . .+ t

(i)
21 t

(p+1−i)
12




Next we apply Proposition 2.2, (1) substituting t
(i)
21 = 0 in s′ij and t

(i)
12 = 0 in

s′′ij . It is easy to see that after the substitution we obtain the tables si−1j and
sij−1. Applying the induction to these sequences we conclude their regularity which
implies the regularity of the sequence sij for all i, j = 1, . . . , p, i + j ≥ p + 1 by
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Proposition 2.2, (3). In particular, the sequence spp is regular which completes the
proof. �

We immediately obtain the following

Corollary 2. The generators t
(1)
22 , . . . , t

(p)
22 , d1, . . . , d2p of Γ are algebraically inde-

pendent.

We will denote by K(Γ) the field of fractions of Γ.
Combining Lemma 3.1 with Proposition 2.3 we obtain the following

Theorem 1. (1) Yp(gl2) is free as a left (right) module over Γ. Moreover Γ
is a direct summand of Yp(gl2).

(2) For any m ∈ Specm Γ the character χm extends to an irreducible Yp(gl2)-
module.

For a subset P ⊂ Yp(gl2) denote by D(P ) the set of all x ∈ Yp(gl2) such that
there exists z ∈ Γ, z 6= 0 for which zx ∈ P .

Corollary 3. Let P ⊂ Yp(gl2) be a finitely generated left Γ−module then D(P ) is
a finitely generated left Γ−module.

Proof. Since Γ is a domain then D(P ) is a Γ-submodule in Yp(gl2). Using the fact
that Yp(gl2) is a free left Γ−module we conclude that Yp(gl2) ' FP ⊕F where FP
and F are free left Γ−modules, FP has a finite rank and P ⊂ FP . Then D(P ) ⊂
FP and hence it is finitely generated as a module over a noetherian ring. �

4. Harish-Chandra modules for gl(2) Yangians

Let L be a polynomial algebra in variables b1, . . . , bp, g1, . . . g2p. Define a k-mo-

nomorphism ı : Γ → L such that ı(t
(k)
22 ) = σk,p(b1, . . . , bp), ı(di) = σi,2p(g1, . . . ,

g2p) where σi,j is the i-th elementary symmetric polynomial in j variables. We will
identify the elements of Γ with their images in L and treat them as polynomials in
variables b1, . . . , bp, g1, . . . g2p invariant under the action of the group Sp×S2p . Set
L = Specm L. We will identify L with k

3p. If β = (β1, . . . , βp), γ = (γ1, . . . , γ2p)
and ` = (β1, . . . , βp, γ1, . . . , γ2p) then we will write ` = (β, γ). The map ı induces
an epimorphism ı∗ : L → Specm Γ. If ` ∈ L and m = ı∗(`) then D(`) will denote
the equivalence class of m in ∆(Yp(gl2),Γ).

Let L0 ⊂ L, L0 ' Z
p, be a lattice generated by δi ∈ k

3p, i = 1, . . . , p, where δi =
(δ1i , . . . , δ

3p
i ), δji = δij , j = 1, . . . , 3p. Then L0 acts on L by shifting δi(`) := `+ δi.

Also the group Sp × S2p acts on L by permutations. Thus the semidirect product
W of the groups Sp × S2p and L0 acts on L and L. Denote by S a multiplicative
set in L generated by the elements bi − bj −m for all i 6= j and all m ∈ Z and by
L the localization of L by S. Note that S is invariant under the action of W and
hence W acts on L.

Let L1 = Specm L ⊂ L, i.e. L1 consists of generic 3p-tuples ` = (β, γ) such that
βi − βj 6∈ Z for all i 6= j. If ` ∈ L1 then the modules from the category H(Yp(gl2),
Γ, D(`)) are called generic Harish-Chandra modules.

Fix ` = (β, γ) ∈ L. Let I` be the left ideal of Yp(gl2) generated by the coefficients
of the polynomials T22(u)−β(u) andD(u)−γ(u). Define the corresponding quotient
module over Yp(gl2) by

M(`) = Yp(gl2)/I`.
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It follows from Theorem 1 that I` is a proper ideal of Yp(gl2) and so M(`) is a
non-trivial module. Therefore, the image of 1 in M(`) is nonzero. We shall denote
it by ξ. The next proposition shows the universality of the module M(`).

Proposition 4.1. Let ` = (β, γ) ∈ L and let V be a weight Yp(gl2)-module with
a central character γ generated by a nonzero η ∈ Vβ. Then V is a homomorphic
image of M(`).

Proof. Indeed, there is a homomorphism f : M(`) → V which maps ξ to η. Since
η generates V the statement follows. �

4.1. Weight modules. For ` = (β, γ) ∈ L the category HW (Yp(gl2), Γ, D(`))
consists of finitely generated weight modules V with central character γ and with
SuppV ⊂ D(`). For simplicity we will denote it by R`. If ` ∈ L1 then the modules
from R` will be called generic weight modules.

Let ` = (β, γ) ∈ L, β = (β1, . . . , βp), γ = (γ1, . . . , γ2p), β(u) = (u+ β1) . . . (u +
βp), γ(u) = (u+ γ1) . . . (u+ γ2p).

A Yp(gl2)-module V is an object of R` if V is a direct sum of its weight subspaces:

(4.13) V =
⊕

`∈L

V`, where V` = {η ∈ V | T22(u)η = β(u)η, D(u)η = γ(u)η}.

If V ∈ R` then we shall simply write Vβ instead of V` and identify SuppV with
the set of all β such that the subspace Vβ is nonzero.

Lemma 4.1. (compare with (2.7)) Let V be a generic weight Yp(gl2)-module and
let β = (β1, . . . , βp) ∈ Supp V . Then

(4.14) T21(u)Vβ ⊆

p∑

i=1

Vβ+δi
and T12(u)Vβ ⊆

p∑

i=1

Vβ−δi

where β ± δi = (β1, . . . , βi ± 1, . . . , βp).

Proof. First we show that T21(−βi)Vβ ⊆ Vβ+δi
for all i = 1, . . . , p. Since

T22(u− 1)T21(u) = T21(u− 1)T22(u)

we have

T22(−βi − 1)T21(−βi) η = T21(−βi − 1)T22(−βi) η = 0

for all η ∈ Vβ . Also,

T22(−βj)T21(−βi) η = (βi − βj)
−1(T21(−βi)T22(−βj) − T21(−βj)T22(−βi)) η

+ T21(−βi)T22(−βj) η = 0

since T22(−βk) η = 0 for all k = 1, . . . , p. Using the fact that βi − βj /∈ Z we
conclude that T21(−βi)Vβ ⊆ Vβ+δi

for all i = 1, . . . , p. Since T21(u) is a polynomial
of degree p − 1 in u and βi 6= βj if i 6= j, we have that T21(u)Vβ ⊆

∑p
i=1 Vβ+δi

.
The case of T12(u) is treated analogously using the identity T22(u)T12(u − 1) =
T12(u)T22(u− 1). �

Corollary 4. If V is indecomposable generic weight module over Yp(gl2) and β ∈
SuppV then SuppV ⊆ β + Z

p.
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Lemma 4.2. If V is a generic weight Yp(gl2)-module with central character γ(u)
then for any β = (β1, . . . , βp) ∈ SuppV and any η ∈ Vβ we have

T12(−βr)T21(−βs) η = T21(−βs)T12(−βr) η,

if s 6= r, and
T12(−βi − 1)T21(−βi) η = −γ(−βi) η,

T21(−βi + 1)T12(−βi) η = −γ(−βi + 1) η.

Proof. The first equality follows from the defining relations (1.1). The others follow
from (3.12). �

Corollary 5. Let V be a generic weight Yp(gl2)-module with a central character γ
and let β = (β1, . . . , βp) ∈ SuppV .

(i) If γ(−βi) 6= 0 then KerT21(−βi) ∩ Vβ = 0.
(ii) If γ(−βi + 1) 6= 0 then KerT12(−βi) ∩ Vβ = 0.
(iii) If V is indecomposable and γ(−βi + k) 6= 0 for all k ∈ Z then

KerT21(−ψi) ∩ Vψ = KerT12(−ψi) ∩ Vψ = 0

for all ψ = (ψ1, . . . , ψp) ∈ SuppV .

Given (k) = (k1, . . . , kp) ∈ Z
p define the corresponding vector of the module

M(`) by

ξ(k) =
∏

i, ki>0

T21(−βi − ki + 1) · · ·T21(−βi − 1)T21(−βi)

×
∏

i, ki<0

T12(−βi − ki − 1) · · ·T12(−βi + 1)T12(−βi) ξ.

Theorem 2. The vectors ξ(k), (k) ∈ Z
p form a basis of M(`). Moreover, we have

the formulas

(4.15) T22(u) ξ
(k) =

p∏

i=1

(u+ βi + ki) ξ
(k),

(4.16)

T21(u) ξ
(k) =

p∑

i=1

Ai(k)
(u+ β1 + k1) · · · ∧i · · · (u+ βp + kp)

(β1 − βi + k1 − ki) · · · ∧i · · · (βp − βi + kp − ki)
ξ(k+δi),

T12(u) ξ
(k) =

p∑

i=1

Bi(k)
(u+ β1 + k1) · · · ∧i · · · (u+ βp + kp)

(β1 − βi + k1 − ki) · · · ∧i · · · (βp − βi + kp − ki)
ξ(k−δi),

where

Ai(k) =

{
1 if ki ≥ 0

−γ(−βi − ki) if ki < 0

and

Bi(k) =

{
−γ(−βi − ki + 1) if ki > 0

1 if ki ≤ 0.

The action of T11(u) is found from the relation

(4.17)
(
T11(u)T22(u− 1) − T21(u)T12(u− 1)

)
ξ(k) = γ(u) ξ(k).
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Proof. We start by proving the formulas for the action of the generators of Yp(gl2).
Relation (4.15) follows by induction from the defining relations (1.1). By Lemma 4.2
we have: if ki > 0 then

(4.18)
T21(−βi − ki) ξ

(k) = ξ(k+δi),

T12(−βi − ki) ξ
(k) = −γ(−βi − ki + 1) ξ(k−δi);

if ki < 0 then

(4.19)
T12(−βi − ki) ξ

(k) = ξ(k−δi),

T21(−βi − ki) ξ
(k) = −γ(−βi − ki) ξ

(k+δi);

and if ki = 0 then

(4.20)
T12(−βi) ξ

(k) = ξ(k−δi),

T21(−βi) ξ
(k) = ξ(k+δi).

Applying the Lagrange interpolation formula we obtain the remaining formulas.
To show that the vectors ξ(k) form a basis of M(`), denote by Tβ the subspace

of Yp(gl2) spanned by the elements

τ (k) =
∏

i, ki>0

T21(−βi − ki + 1) · · ·T21(−βi − 1)T21(−βi)

×
∏

i, ki<0

T12(−βi − ki − 1) · · ·T12(−βi + 1)T12(−βi),

where (k) runs over Z
p. It suffices to prove the vector space decomposition

(4.21) Yp(gl2) = T` ⊕ I`.

Due to the formulas proved above, Yp(gl2) = T` + I`. We now need to show that

the vectors τ (k) are linearly independent modulo the left ideal I`. By (4.15) and the
genericity assumption, the elements τ (k) mod I` are eigenvectors for T22(u) with
distinct eigenvalues. So the claim will follow if we demonstrate that each τ (k) is
nonzero modulo I`. Suppose first that γ is generic: γ(−βi − k) 6= 0 for all k ∈ Z

and all i. Then we deduce from (4.18)–(4.20) that τ (k) 6= 0 mod I` since 1 6= 0
mod I` which gives (4.21) for generic γ.

Let now γ be arbitrary. Suppose that a nonzero element τ belongs to the inter-
section T` ∩ I`. Then

(4.22) τ =

p∑

i=1

ai (t
(i)
22 − β(i)) +

2p∑

i=1

bi (D
(i) − γ(i)),

where D(i), β(i) and γ(i) are the coefficients of the polynomials D(u), β(u) and
γ(u), respectively, while ai, bi ∈ Yp(gl2). Let γ̃ be generic. Then we can rewrite
(4.22) as

(4.23) τ =

p∑

i=1

ai (t
(i)
22 − β(i)) +

2p∑

i=1

bi (D
(i) − γ̃(i)) +

2p∑

i=1

bi (γ̃
(i) − γ(i)).
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Consider the unique decompositions of the elements bj in accordance with (4.21)
where γ(u) is taken to be γ̃(u):

(4.24) bj = τj +

p∑

i=1

aij (t
(i)
22 − β(i)) +

2p∑

i=1

bij (D(i) − γ̃(i))

for some aij , bij ∈ Yp(gl2). Using the decomposition (4.21) for generic γ̃(u) we
must have

(4.25) τ =

2p∑

j=1

τj (γ̃(j) − γ(j)).

for all such γ̃(u). This means that the T`-component of each element bj (γ̃(j) −
γ(j)) is independent of γ̃(u). However, due to the formulas (4.15)–(4.17), this is
only possible if all bj are zero. Finally, the elements ai must be zero too by the
decomposition (4.22) with generic γ. So, (4.21) holds for all γ(u). �

Remark 1. Given two monic polynomials α(u) and β(u) of degree p define the
corresponding Verma module V (α(u), β(u)) as the quotient of Yp(gl2) by the left
ideal generated by the coefficients of the polynomials T11(u)−α(u), T22(u)−β(u) and
T12(u); cf. [T1, T2]. Then the same argument as above shows that V (α(u), β(u))
has a basis {ξ(k)} parameterized by p-tuples of nonnegative integers (k) = (k1, . . . ,
kp). The formulas of Theorem 2 hold for the basis vectors ξ(k), where γ(u) should
be taken to be α(u)β(u− 1) which defines the central character γ of V (α(u), β(u)).
In fact, V (α(u), β(u)) is isomorphic to the quotient of the corresponding universal
module M(`), ` = (β, γ) by the submodule spanned by the vectors {ξ(k)} such that
(k) contains at least one negative component ki.

Corollary 6. Let ` = (β, γ) ∈ L1.

(1) The module M(`) is a generic weight Yp(gl2)-module with central character
γ, SuppM(`) = Z

p and all weight spaces are 1-dimensional.
(2) The module M(`) has a unique maximal submodule and hence a unique

irreducible quotient.
(3) The equivalence class D(`) coincides with the set `+ L0.

Proof. Statement (1) follows immediately from Theorem 2. By Proposition 4.1 the
sum of all proper submodules is again a proper submodule. Thus M(`) has a unique
maximal submodule which implies (2). The statement (3) follows immediately from
(1). �

We will denote the unique irreducible quotient of M(`) by L(`). It follows from
Corollary 6 that all weight spaces of L(`) are 1-dimensional. Using Proposition 4.1
we can now describe all irreducible generic weight Yp(gl2)-modules.

Corollary 7. Let ` = (β, γ) ∈ L1.

(1) There exists an irreducible generic weight Yp(gl2)-module L(`) with L(`)β 6=
0 and with central character γ. Moreover, dimL(`)ψ = 1 for all ψ ∈
SuppL(`).

(2) Any irreducible weight module over Yp(gl2) with central character γ gener-
ated by a nonzero vector of weight β is isomorphic to L(`).
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5. Properties of Γ as a subalgebra of Yp(gl2)

In this section we adapt the results from [DFO2] and [Ov] for the Yangians. In
particular, we show that Γ is a Harish-Chandra subalgebra.

For any `0 ∈ L1 the module M(`0) has a basis ξ(k), (k) ∈ Z
p with the action

of generators of Y(gl2) defined by formulas (4.15)–(4.17). Then we can relabel the
basis elements of M(`0) by ξ`, ` ∈ `0 +L0. It follows from Theorem 2 that for every
x ∈ Yp(gl2) there exists a finite subset Lx ⊂ L0 consisting of elements δ such that

(5.26) ξ` =
∑

δ∈Lx

θ(x, `, δ)ξ`+δ

where θ(x, `, δ) = θ(x, b, δ)(`), θ(x, b, δ) ∈ L, b = (b1, . . . , bp, g1, . . . , g2p). Clearly,
the set Lx is Sp × S2p-invariant. Note that for a given x this formula does not
depend on `0.

Let ML0(L) be the ring of locally finite (with the finite number of non-zero
elements in each row and each column) matrices over L with the entries indexed by
the elements of L0. Any ` ∈ L1 defines the evaluation homomorphism χ` : L−→ k,
which induces the homomorphism of matrix algebras ML0(`) : ML0(L) −→ ML0(k).
For `, `′ ∈ L0 denote by e` `′ the corresponding matrix unit in ML0(L). The group
W acts on ML0(L) as follows: (w−1 · X)`,`′ = w−1 · Xw(`)w(`′) for all w ∈ W,
X = (X` `′)`,`′∈L0 , `, `

′ ∈ L0. Note that this action induces an action of Sp × S2p

on the free L-module X0 =
∑

δ∈L0
Leδ,0 where 0 is a zero element in L0.

Define a map

G : Yp(gl2) → ML0(L)

such that for any x ∈ Yp(gl2) and any ` ∈ L0, G(x)` `′ = θ(x, b + `, δ) if `′ − ` = δ
and 0 otherwise.

Lemma 5.1. (1) G is a representation of Yp(gl2).
(2) G(x) is W-invariant for any x ∈ Yp(gl2). In particular, G(x)0 0 ∈ K(Γ).
(3) If x = x(b1, . . . , bp, g1, . . . , g2p) ∈ Γ then G(x)`` = x(b1 + l1, . . . , bp +

lp, g1, . . . , g2p) where ` = (l1, . . . , lp, 0, . . . , 0) ∈ L0.
(4) G(Γ) consists of W-invariant diagonal matrices X such that X0 0 ∈ Γ. In

particular, X0 0 ∈ Γ determines X.

Proof. Let T be a free (non-commutative) algebra with generators t
(k)
ij , i, j = 1, 2,

k = 1, . . . , p, π : T → Yp(gl2), t
(k)
ij 7−→ t

(k)
ij , be a canonical projection. Define a

homomorphism g : T → ML0(L) by g(t
(k)
ij ) = G(t

(k)
ij ) for all suitable i, j, k. To

prove (1) it is enough to show that g(Kerπ) = 0. Let f ∈ Kerπ and suppose that
g(f)`′`′′ ∈ L is nonzero for some `′, `′′ ∈ L0. Then ML0(`)(g(f)) = 0 and thus
g(f)`′`′′(`) = 0 for any ` ∈ L1. Since L1 is dense in SpecmL we conclude that
g(f) = 0 implying (1).

The image of G is W-invariant since it holds for the generators of Yp(gl2) (4.15)–
(4.17). For any σ ∈ Sp × S2p, (σ−1 · G)(x)0 0 = σ−1(G(x)σ(0)σ(0))= σ−1(G(x)0 0).

Hence G(x)0 0 is Sp×S2p-invariant proving (2). The statement (3) follows from (2)
if we apply a shift by ` ∈ L0 to an arbitrary x ∈ Yp(gl2). The statement (4) follows
immediately from (2) and (3). �
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The composition r` of G and ML0(`) defines a representation G` of Yp(gl2). It
is easy to see that the corresponding Yp(gl2)−module coincides with the module
M(`) from Theorem 2.

Proposition 5.1. The representation G : Yp(gl2)−→ ML0(L) is faithful.

Proof. It is clear that KerG ⊂ ∩`∈L1 Ker r`. Hence it is enough to prove that
⋂

`∈L1

Ker r` = 0.

Let ` = (β, γ). Then Ker r` = AnnM(`) dy definition. Since M(`) = Yp(gl2)/I`
we have that Ker r` ⊂ I`. Therefore, it is enough to show that ∩`∈L1I` = 0. By
Theorem 1, (1) the Yangian Yp(gl2) is free as a right module over Γ. Let xi, i ∈ I
be a basis of Yp(gl2) over Γ. If x =

∑
i∈I xizi for some zi ∈ Γ then x ∈ I` if and

only if zi(`) = 0 for all i ∈ I. Since L1 is dense in L in Zariski topology it follows
immediately that if x ∈ ∩`∈L1I` then zi = 0 for all i ∈ I and thus x = 0. This
completes the proof. �

Immediately from the proof of the theorem above and the density of L1 in L we
obtain the following analogue of the Harish-Chandra Theorem for Lie algebras [Di].

Corollary 8. Let x ∈ Yp(gl2) be such that xM(`) = 0 for any ` ∈ L1. Then x = 0.

Corollary 9. (1) Γ is a maximal commutative subalgebra in Yp(gl2).
(2) If for x ∈ Yp(gl2) the matrix G(x) is diagonal then x ∈ Γ.

Proof. Consider an element x ∈ Yp(gl2) which commutes with every z ∈ Γ. Suppose
there exist `1, `2 ∈ L0, `1 6= `2 such that G(x)`1`2 6= 0. There exists z ∈ Γ such
that z(`1) 6= z(`2) and thus G(z)`1`1 6= G(z)`2`2 by Lemma 5.1, (3). Then we
have G(xz)``′ = G(x)``′G(z)`′`′ = G(zx)``′ = G(z)``G(x)``′ and therefore G(x) is
diagonal. To conclude the maximality of Γ it is enough to prove the statement (2).

By Lemma 5.1, (2), G(x)0 0 =
f

g
∈ L where f, g ∈ Γ are relatively prime. Suppose

that g 6∈ k. By Lemma 5.1, (4) we have that G(x)G(g) = G(f) and xg = f by
Proposition 5.1. It implies that x ∈ Γ by Theorem 1, (1). This completes the
proof. �

Corollary 10. Let p : ML0(L)−→ X0 be the projection. Then the composition

r : Yp(gl2)
G

−−−−−→ ML0(L)
p

−−−−→ X0 is a monomorphism of Yp(gl2)−modules.
The map p commutes with the action of Sp × S2p and in particular, r(Yp(gl2)) is
Sp × S2p−invariant.

Proof. Note that for any x ∈ Yp(gl2) the matrix G(x) ∈ ML0(L) is determined
completely by its column p(G(x)). Thus r(x) = 0 implies G(x) = 0 and x =
0 by faithfulness of G. Hence r is a monomorphism. Other statements follow
immediately from the definitions and Lemma 5.1, (2). �

As in [DFO2], we identify the (Γ − Γ)-bimodule structure on Yp(gl2) with the
corresponding Γ ⊗k Γ−module structure. Let b = (b1, . . . , bp, g1, . . . , g2p). For any
z ∈ Γ and any S ⊂ L introduce the following polynomial

FS,z =
∏

δ∈S

(z ⊗ 1 − 1 ⊗ z(b + δ)) =

|S|∑

i=0

zi ⊗ ai, ai ∈ L.
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Proposition 5.2. ([DFO2], Lemma 25). Let S be a finite Sp×S2p-invariant subset

in L and z be any element of Γ, FS,z =

|S|∑

i=0

zi ⊗ ai, ai ∈ L.

(1) ai ∈ Γ, i = 0, . . . , |S|.

(2) For any x ∈ Yp(gl2) such that Lx ⊂ S holds

q∑

i=0

zixai = 0.

Proof. If S is Sp × S2p-invariant then the coefficients of the polynomial FS,z are
Sp×S2p-invariant and hence belong to Γ which proves (1). It is enough to check the
statement (2) for S = Lx since FS,z = FS\Lx,zFLx,z. Denote q = |S|. Let ` ∈ L1

and let ξ` be a basis element of M(`). Then
q∑

i=0

zixai(ξ`) =

q∑

i=0

zixai(`)(ξ`) =

q∑

i=0

ziai(`)
∑

δ∈Lx

θ(x, `, δ)ξ`+δ =

∑

δ∈Lx

θ(x, `, δ)

q∑

i=0

ai(`)(z
iξ`+δ) =

∑

δ∈Lx

θ(x, `, δ)

q∑

i=0

ai(`)z(`+ δ)iξ`+δ =
∑

δ∈Lx

θ(x, `, δ)FLx,z(z(`+ δ), `)ξ`+δ = 0

since FLx,z(z(` + δ), `) = 0 for every δ ∈ Lx. Applying Corollary 8 we obtain the
statement of the proposition. �

The main result of this section is the following

Theorem 3. Γ is a Harish-Chandra subalgebra of Yp(gl2).

Proof. Following [DFO2], Proposition 8, it is enough to show that a Γ-bimodule

Γ t
(k)
ij Γ is finitely generated both as left and as right module for every possible

choice of indices i, j, k. It is obvious for i = j = 2 since t
(k)
22 ∈ Γ. We prove it for

i = 2, j = 1. Since di is central for every i = 1, . . . , 2p we have dit
(k)
21 = t

(k)
21 di. From

formulas (4.16) follows that L
t
(k)
21

= {δi|i = 1, . . . , p}. Then

F
L

t
(k)
21

,t
(i)
22

= zp ⊗ 1 +

p−1∑

l=0

zl ⊗ al, al ∈ Γ

and

(5.27) (t
(i)
22 )pt

(k)
21 +

p−1∑

l=0

(t
(i)
22 )lt

(k)
21 al = 0

by Proposition 5.2, (2). Hence the elements (
∏p
i=1(t

(i)
22 )ki)t

(k)
21 , 0 ≤ ki < p form the

generators of Γt
(k)
21 Γ as a right Γ-module.

Applying a suitable automorphism we conclude that Γt
(k)
21 Γ is finitely generated

as a left Γ-module.
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The cases i = 1, j = 2 and i = j = 1 can be treated analogously since L
t
(k)
12

=

{−δi|i = 1, . . . , p} and L
t
(k)
11

= {δi − δj |i, j = 1, . . . , p}. Hence Γt
(k)
ij Γ is finitely

generated as a right and as a left Γ-module. �

6. Category of Harish-Chandra modules over Yp(gl2)

Since Γ is a Harish-Chandra subalgebra of Yp(gl2) we can apply all the state-
ments from Section 2.1. Denote A = AYp(gl2),Γ

. Then by Proposition 1, the
categories A − modd and H(Yp(gl2),Γ) are equivalent. Also the full subcategory
HW (Yp(gl2),Γ) consisting of weight modules is equivalent to the module category
AW−mod. If ` ∈ L then the categoryR` is equivalent to the block AW (D(`))−mod
of the category AW − mod.

We will show that each character of Γ extends to a finite number of irreducible
Harish-Chandra modules over Yp(gl2). This is an analogue of the corresponding
result in the case of a Lie algebra gln which was conjectured in [DFO1] and proved
in [Ov]. In this section we use the techniques of [DFO2] and [Ov].

Lemma 6.1. For any x ∈ Yp(gl(2)), f ∈ Γ ⊗ Γ, `, `′ ∈ L0 holds

G(f · x)``′ = f(b + `, b + `′)G(x)``′ .

Proof. Let f =
∑

i zi ⊗ z′i ∈ Γ⊗ Γ. Then G(f · x) =
∑

i G(zi)G(x)G(z′i) and hence

G(f · x)``′ =
∑

i

G(zi)` `G(x)` `′G(z′i)`′ `′ = G(x)` `′
∑

i

G(zi)` `G(z′i)`′ `′ =

G(x)` `′
∑

i

zi(b + `)z′i(b + `′) = G(x)` `′f(b + `, b + `′).

�

Lemma 6.2. ([DFO2], Lemma 25). Let z ∈ Γ, S ⊂ L be a Sp × S2p-invariant set
and x ∈ Yp(gl2) be such that G(x)` `′ = 0 for all `, `′, `− `′ 6∈ S then F · x = 0.

Proof. Let F in the form F =
∑

i z
i ⊗ ai where ai ∈ L. If ` − `′ ∈ S then

G(F ·x)`′` = F (b+`, b+`′)G(x)` `′ by Lemma 6.1. Then h = z⊗1−1⊗z(b+`−`′)
divides F , h(b + `, b + `′) = 0, F (b + `, b + `′) = 0 and F · x = 0. �

Let S ⊂ L0 be a finite Sp × S2p−invariant set. Define YS= {x ∈ Yp(gl2) |Lx ⊂
S}. Clearly YS is a Γ−subbimodule in Yp(gl2). We have the following characteri-
zation of the bimodule YS .

Lemma 6.3. Let x ∈ Yp(gl2). Then

(1) x ∈ YS if and only if whenever G(x)`,`′ 6= 0, for some `, `′ ∈ L0, implies
that `− `′ ∈ S.

(2) y = FLx\S,z · x ∈ YS for any z ∈ Γ.

(3) YS is a finitely generated left (right) Γ−module and YS = D(YS).
(4) Y{0} = Γ.

Proof. The statement (1) follows from definitions. Let F = FLx\S,z. To prove
(2) calculate the matrix element G(y)``′ provided ` − `′ 6∈ S. If ` − `′ 6∈ Lx then
G(x)``′ = 0 and hence G(y)``′ = 0. Suppose that `− `′ ∈ Lx \ S then by Lemma
6.1, G(y)``′ = G(F · x)``′ = F (b + `, b + `′)G(x)``′ . But

F (b + `, b + `′) =
∏

δ∈Lx\S

(z(b + `) − z(b + `′ + δ))
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which is equal to zero. This proves (2).
Let x ∈ D(YS) and z ∈ Γ is such that z 6= 0 and zx ∈ YS . Since G(zx)``′ =

z(b + `)G(x)``′ then G(zx)``′ = 0 if and only if G(x)``′ = 0 implying that x ∈ YS .
Hence YS = D(YS).

Consider r(YS) as a Γ−submodule of X0 where r : Yp(gl2)−→ X0 is defined
in Corollary 10. Then r(YS) belongs to a free L−submodule of X0 of finite rank∑
`∈S Le0`. Hence L · r(YS) is finitely generated L-module. Without loss of gener-

ality we can assume that it is generated by the elements r(x1), . . . , r(xs) ∈ r(YS),

i.e. L · r(YS) =

s∑

i=1

L · r(xi). Since D(YS) = YS we have that D(

s∑

i=1

Γxi) ⊂

YS . Fix x ∈ YS . Then r(x) =
s∑

i=1

tir(xi), ti ∈ L. Note that for any y ∈ YS

and any σ ∈ Sp × S2p, σ · r(y) = r(y). Hence p!(2p)!r(x) =
∑

σ∈Sp×S2p

σ · r(x) =

∑

σ∈Sp×S2p

s∑

i=1

(σ · ti)σ · r(xi) which can be rewritten as follows

r(x) =
1

p!(2p!)

s∑

i=1

uir(xi),

where ui =
∑

σ∈Sp×S2p

σ · ti. Since each ui is Sp × S2p-invariant then it belongs to

the field of fractions K(Γ) for all i = 1, . . . , s. Multiplying both parts of the last

equality by the common denominator of ui we obtain that x ∈ D(
s∑

i=1

Γxi) and thus

D(

s∑

i=1

Γxi) = YS . Applying Corollary 3 we conclude that YS is finitely generated

over Γ. This proves (3). By the definition of YS , x ∈ Y{0} if and only if G(x) is
diagonal. Hence x ∈ Γ by Corollary 9, (2). �

Let m, n ∈ Specm Γ, `m, `n ∈ L are such that ı∗(`m) = m and ı∗(`n) = n.
Denote

S(m,n) = {σ1`n − σ2`m |σ1, σ2 ∈ Sp × S2p} ∩ L0.

Consider the following subset in L

L2 = {` ∈ L |`i − `j 6∈ Z \ {0}, i, j = 1, . . . , p}

and set Ω = ı∗(L2).

Proposition 6.1. (1) For all m, n ∈ Specm Γ and all m,n ≥ 0 holds

Yp(gl2) = YS + nnYp(gl2) + Yp(gl2)m
m,

where S = S(m,n).
(2) For all m, n ∈ Specm Γ a system of generators of YS as a left Γ-module

(as a right Γ-module) generates A(m,n) as a left Γn−module (as a right
Γm−module), i.e. A(m,n) is finitely generated as a left Γn and as a right
Γm−module. In particular, the algebra Γ is big in every n ∈ ObA.

(3) If S(m,n) = ∅ then A(m,n) = 0 (cf. [DFO2], Corollary 27).
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(4) If S(m,n) = {0} then A(m,n) is generated as a left Γn and as a right
Γm-module by the image of 1 in A(m,n).

(5) If S(m,m) = {0} then m ∈ Ω, A(m,m) is a quotient algebra of Γ and χm

extends uniquely to an irreducible Yp(gl2)-module.
(6) If `m ∈ L1 then A(m,m) = Γm.
(7) Let ` ∈ L1, m = ı∗(`) and n = ı∗(`+ δi), i ∈ {1, . . . , p}. Then A(m,n) is

a free of rank 1 right Γm- ( left Γn-) module.

Proof. (1) It is enough to show that for any x ∈ Yp(gl2) and any k > 1 there exists
xk ∈ YS such that

(6.28) x ∈ xk +

k∑

i=0

nk−ixmi.

The statement will follow if we choose k = m+ n+ 1. We will use induction on k.
If Lx ⊂ S then x ∈ YS and there is nothing to prove. Note that by the definition
of the set S for any ` ∈ Lx \ S the Sp × S2p-orbits of `n and `m + ` are disjoint.
Hence there exists z ∈ Γ such that z(`n) 6= z(`m + `) for any ` ∈ Lx \ S. Let
F = FLx\S,z. Then F (`m, `n) =

∏
`∈Lx\S

(z(`n)− z(`m + `)) 6= 0 since every factor

F is non-zero. We can assume that F (`m, `n) = 1. Hence we obtain that F = 1+u
where u ∈ n ⊗ Γ+ Γ ⊗m. It follows from Lemma 6.3, (2) that x1 = F · x belongs
to YS . Hence we have x1 = (1 +u) ·x ∈ x+nxΓ + Γxm and x ∈ x1 +nxΓ+ Γxm.
This proves the base of induction. Assume that 6.28 holds for some k ≥ 1. Then

x ∈ xk +
k∑

i=0

nk−i(xk +
k∑

j=0

nk−jxmj)mi ⊂ xk +
k∑

i=0

nk−ixkm
i +

k+1∑

i=0

nk+1−ixmi.

Since YS is a Γ-bimodule we conclude that xk +

k∑

i=0

nk−ixkm
i ⊂ YS which implies

the statement (1). In particular,

xk+1 − xk ∈
k∑

i=0

nk−iYSmi.

(2) We prove the statement for the case of left module, the case of the right
module can be treated analogously. By (1) the image x of every x ∈ YS in A(n,m)
is the limit of the sequence (xk)k>1, xk ∈ YS . Let y1, . . . , ym be a finite system of
generators of YS as a left Γ−module. Then for every N > 1 there exists a maximal
dN such that

yim
N ⊂

m∑

j=1

ndNyj

for all i = 1, . . . ,m. Note that by the proof of (1), xk+1 − xk ∈
k∑

i=0

nk−iYSmi ⊂

nRkYS where Rk = min{[k/2], d[k/2]}. Since YS is a finitely generated right Γ-

module and Γ is noetherian then the intersection ∩k≥1Y
Smk = 0. It follows that
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dN → ∞ while N → ∞. Since

x = x1 +

∞∑

k=1

(xk+1 − xk)

we have x ∈
∞∑

k=1

nRkYS ⊂
m∑

l=1

Γnyl. Note that the first sum is well defined since

Rk → ∞ when k → ∞. We conclude that A(n,m) is finitely generated as left
Γn−module. This completes the proof of (2).

(3) If S = ∅, then YS = 0 and the statement follows from (1) and the definition
of the category A (2.8).

(4) By the definition of YS for every x ∈ Y{ 0} the matrix G(x) is diagonal.
Following Corollary 9, (2) it means x ∈ Γ, in particular A(m,n) is generated (both
as a left and as a right module) by the image of 1 ∈ Γ.

(5) By (4), Y0 = Γ, i.e. A(m,n) is 1-generated as a left Γm-module. Then
the k-algebra homomorphism ı̂m : Γm−→A(m,m), z 7−→ z · 1m, where 1m is a
unit morphism, is an epimorphism which shows that A(m,m) is a quotient algebra
of Γm. The uniqueness of extension follows from the uniqueness of the simple
A(m,m)-module and [DFO2], Theorem 18.

(6) Let ` = `m. Since ` ∈ L1 then for any k > 0 there exists a canonical
projection πk : L−→ L/`kL. It induces a homomorphism of the matrix algebras
πk : ML0(L) −→ ML0(L/`

k) and defines a Harish-Chandra module by the following
composition

Yp(gl2)
G

−−−−−→ML0(L)
πk−−−−−→ ML0(L/`

k).

For any x ∈ Γ there exists k > 0, such that x 6∈ (`)k. Then πkG(x)0,0 = x+(`)k 6= 0
that completes the proof.

(7) The proof is analogous to the proof of (6). Let z ∈ Γ, z 6= 0. Suppose
A(m,n)z = 0. Then by the construction of the equivalence F : A − modd −→
H(U,Γ) for any Harish-Chandra module M and any x ∈ Yp(gl2) the linear operator
xz on M induces a zero map between M(m) and M(n). It is enough to construct
a Harish-Chandra module where this is failed. For k ≥ 1 consider a natural map
πk : L → L/(`)k and a composition πk · G : Yp(gl2) → ML0(L/(`)

k). It defines a
Harish-Chandra module structure on a free L/(`)k-module X̄ =

∑
δ∈L0

L/(`)keδ,0.

Consider x ∈ Yp(gl2) such that G(x)δi0
6= 0. Then G(xz)δi0

= G(x)δi0
G(z)00 =

G(x)δi0
z 6= 0. Choose k such that G(xz)δi0

6∈ (`)k. Hence (πk · G)(xz)δi,0
6= 0

and the linear operator xz induces a non-zero map between X̄(m) = L/(`)k and
X̄(n) = L/(` + δi)

k . The obtained contradiction shows that A(m,n)z 6= 0. The
case zA(m,n) = 0 is treated analogously. �

Now we are in the position to state the main result of this section which follows
immediately from Lemma 2.1 and Proposition 6.1, (2).

Theorem 4. Let m ∈ Specm Γ. Then the left ideal Yp(gl(2))m is contained in
finitely many maximal left ideals of Yp(gl(2)). In particular, m extends to a finitely
many (up to an isomorphism) irreducible Yp(gl(2))−modules and for each such
module M , dimM(n) < ∞ for all n ∈ Specm Γ.
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7. Category of generic Harish-Chandra modules

Lemma 7.1. Let ` ∈ L1, ` = (β, γ), m = ı∗(`) ∈ Specm Γ, n = ı∗(` + δi),
i ∈ {1, . . . , p}. If βi 6∈ {γ1, . . . , γ2p} then the objects of A represented by m and n

are isomorphic.

Proof. Choose z1, z2 ∈ Γ such that z1(`+δj) = δij , z2(`+δi−δj) = δij , j = 1, . . . , p.

Denote z = z2t
(1)
12 z1t

(1)
21 . Then G(z) is diagonal by Lemma 6.1 and hence z ∈ Γ by

Corollary 9, (2). We will show that the image of z in Γm is invertible. Clearly, this
is equivalent to the fact that z(m) 6= 0. Note that z(m) = z(`). Thus applying
formulas (4.15)–(4.17) we have z(m) = γ(−βi) 6= 0 since ` ∈ L1. Denote by

T1 (respectively T2) the generator of Γ̂-bimodule A(m,n) (respectively A(n,m))

(Proposition 6.1, (7)). Then z2t
(1)
12 = zmT2, z1t

(1)
21 = T1z

′
m

for some zm, z
′
m

∈ Γm

and z = zmT2T1z
′
m

. Since z(m) 6= 0 it follows that z′
m

(m) 6= 0, zm(m) 6= 0 and
hence T2T1 = z−1

m
z(z′

m
)−1 is invertible in Γm. The similar argument shows that

T1T2 is invertible in Γn. Therefore the objects m and n are isomorphic. �

Corollary 11. Let ` ∈ L1, ` = (β, γ), βi−γj 6∈ Z and m = ı∗(`) ∈ Specm Γ. Then
the category H(Yp(gl2),Γ, D(`)) is hereditary. Moreover,

dim Ext1
H(Yp(gl2),Γ,D(`))(L(`), L(`)) = 3p.

Proof. By Lemma 7.1 and our assumptions all objects of the category A(D(`)) are
isomorphic and hence the category A(D(`))− mod d is equivalent to the category
of finite-dimensional modules over Γm. Applying Proposition 2.1 we conclude that
the category H(Yp(gl2),Γ, D(`)) is hereditary. Since Γm is an algebra of power

series in 3p variables the statement about dim Ext1 follows. �

7.1. Category of generic weight modules. Fix ` ∈ L1, m = ı∗(`),n = ı∗(` +
δi) ∈ Specm Γ, i ∈ {1, . . . , p}. Then AW (m,m) ' Γm/Γmm ' k by Proposition
6.1, (6) and dim AW (m,n) = 1 by Proposition 6.1, (7). We will give a direct
construction of the category AW (D(`)).

Suppose ` = (β, γ), β = (β1, . . . , βp) ∈ k
p, γ = (γ1, . . . , γ2p) ∈ k

2p and

(7.29) γ(u) =

2p∏

i=1

(u+ γi).

Since ` ∈ L1 then βi − βj /∈ Z for all i, j = 1, . . . , p, i 6= j. Consider the following
category K`: Ob (K`) = Z

p and the morphisms are generated by

(7.30) fi(k) : (k) 7→ (k + δi) and ei(k) : (k) 7→ (k − δi),

where i = 1, . . . , p and (k) = (k1, . . . , kp) ∈ Z
p with the following relations:

fj(k + δi) fi(k) = fi(k + δj) fj(k),

ej(k − δi) ei(k) = ei(k − δj) ej(k),

ei(k + δj) fj(k) = fj(k − δi) ei(k) for i 6= j,

ei(k + δi) fi(k) = −γ(−βi − ki) 1(k),

fi(k − δi) ei(k) = −γ(−βi − ki + 1) 1(k).

It follows immediately from Lemmas 4.1 and 4.2 that any module in the categoryR`
can be naturally viewed as a module over the category K` which defines a functor
F : R` → K`−mod. Consider the cyclic subalgebra C`(a) = HomK`

(a, a) for any
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a ∈ Z
p. Clearly, C`(a) ' k for any a ∈ Z

p due to the defining relations of K`. For
any a = (k1, . . . , kp) ∈ Z

p we can construct a universal module M(`, a) ∈ K`−mod.
Consider k as a C`(a)-module with

ei(k + δi) fi(k) 1 = −γ(−βi − ki),

fi(k − δi) ei(k) 1 = −γ(−βi − ki + 1).

Let A`,a be an algebra of paths in K` originating in a. Now construct a Z
p-graded

K`-module
M(`, a) = A`,a ⊗C`(a) k.

Clearly, all graded components of M(`, a) are 1-dimensional and M(`, a)a = 1a⊗k.
A module M(`, a) contains a unique maximal Z

p-graded submodule which inter-
sects M(`, a)a trivially and hence has a unique irreducible quotient L(`, a) with
L(`, a)a ' k and dimL(`, a)b ≤ 1 for all b ∈ Z

p. If V is another irreducible K`-
module with Va 6= 0 then there exists a non-trivial C`(a)-homomorphism from k

to Va which can be extended to an epimorphism from M(`, a) to V . Since V is
irreducible we conclude that V ' L(`, a).

Obviously, we can view M(`) as a module over the category K` with a natural
action of the morphisms of K` and F (M(`)) = M(`, β). Thus a K`-module M(`, β)
can be extended to a Yp(gl2)-module M(`). Moreover, the functor F preserves the
submodule structure of M(`). In particular, F (L(`)) = L(`, β).

Proposition 7.1. If ` ∈ L1 then the categories K`−mod and R` are equivalent.

Proof. Let ` = (β, γ). We already have a functor F : R` → K`−mod. Suppose
that V ∈ K`−mod. We want to show that V can be extended to a Yp(gl2)-module.
Fix v ∈ V(k) \ {0}. Let W ⊆ V be a submodule generated by v. Then W(k) = kv
and there is an epimorphism from M(`, a) to W , where a = (k1, . . . , kp), which
maps 1a ⊗ 1 to v. Since F (M(`′)) = M(`, a), where `′ = (β + a, γ), then W can be
extended to a corresponding quotient of M(`′). Since v was an arbitrary element
of V we conclude that V can be extended to a Yp(gl2)-module and will denote
that module by G(V ). Clearly, G defines a functor from K`−mod to R` (action
on morphisms is obvious). One can easily see that the functors F and G define an
equivalence between the categories K`−mod and R`. �

7.2. Support of irreducible generic weight modules. To complete the classi-
fication of irreducible modules we have to know when two irreducible modules L(`)
and L(`′) are isomorphic. For that we need to describe the support SuppL(`).

We shall say that the weight subspaces M(`)ψ and M(`)ψ+δi
are strongly iso-

morphic if γ(−ψi) 6= 0 where ψ = (ψ1, . . . , ψp). This implies

fi(ψ1, . . . , ψp)M(`)ψ 6= 0 and ei(ψ1, . . . , ψi + 1, . . . , ψp)M(`)ψ+δi
6= 0.

The statement below follows immediately from the relations in K` (cf. also
Corollary 5).

Lemma 7.2. If M(`)ψ and M(`)ψ+δi
are strongly isomorphic, then M(`)ψ±δj

and
M(`)ψ+δi±δj

are strongly isomorphic for all i, j = 1, . . . , p, i 6= j. Moreover, if

fi(ψ1, . . . , ψp)M(`)ψ = 0 or ei(ψ1, . . . , ψp)M(`)ψ = 0

then
fi(ψ1, . . . , ψj ± 1, . . . , ψp)M(`)ψ±δj

= 0 or

ei(ψ1, . . . , ψj + 1, . . . , ψp)M(`)ψ±δj
= 0,
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respectively, for all j 6= i.

Let ai, a
′
i ∈ Z ∪ {±∞}, ai ≤ a′i, i ∈ {1, . . . , p}. Denote

P (a1, . . . , ap, a
′
1, . . . , a

′
p) = {(x1, . . . , xp) ∈ Z

p | ai ≤ xi ≤ a′i, i = 1, . . . , p},

a parallelepiped in Z
p. Note that some faces of the parallelepiped can be infinite

in some directions. In particular, in the case ai = −∞, a′i = ∞ for all i, the
parallelepiped coincides with Z

p.

Theorem 5. For any irreducible weight module L(`) over Yp(gl2) there exist ele-
ments ai, bi ∈ Z ∪ {±∞}, ai ≤ a′i, i ∈ {1, . . . , p} such that

SuppL(`) = P (a1, . . . , ap, a
′
1, . . . , a

′
p).

Proof. Let ` = (β, γ) ∈ L1. Fix i ∈ {1, . . . , p}. If γ(−βi + k) 6= 0 for all k ∈ Z then
(k1, . . . , ki + m, . . . , kp) ∈ SuppL(`) as soon as (k1, . . . , kp) ∈ SuppL(`). This
follows immediately from Lemma 7.2. In this case we set ai = −∞ and a′i = ∞.
Let now γ(−βi + k) = 0 for some k ∈ Z . Let m ≥ 0 be the smallest integer (if
exists) such that γ(−βi −m) = 0 and let n ≤ 0 be the largest integer (if exists)
such that γ(−βi − n+ 1) = 0. It follows from Lemma 7.2 that

SuppL(`) ∩ {β + kδi | k ∈ Z} = {β + nδi, . . . , β, . . . , β +mδi}.

If β + sδj ∈ SuppL(`), j 6= i then

SuppL(`)∩{β+sδj +kδi | k ∈ Z} = {β+sδj +nδi, . . . , β+sδj , . . . , β+sδj +mδi}.

In this case we set ai = βi+n and a′i = βi+m. The statement of the theorem now
follows. �

7.3. Indecomposable generic weight modules. Fix ` = (β, γ) ∈ L1. A full
subcategory S ⊆ K` is called a skeleton of K` provided the objects of S are pairwise
non-isomorphic and any object of K` is isomorphic to some object of S. In this
case the categories of K`−mod and S−mod are equivalent.

For each i ∈ {1, . . . , p} consider a set Ii = {k ∈ Z | γ(−βi − k) = 0}. Define a
category S` as a k-category with the set of objects

S0 = {0, . . . , |I1|} × . . .× {0, . . . , |Ip|}

and with morphisms generated by

rk(i1,...,ip) : (i1, . . . , ip) 7→ (i1, . . . , ik + 1, . . . , ip),

sk(j1,...,jp) : (j1, . . . , jp) 7→ (j1, . . . , jk − 1, . . . , jp),

where k ∈ {1, . . . , p} is such that Ik 6= ∅, ik < |Ik|, jk > 0, subject to the relations:

sk(i1,...,ik+1,...,ip)r
k
(i1 ,...,ip) = rk(i1 ,...,ip)s

k
(i1,...,ik+1,...,ip) = 0

and
xk(a1,...,ap)y

r
(e1,...,ep) = yr(c1,...,cp)x

k
(e1,...,ep)

for all k 6= r and all possible x, y ∈ {r, s}, ai, ei, ci, 1 ≤ i ≤ p for which this equality
makes sense.

It follows from the construction that S` is the skeleton of the category K`. Note
that the corresponding algebra is finite-dimensional. In particular, S` is semisimple
when Ik = ∅ for all 1 ≤ k ≤ p, i.e. when γ(−βk + r) 6= 0 for all k ∈ Z and all
i = 1, . . . , p. Hence it is enough to describe all indecomposable modules over S`.
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Fix a ∈ S0 and define a simple S`-module Sa such that Sa(b) = δa,bk for all
b ∈ S0 and all morphisms are trivial. Since S` defines a finite-dimensional algebra
we have the following

Proposition 7.2. Any simple module over S` is isomorphic to Sa for some a ∈ S0.

This is another confirmation of the fact that all weight spaces in any irreducible
generic weight Yp(gl2)-module are 1-dimensional. But this need not to be the case

for indecomposable modules. We restrict ourselves to a full subcategory Rf` ⊆ R`
which consists of weight modules V with dim Vψ < ∞ for all ψ ∈ SuppV . We

will establish the representation type of the category Rf` (finite, tame or wild). For
necessary definitions we refer to [Dr].

To establish the representation type of the category Rf` it is enough to consider

the category S`−modf , of modules over the category S` with finite-dimensional
weight spaces. Denote X` = {k ∈ {1, . . . , p} | Ik 6= ∅}.

7.3.1. Indecomposable modules in the case |X`| = 1. In this section we describe
all indecomposable modules over S` in the case |X`| = 1. Let X` = {i} and let
|Ii| = r > 0. In this case the category S` has the following quiver A with relations:

a1

b1

1 2 ar

br

r + 1
◦ ai bi = bi ai = 0

r
◦◦ ◦ . . .-� -�

We denote by Si, i ∈ {1, . . . , r+1}, the simple module corresponding to the point

i. These modules correspond to all irreducible modules in Rf` by Proposition 7.2.
Now describe remaining indecomposable modules for a quiver above. Fix integers
1 ≤ k1 < k2 ≤ r + 1 and a function ξk1,k2 : {k1, k1 + 1, . . . , k2} → {0, 1}. Define
a module M = M(k1, k2, ξk1,k2) as follows: M(i) = kei, k1 ≤ i ≤ k2, M(j) = 0
otherwise, aiei = ei+1, biei+1 = 0 if ξk1,k2(i) = 1 and aiei = 0, biei+1 = ei if
ξk1,k2(i) = 0 for all 1 ≤ i < k2.

The proof of the following proposition is standard; see e.g. [GR].

Proposition 7.3. The modules Si, 1 ≤ i ≤ r + 1 and M(k1, k2, ξk1,k2) with 1 ≤
k1 < k2 ≤ r + 1 and

ξk1,k2 : {k1, k1 + 1, . . . , k2} → {0, 1},

exhaust all non-isomorphic indecomposable modules for A.

7.3.2. Indecomposable modules in the case |X |` = 2. In this section we describe the
indecomposable modules for S` when |X |` = 2 and |Ik| = 1 for each k ∈ X`. Then
S` is isomorphic to the following category B considered in [BB].

B : a2 b2b0 a0

a1

b1

b3

a3

1 2

0 3

aibi = biai = 0, i = 0, . . . , 3,

aiaj = blbm for any i, j, l,m ∈ {0, 1, 2, 3},

where possible.

◦ ◦

◦ ◦

-�

-�
?

6

?

6

By Proposition 7.2 this category has four non-isomorphic simple modules Si, 0 ≤
i ≤ 3, with a support in a chosen point i. The indecomposable modules were
described in [BB]. For the sake of completeness we repeat here this classification.
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We will treat the objects of B as elements of Z/4Z . Consider the following three
families of non-simple indecomposable modules.

Finite family. Fix an 0 ≤ i ≤ 3 and define the B-module Mi such that Mi(j) = kej
for each j = 0, . . . , 3 and aiei = ei+1, ai+1ei+1 = ei+2, bi−1ei = ei−2, bi−2ei−1 =
ei−2 and ujek = 0 for all other cases of u ∈ {a, b} and j, k = 0, . . . , 3. Obviously,
Mi is indecomposable module for any i.

Infinite discrete families. Let n ∈ N , n > 1, and j ∈ Z4. Define a B-module Mn,j,1

(resp., Mn,j,2) as follows. Consider n elements e1, . . . , en. A k-basis of the vector
space Mn,j,1(l) (resp., Mn,j,2(l)) is the set of ek such that j+k−1 ≡ l(mod 4). The
elements al and bl−1 act as follows:

alek =

{
ek+1, if l is even (resp., odd), k < n and j + k − 1 ≡ l(mod 4);
0, otherwise.

bl−1ek =

{
ek−1, if l is even (resp., odd), k > 1 and j + k − 1 ≡ l(mod 4);
0, otherwise.

All modulesMn,j,1 andMn,j,2, n > 1, 0 ≤ j ≤ 3 are non-isomorphic indecomposable
B-modules.

Infinite continuous families. For each λ ∈ k, λ 6= 0, and d ∈ Z , d > 0 define the
B-modules Md,λ,1 and Md,λ,2 as follows. Set

Md,λ,1(i) = k
d,

Md,λ,1(a0) = Md,λ,1(a2) = Md,λ,1(b1) = Id,

Md,λ,1(b0) = Md,λ,1(b2) = Md,λ,1(a1) = Md,λ,1(a3) = 0,

Md,λ,1(b3) = Jd,λ

and
Md,λ,2(i) = k

d,

Md,λ,2(b0) = Md,λ,2(b2) = Md,λ,2(a1) = Id,

Md,λ,2(a0) = Md,λ,2(a2) = Md,λ,2(b1) = Md,λ,2(b3) = 0,

Md,λ,2(a3) = Jd,λ,

where Jd,λ is the Jordan cell of dimension d with the eigenvalue λ.
All modules Md,λ,k, k = 1, 2 are indecomposable and corresponding indecom-

posable modules in Rf` have all weight spaces of dimension d.

Proposition 7.4. ([BB], Proposition 3.3.1). The modules Si, Mi, Mn,i,1, Mn,i,2,
Md,λ,1, Md,λ,2 where 0 ≤ i ≤ 3, d is a positive integer, λ ∈ k, λ 6= 0, and n ≥ 2 is
an integer, constitute an exhaustive list of pairwise non-isomorphic indecomposable
B-modules.

The following theorem which describes the representation type of Rf` .

Theorem 6. (i) If |X`| = 0 then Rf` is a semisimple category with a unique
indecomposable (=irreducible) module;

(ii) If |X`| = 1 then Rf` has finite representation type;

(iii) If |X`| = 2 then Rf` has tame representation type if and only if |Ik | = 1 for

all k ∈ X. Otherwise, Rf` has wild representation type;
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(iv) If |X`| > 2 then Rf` has wild representation type.

Proof. In the case when |X`| = 1 all indecomposable modules for S` are described

in Proposition 7.3. Hence Rf` has finite representation type. If |X`| = 2 and
|Ik| = 1 for each k ∈ X then all indecomposable modules for S` are described in

Proposition 7.4. It follows from the definition that Rf` has tame representation
type in this case. If |Ik | > 1 for at least one k then it is easy to construct a family
of indecomposable modules that depends on two continuous parameters. Hence, in

this case Rf` has wild representation type. Suppose now that |X`| > 2. Then S`
contains a full subcategory of wild representation type considered in [BB], Theorem

1. We immediately conclude that Rf` has wild representation type. This completes
the proof. �

Corollary 12. (1) If |X`| = 0 then the category R` is a semisimple category
with a unique indecomposable module.

(2) If |X`| = 1 then R` has finite representation type with indecomposable mod-
ules as in Proposition 7.3.

Proof. Since cases |X`| ≤ 1 correspond to finite representation type then the corre-
sponding categories do not admit infinite-dimensional indecomposable modules by

[A] and hence every indecomposable module belongs to Rf` . �
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