HARISH-CHANDRA MODULES FOR YANGIANS

VYACHESLAV FUTORNY, ALEXANDER MOLEV, AND SERGE OVSIENKO

Abstract

We study Harish-Chandra representations of the Yangian Y($\mathfrak{g l}_{2}$) which admit a decomposition with respect to a natural maximal commutative subalgebra Γ and satisfy a polynomial condition. We prove an analogue of Kostant theorem showing that the restricted Yangian $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ is a free module over Γ and show that every character of Γ defines a finite number of irreducible Harish-Chandra modules. We study the categories of generic Harish-Chandra modules, describe their simple modules and indecomposable modules in tame blocks.

Mathematics Subject Classification 17B35, 81R10, 17B67

Contents

1. Introduction 1
2. Preliminaries 3
2.1. Harish-Chandra subalgebras 3
2.2. Special PBW algebras 5
3. Freeness of $\mathrm{Y}_{n}\left(\mathfrak{a l} l_{2}\right)$ over its commutative subalgebra 5
4. Harish-Chandra modules for $\mathfrak{a l}(2)$ Yangians 8
4.1. Weight modules 8
5. Properties of Γ as a subalgebra of $\mathrm{Y}_{n}\left(\mathfrak{g l}_{n}\right)$ 12
6. Categorv of Harish-Chandra modules over $\mathrm{Y}_{n}\left(\mathrm{al}_{2}\right)$ 15
7. Categorv of generic Harish-Chandra modules 19
7.1. Categorv of generic weight modules 20
7.2. Support of irreducible generic weight modules 21
7.3. Indecomposable generic weight modules 22
8. Acknowledgment 25
References 25

1. Introduction

Throughout the paper we fix an algebraically closed field \mathbb{k} of characteristic 0 .
The notion of a Harish-Chandra module with respect to a certain subalgebra is one of the most important in the representation theory of Lie algebras (Di I). For example, weight modules are Harish-Chandra modules with respect to a Cartan subalgebra. Also the Gelfand-Tsetlin modules ($\mathrm{DFO1}$) over the universal enveloping algebra $U\left(\mathfrak{g l}_{n}\right)$ of the general linear Lie algebra $\mathfrak{g l}_{n}$ are Harish-Chandra modules with respect to a subalgebra generated by the centers of $U\left(\mathfrak{g l}_{k}\right), k=1, \ldots, n$ where $\mathfrak{g l}_{1} \subset \ldots \subset \mathfrak{g l}_{n}$. In DFO2] a general setting has been developed for Harish-Chandra modules over associative algebras. Let U be an associative \mathbb{k}-algebra, $U-\bmod$ be
the category of finitely generated left U-modules and $\Gamma \subset U$ be a subalgebra. Denote by $\operatorname{cfs}(\Gamma)$ a cofinite spectrum of Γ, i.e. the set of maximal two-sided ideals of Γ of finite codimension. A module $M \in U-\bmod$ is called Harish-Chandra module (with respect to Γ) if $M=\oplus_{\mathbf{m} \in \operatorname{cfs} \Gamma} M(\mathbf{m})$, where

$$
M(\mathbf{m})=\left\{x \in M \mid \text { there exists } k \geqslant 0, \text { such that } \mathbf{m}^{k} x=0\right\}
$$

A key problem in the classification of all irreducible Harish-Chandra modules is to study the liftings from a given $\mathbf{m} \in \operatorname{cfs}(\Gamma)$ to irreducible Harish-Chandra modules M with $M(\mathbf{m}) \neq 0$. When such lifting is unique then irreducible Harish-Chandra modules are parametrized by the elements of $\operatorname{cfs}(\Gamma)$. In the case of Gelfand-Tsetlin modules over $\mathfrak{g l} l_{n}$ it was shown in Ov that the number of nonisomorphic irreducible modules defined by a given $\mathbf{m} \in \operatorname{cfs}(\Gamma)$ is always nonzero and finite.

In this paper we begin a systematic study of Harish-Chandra modules over the Yangians.

The Yangian for $\mathfrak{g l}_{n}$ is a unital associative algebra $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ over \mathbb{k} with countably many generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $1 \leq i, j \leq n$, and the defining relations

$$
\begin{equation*}
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u), \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \tag{1.2}
\end{equation*}
$$

and u, v are formal variables. This algebra originally appeared in the works on the quantum inverse scattering method; see e.g. Takhtajan-Faddeev [TF], KulishSklyanin KS. The term "Yangian" and generalizations of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ to an arbitrary simple Lie algebra were introduced by Drinfeld [D1. He then classified finitedimensional irreducible modules over the Yangians in D2 using earlier results of Tarasov [T1, T2] for the $\mathfrak{s l}_{2}$ case. An explicit construction of all such modules over $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ is given in those papers by Tarasov and also in the work by Chari and Pressley [CP. Apart from this case, the structure of a general Yangian representation remains unknown. In the case of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ a description of "generic" modules was given in M1 via Gelfand-Tsetlin bases. A more general class of "tame" representations of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ was introduced and explicitly constructed by Nazarov and Tarasov (NT]. An important role in these works is played by the Drinfeld generators [D2

$$
\begin{equation*}
a_{i}(u), \quad i=1, \ldots, n, \quad b_{i}(u), \quad c_{i}(u), \quad i=1, \ldots, n-1 \tag{1.3}
\end{equation*}
$$

of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ which are defined as certain quantum minors of the matrix $T(u)=\left(t_{i j}(u)\right)$. The coefficients of the series $a_{i}(u), i=1, \ldots, n$ form a commutative subalgebra of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ which can be regarded as an analogue of a Gelfand-Tsetlin subalgebra of the universal enveloping algebra of $\mathfrak{g l}$, DFO1] We shall call a representation of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ Harish-Chandra if it is a Harish-Chandra module with respect to this subalgebra. In particular, finite-dimensional Harish-Chandra modules are precisely the tame modules of [NT]. Note that Harish-Chandra modules for $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ are analogs of Gelfand-Tsetlin modules for $\mathfrak{g l}_{n}$ DFO1.

In this paper we are concerned with Harish-Chandra representations of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$. Recall that every irreducible finite-dimensional $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-module contains a unique vector ξ annihilated by $t_{12}(u)$ and which is an eigenvector for the Drinfeld generators $a_{1}(u)$ and $a_{2}(u)$ defined by

$$
\begin{equation*}
a_{1}(u)=t_{11}(u) t_{22}(u-1)-t_{21}(u) t_{12}(u-1), \quad a_{2}(u)=t_{22}(u) \tag{1.4}
\end{equation*}
$$

see T1, T2] and CP. Moreover, there exists an automorphism $t_{i j}(u) \mapsto c(u) t_{i j}(u)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$, where $c(u) \in 1+u^{-1} \mathbb{k}\left[\left[u^{-1}\right]\right]$, such that the eigenvalues of ξ become polynomials in u^{-1} under the twisted action of the Yangian. This prompts the introduction of the class of Harish-Chandra polynomial modules over Y($\mathfrak{g l}_{2}$), i.e., such Harish-Chandra modules where the operators $a_{1}(u)$ and $a_{2}(u)$ are polynomials. More precisely, by (1.4) it is natural to require that for some positive integer p the polynomials $a_{1}(u)$ and $a_{2}(u)$ have degrees $2 p$ and p, respectively. Note that $a_{1}(u)$ is the quantum determinant of the matrix $T(u)$ [IK], [KS. Its coefficients are algebraically independent generators of the center of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$.

We can interpret the definition of Harish-Chandra polynomial modules using the algebra $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ called the Yangian of level p; see Cherednik C1, C2]. It is defined as the quotient of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ by the ideal generated by the elements $t_{i j}^{(r)}$ with $r \geq p+1$. A Harish-Chandra polynomial module over $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is just a Harish-Chandra module over $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ for some positive integer p.

For another interpretation consider the Yangian for $\mathfrak{s l}_{2}$ which is the subalgebra $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ generated by the coefficients of the series $e(u), f(u)$ and $h(u)$ [D2] defined by

$$
\begin{align*}
& e(u)=t_{22}(u)^{-1} t_{12}(u) \\
& f(u)=t_{21}(u) t_{22}(u)^{-1} \tag{1.5}\\
& h(u)=t_{11}(u) t_{22}(u)^{-1}-t_{21}(u) t_{22}(u)^{-1} t_{12}(u) t_{22}(u)^{-1} .
\end{align*}
$$

Note that the series $h(u)$ can also be given by

$$
\begin{equation*}
h(u)=a_{1}(u) a_{2}(u)^{-1} a_{2}(u-1)^{-1} \tag{1.6}
\end{equation*}
$$

so that the coefficients of $h(u)$ form a commutative subalgebra of $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$. Therefore, the restriction of a Harish-Chandra $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-module to $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ admits an eigenbasis for this subalgebra. We also point out that both the above interpretations extend to an arbitrary Yangian $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$.

In this paper we study Harish-Chandra polynomial modules over $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$. We consider the class of modules admitting a central character so that the coefficients of $a_{1}(u)$ act as scalars. This class contains all irreducible Harish-Chandra polynomial modules. We study the properties of the subalgebra Γ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ generated by the coefficients of $a_{1}(u)$ and $a_{2}(u)$. In particular we show that $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is free as a left and as a right Γ-module (Theorem (1) which is an analogue of Kostant theorem [K]. Moreover, we show that Γ is a Harish-Chandra subalgebra (Theorem 3) in the sense of DFO2 and that each character of Γ extends to a finitely many non-isomorphic irreducible $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-modules (Theorem (4). This gives an equivalence between the category $\mathbb{H}\left(Y\left(\mathfrak{g l}_{2}\right), \Gamma\right)$ of Harish-Chandra polynomial modules and the category of finitely generated modules over a certain category \mathcal{A} whose objects are the maximal ideals of Γ. A full subcategory $\mathbb{H} W\left(\mathrm{Y}\left(\mathfrak{g l}_{2}\right), \Gamma\right)$ consisting of weight polynomial Harish-Chandra modules, when the action of $a_{2}(u)$ is diagonalizable, is equivalent to the category of finitely generated modules over a certain quotient category of \mathcal{A} (see Section 2.1 for details). An important role in our study is played by certain universal weight polynomial Harish-Chandra modules (Section 3, Theorem 2) such that every irreducible module in $\mathbb{H} W\left(\mathrm{Y}\left(\mathfrak{g l}_{2}\right), \Gamma\right)$ is a quotient of the corresponding universal module. In section 7 we study a full subcategory in $\mathbb{H} W\left(Y\left(\mathfrak{g l}_{2}\right), \Gamma\right)$ of generic modules, this imposes a certain integrability condition on the eigenvalues of $a_{2}(u)$ while those of $a_{1}(u)$ are arbitrary. In particular, we give a complete
description of irreducible modules (Theorem (5) and indecomposable modules in tame blocks of this category (Theorem 6).

2. Preliminaries

2.1. Harish-Chandra subalgebras. In the setting of DFO2 the subalgebra Γ need not to be commutative. But in this paper we will only deal with the commutative case, hence $\operatorname{cfs}(\Gamma)$ coincides with the set Specm Γ of all maximal ideals in Γ.

When for all $\mathbf{m} \in \operatorname{Specm} \Gamma$ and all $x \in M(\mathbf{m})$ holds $\mathbf{m} x=0$ such Harish-Chandra module M is called weight (with respect to Γ).

All Harish-Chandra modules (with respect to Γ) form a full abelian subcategory in the category of $U-\bmod$ which we will denote by $\mathbb{H}(U, \Gamma)$. A full subcategory of $\mathbb{H}(U, \Gamma)$ consisting of weight modules we denote by $\mathbb{H} W(U, \Gamma)$. The support of a Harish-Chandra module M is a set Supp $M \subset \operatorname{Specm} \Gamma$ consisting of such \mathbf{m} that $M(\mathbf{m}) \neq 0$. For $D \subset$ Specm Γ denote by $\mathbb{H}(U, \Gamma, D)$ the full subcategory in $\mathbb{H}(U, \Gamma)$ formed by M such that $\operatorname{Supp} M \subset D$. For a given $\mathbf{m} \in \operatorname{Specm} \Gamma$ let $\chi_{\mathbf{m}}: \Gamma \rightarrow \Gamma / \mathbf{m}$ be a character of Γ. If there exists an irreducible Harish-Chandra module M with $M(\mathbf{m}) \neq 0$ then we say that $\chi_{\mathbf{m}}$ extends to M.

The notion of a Harish-Chandra subalgebra ((DFO2]) gives an effective tool for the study of the category $\mathbb{H}(U, \Gamma)$. A commutative subalgebra $\Gamma \subset U$ is called a Harish-Chandra subalgebra in U if for any $a \in U$ the Γ-bimodule $\Gamma a \Gamma$ is finitely generated as left and as right Γ-module. In this case for a finite-dimensional Γ-module X the module $U \otimes_{\Gamma} X$ is a Harish-Chandra module.

For $a \in U$ let

$$
X_{a}=\{(\mathbf{m}, \mathbf{n}) \in \operatorname{Specm} \Gamma \times \operatorname{Specm} \Gamma \mid \Gamma / \mathbf{n} \quad \text { is a subquotient of } \Gamma a \Gamma / \Gamma a \mathbf{m}\} .
$$

Equivalently, $(\mathbf{m}, \mathbf{n}) \in X_{a}$ if and only if $(\Gamma / \mathbf{n}) \otimes_{\Gamma} \Gamma a \Gamma \otimes_{\Gamma}(\Gamma / \mathbf{m}) \neq 0$. Denote by Δ the minimal equivalence on Specm Γ containing all $X_{a}, a \in U$ and by $\Delta(A, \Gamma)$ the set of the Δ-equivalence classes on $\operatorname{Specm} \Gamma$. Then for any $a \in U$ and $\mathbf{m} \in$ Specm Γ holds

$$
\begin{equation*}
a M(\mathbf{m}) \subset \sum_{(\mathbf{m}, \mathbf{n}) \in X_{a}} M(\mathbf{n}), \quad \mathbb{H}(U, \Gamma)=\bigoplus_{D \in \Delta(U, \Gamma)} \mathbb{H}(U, \Gamma, D) \tag{2.7}
\end{equation*}
$$

Define a category $\mathcal{A}=\mathcal{A}_{U, \Gamma}$ with $\operatorname{Ob} \mathcal{A}=\Gamma$ and the space of morphisms from \mathbf{m} to \mathbf{n} being

$$
\begin{equation*}
\mathcal{A}(\mathbf{m}, \mathbf{n})=\lim _{\leftarrow n, m} U /\left(\mathbf{n}^{n} U+U \mathbf{m}^{m}\right) \quad\left(\text { equivalently } \lim _{\leftarrow n, m} \Gamma / \mathbf{n}^{n} \otimes_{\Gamma} U \otimes_{\Gamma} \Gamma / \mathbf{m}^{m}\right) . \tag{2.8}
\end{equation*}
$$

Then we have $\mathcal{A}=\bigoplus_{D \in \Delta(U, \Gamma)} \mathcal{A}(D)$, where $\mathcal{A}(D)$ is the restriction of \mathcal{A} on D. The category \mathcal{A} is endowed with the topology of the inverse limit and the category of \mathbb{k}-vector spaces $(\mathbb{k}-\bmod)$ with the discrete topology. Consider the category $\mathcal{A}-\bmod _{d}$ of continuous functors $M: \mathcal{A} \longrightarrow \mathbb{k}-\bmod ($ discrete modules in DFO2, 1.5). For any discrete \mathcal{A}-module N define a Harish-Chandra U-module $\mathbb{F}(N)=$ $\oplus_{\mathbf{m} \in \operatorname{Specm} \Gamma} N(\mathbf{m})$ and for $x \in N(\mathbf{m})$ and $a \in U$ define $a x=\sum_{\mathbf{n} \in \operatorname{Specm~} \Gamma} a_{\mathbf{n}} x$ where $a_{\mathbf{n}}$ is the image of a in $\mathcal{A}(\mathbf{m}, \mathbf{n})$. If $f: M \longrightarrow N$ is a morphism in $\mathcal{A}-\bmod _{d}$ then define $\mathbb{F}(f)=\oplus_{\mathbf{m} \in \text { Specm } \Gamma} f(\mathbf{m})$. Hence we have a functor $\mathbb{F}: \mathcal{A}-\bmod _{d} \longrightarrow \mathbb{H}(U, \Gamma)$.

Proposition 2.1. ($\overline{\mathrm{DFO} 2}$, Theorem 17) The functor \mathbb{F} is an equivalence.
We will identify a discrete \mathcal{A}-module N with the corresponding Harish-Chandra module $\mathbb{F}(N)$. Let $\Gamma_{\mathbf{m}}=\lim _{\leftarrow m} \Gamma / \mathbf{m}^{m}$ be the completion of Γ by $\mathbf{m} \in \operatorname{Specm} \Gamma$. Then the space $\mathcal{A}(\mathbf{m}, \mathbf{n})$ has a structure of $\Gamma_{\mathbf{n}}-\Gamma_{\mathbf{m}}$-bimodule.

For $\mathbf{m} \in \operatorname{Specm} \Gamma$ denote by $\hat{\mathbf{m}}$ a completion of \mathbf{m}. Consider a two-sided ideal $I \subset \mathcal{A}$ generated by $\hat{\mathbf{m}}$ for all $\mathbf{m} \in \operatorname{Specm} \Gamma$ and set $\mathcal{A}_{W}=\mathcal{A} / I$. Then Proposition 2.1 implies the following statement.

Corollary 1. The categories $\mathbb{H} W(U, \Gamma)$ and $\mathcal{A}_{W}-\bmod$ are equivalent.
The subalgebra Γ is called big in $\mathbf{m} \in \operatorname{Specm} \Gamma$ if $\mathcal{A}(\mathbf{m}, \mathbf{m})$ is finitely generated as $\Gamma_{\mathbf{m}}$-module.

Lemma 2.1. (DFO2], Corollary 19) If Γ is big in $\mathbf{m} \in \operatorname{Specm} \Gamma$ then there exist finitely many non-isomorphic irreducible Harish-Chandra U-modules M such that $M(\mathbf{m}) \neq 0$. For any such module $\operatorname{dim} M(\mathbf{m})<\infty$.
2.2. Special PBW algebras. Let U be an associative algebra over \mathbb{k} endowed with an increasing filtration $\left\{U_{i}\right\}_{i \in \mathbb{Z}}, U_{-1}=\{0\}, U_{0}=\mathbb{k}, U_{i} U_{j} \subset U_{i+j}$. For $u \in U_{i} \backslash U_{i-1}$ set $\operatorname{deg} u=i$. Let $\bar{U}=\operatorname{gr} U$ be the associated graded algebra $\bar{U}=$ $\bigoplus_{i=0}^{\infty} U_{i} / U_{i-1}$. For $u \in U$ denote by \bar{u} its image in \bar{U} and for a subset $S \subset U$ set $\bar{S}=$ $\{\bar{s} \mid s \in S\} \subset \bar{U}$. The algebra U is called a special PBW algebra if any element of U can be written uniquely as a linear combination of ordered monomials in some fixed generators of U and if \bar{U} is a polynomial algebra. Such algebras were introduced in FO .

Let $\Lambda=\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ be a polynomial algebra. For $g_{1}, \ldots, g_{t} \in \Lambda$ denote by $\mathrm{V}\left(g_{1}, \ldots, g_{t}\right)$ a set of all zeroes of the ideal generated by the elements g_{1}, \ldots, g_{t}. A sequence $g_{1}, \ldots, g_{t} \in \Lambda$ is called regular (in Λ) if the class of g_{i} in $\Lambda /\left(g_{1}, \ldots, g_{i-1}\right)$ is non-invertible and is not a zero divisor for any $i=1, \ldots, t$.

Next proposition contains the basic properties of regular sequences which can be easily checked or can be found in BH .

Proposition 2.2. (1) The sequence $X_{1}, \ldots, X_{r}, G_{1}, \ldots G_{t}$ with $G_{1}, \ldots, G_{t} \in$ Λ is regular in Λ if and only if the sequence g_{1}, \ldots, g_{t} is regular in $\mathbb{k}\left[X_{r+1}\right.$, $\left.\ldots, X_{n}\right]$, where $g_{i}\left(X_{r+1}, \ldots, X_{n}\right)=G_{i}\left(0, \ldots, 0, X_{r+1}, \ldots, X_{n}\right)$.
(2) A sequence $g_{1}, \ldots g_{t}$ is regular in Λ if and only if the variety $V\left(g_{1}, \ldots, g_{t}\right)$ is equidimensional of dimension $n-t$.
(3) A sequence $g_{1} g_{1}^{\prime}, g_{2}, \ldots, g_{t}$ is regular if and only if the sequences $g_{1}, g_{2}, \ldots, g_{t}$ and $g_{1}^{\prime}, g_{2}, \ldots, g_{t}$ are regular.

The following analogue of Kostant theorem (\underline{K}) is valid for special PBW algebras.

Proposition 2.3. (FO) Let U be a special $P B W$ algebra and let $g_{1}, \ldots, g_{t} \in U$ be mutually commuting elements such that $\bar{g}_{1}, \ldots, \bar{g}_{t}$ is a regular sequence in \bar{U}, $\Gamma=\mathbb{k}\left[g_{1}, \ldots, g_{t}\right]$. Then U is a free left (right) Γ-module. Moreover Γ is a direct summand of U.

3. Freeness of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ over its commutative subalgebra

Let p be a positive integer. The level p Yangian $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ for the Lie algebra $\mathfrak{g l}_{2}$ [C2] can be defined as the algebra over \mathbb{k} with generators $t_{i j}^{(1)}, \ldots, t_{i j}^{(p)}, i, j=1,2$, subject to the relations

$$
\begin{equation*}
\left[T_{i j}(u), T_{k l}(v)\right]=\frac{1}{u-v}\left(T_{k j}(u) T_{i l}(v)-T_{k j}(v) T_{i l}(u)\right), \tag{3.9}
\end{equation*}
$$

where u, v are formal variables and

$$
\begin{equation*}
T_{i j}(u)=\delta_{i j} u^{p}+\sum_{k=1}^{p} t_{i j}^{(k)} u^{p-k} \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)[u] . \tag{3.10}
\end{equation*}
$$

Explicitly, (3.9) reads

$$
\begin{equation*}
\left[t_{i j}^{(r)}, t_{k l}^{(s)}\right]=\sum_{a=1}^{\min (r, s)}\left(t_{k j}^{(a-1)} t_{i l}^{(r+s-a)}-t_{k j}^{(r+s-a)} t_{i l}^{(a-1)}\right) \tag{3.11}
\end{equation*}
$$

where $t_{i j}^{(0)}=\delta_{i j}$ and $t_{i j}^{(r)}=0$ for $r \geq p+1$. Note that the level 1 Yangian $\mathrm{Y}_{1}\left(\mathfrak{g l}_{2}\right)$ coincides with the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{2}\right)$. Set $\operatorname{deg} t_{i j}^{(k)}=k$ for $i, j, k=1, \ldots, p$. This defines a natural filtration on the Yangian $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$. The corresponding graded algebra will be denoted by $\overline{\mathrm{Y}}_{p}\left(\mathfrak{g l}_{2}\right)$. We have the following analog of the Poincaré-Birkhoff-Witt theorem for the algebra $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$.

Proposition 3.1. (C2]; see also [M2]) Given an arbitrary linear ordering on the set of the generators $t_{i j}^{(k)}$, any element of the algebra $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ is uniquely written as a linear combination of ordered monomials in these generators. Moreover, the algebra $\overline{\mathrm{Y}}_{p}\left(\mathfrak{g l}_{2}\right)$ is a polynomial algebra in generators $\bar{t}_{i j}^{(k)}$.

Proposition 3.1 implies that $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ is a special PBW algebra. Denote by $D(u)$ the quantum determinant

$$
\begin{align*}
D(u) & =T_{11}(u) T_{22}(u-1)-T_{21}(u) T_{12}(u-1) \\
& =T_{11}(u-1) T_{22}(u)-T_{12}(u-1) T_{21}(u) . \tag{3.12}
\end{align*}
$$

It was shown in C1, C2 (see also M2 for a different proof) that the coefficients of the polynomial $D(u)$ are algebraically independent generators of the center of the algebra $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$.

Denote by Γ the subalgebra of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ generated by the coefficients of $D(u)$ and $t_{22}^{(k)}, k=1, \ldots, p$. This algebra is obviously commutative. We will show later (Corollary 3) that Γ is a Harish-Chandra subalgebra in $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$.

Lemma 3.1. The sequence $\bar{t}_{22}^{(1)}, \ldots, \bar{t}_{22}^{(p)}, \bar{d}_{1}, \ldots, \bar{d}_{2 p}$ of the images of the generators of Γ is regular in $\overline{\mathrm{Y}}_{p}\left(\mathfrak{g l}_{2}\right)$.
Proof. Denote $t_{i}=\bar{t}_{11}^{(i)}+\bar{t}_{22}^{(i)}, i=1, \ldots, p, \Delta_{i, j}=\bar{t}_{11}^{(i)} \bar{t}_{22}^{(j)}-\bar{t}_{21}^{(i)} \bar{t}_{12}^{(j)}, i, j=1, \ldots, p$, $i \neq j$. It follows from 3.12 that

$$
\bar{D}(u)=u^{2 p}+\sum_{i=1}^{2 p} \bar{d}_{i} u^{2 p-i}
$$

where $\bar{d}_{i}=t_{i}+\sum_{j=1}^{i-1} \Delta_{j, i-j}$ for $i=1, \ldots, p$ and $\bar{d}_{i}=\sum_{j=i-p}^{p} \Delta_{i, i-j}$ for $i=$ $p+1, \ldots, 2 p$. Hence we need to show that the sequence

$$
\bar{t}_{22}^{(1)}, \ldots, \bar{t}_{22}^{(p)}, t_{1}, t_{2}+\Delta_{11}, \ldots, t_{p}+\sum_{i=1}^{p-1} \Delta_{i, p-i}, \sum_{i=1}^{p} \Delta_{i, p+1-i}, \ldots, \Delta_{p p}
$$

is regular. We will denote by ∇_{i} the result of the substitution $\bar{t}_{22}^{(1)}=\ldots=\bar{t}_{22}^{(p)}=0$ in $\bar{d}_{i}, i=1, \ldots, 2 p$. By Proposition 2.2 (1) we only need to show the regularity of the sequence

$$
\nabla_{1}, \ldots, \nabla_{2 p}
$$

Consider the following triangular automorphism ϕ of $\overline{\mathrm{Y}}_{p}\left(\mathfrak{g l}_{2}\right) / I$: $\bar{t}_{11}^{(i)} \mapsto \bar{t}_{11}^{(i)}+$ $\sum_{j=1}^{i-1} \Delta_{i, i-j}, \bar{t}_{21}^{(i)} \rightarrow \bar{t}_{21}^{(i)}, \bar{t}_{12}^{(i)} \rightarrow \bar{t}_{12}^{(i)}, i=1, \ldots, p$, where I is an ideal generated by $\bar{t}_{22}^{(1)}, \ldots, \bar{t}_{22}^{(p)}$. Applying ϕ^{-1} to the sequence $\nabla_{1}, \ldots, \nabla_{2 p}$ we see that it is enough to show the regularity of the sequence

$$
\bar{t}_{11}^{(1)}, \ldots, \bar{t}_{11}^{(p)}, \nabla_{p+1}, \ldots, \nabla_{2 p} .
$$

Again by Proposition (2.2 (1) this is equivalent to the regularity of the sequence $\nabla_{p+1}, \ldots, \nabla_{2 p}$. For each pair $i, j, i, j=1, \ldots, p, i+j \geq p+1$ consider the following elements of $\mathbb{k}\left[\bar{t}_{12}^{(i)}, \bar{t}_{21}^{(i)} \mid i, j=p+1, \ldots, 2 p\right]$ arranged in the table $s_{i j}$ below

$$
\left(\begin{array}{l}
\bar{t}_{21}^{(i)} \bar{t}_{12}^{(j)} \\
\bar{t}_{21}^{(i-1)} \bar{t}_{12}^{(j)}+\bar{t}_{21}^{(i)} \bar{t}_{12}^{(j-1)} \\
\bar{t}_{21}^{(i-2)} \bar{t}_{12}^{(j)}+\bar{t}_{21}^{(i-1)} \bar{t}_{12}^{(j-1)}+\bar{t}_{21}^{(i)} \bar{t}_{12}^{(j-2)} \\
\vdots \\
\bar{t}_{21}^{(p+1-j)} \bar{t}_{12}^{(j)}+\bar{t}_{21}^{(p-j)} \bar{t}_{12}^{(j+1)}+\ldots \ldots+\bar{t}_{21}^{(i+1)} \bar{t}_{12}^{(p-i)}+\bar{t}_{21}^{(i)} \bar{t}_{12}^{(p+1-i)}
\end{array}\right)
$$

Note that when $i=j=p$ the rows of the table are exactly the elements ∇_{i}, $i=p+1, \ldots, 2 p$. We will show by induction on $i+j$ that the rows of this table form a regular sequence. Let $i+j=p+1$. Then $s_{i j}$ consists of the unique element $\bar{t}_{21}^{(i)} \bar{t}_{12}^{(j)}$ and the corresponding variety is obviously equidimensional. Hence the statement follows from Proposition 2.2 (2). Applying Proposition 2.2 (3) to the table above we obtain the following two tables $s_{i j}^{\prime}$ and $s_{i j}^{\prime \prime}$

$$
\left(\begin{array}{l}
\bar{t}_{21}^{(i)} \\
\bar{t}_{21}^{(i-1)} \bar{t}_{12}^{(j)}+\bar{t}_{21}^{(i)} \bar{t}_{12}^{(j-1)} \\
\vdots \\
\bar{t}_{21}^{(p+1-j)} \bar{t}_{12}^{(j)}+\ldots+\bar{t}_{21}^{(i)} \bar{t}_{12}^{(p+1-i)}
\end{array}\right) ;\left(\begin{array}{l}
\bar{t}_{12}^{(j)} \\
\bar{t}_{21}^{(i-1)} \bar{t}_{12}^{(j)}+\bar{t}_{21}^{(i)} \bar{t}_{12}^{(j-1)} \\
\vdots \\
\bar{t}_{21}^{(p+1-j)} \bar{t}_{12}^{(j)}+\ldots+\bar{t}_{21}^{(i)} \bar{t}_{12}^{(p+1-i)}
\end{array}\right)
$$

Next we apply Proposition [2.2 (1) substituting $\bar{t}_{21}^{(i)}=0$ in $s_{i j}^{\prime}$ and $\bar{t}_{12}^{(i)}=0$ in $s_{i j}^{\prime \prime}$. It is easy to see that after the substitution we obtain the tables $s_{i-1 j}$ and $s_{i j-1}$. Applying the induction to these sequences we conclude their regularity which implies the regularity of the sequence $s_{i j}$ for all $i, j=1, \ldots, p, i+j \geq p+1$ by

Proposition 2.2 (3). In particular, the sequence $s_{p p}$ is regular which completes the proof.

We immediately obtain the following
Corollary 2. The generators $t_{22}^{(1)}, \ldots, t_{22}^{(p)}, d_{1}, \ldots, d_{2 p}$ of Γ are algebraically independent.

We will denote by $K(\Gamma)$ the field of fractions of Γ.
Combining Lemma 3.1 with Proposition 2.3 we obtain the following
Theorem 1. (1) $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ is free as a left (right) module over Γ. Moreover Γ is a direct summand of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$.
(2) For any $\mathbf{m} \in \operatorname{Specm} \Gamma$ the character $\chi_{\mathbf{m}}$ extends to an irreducible $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ module.

For a subset $P \subset \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ denote by $\mathbb{D}(P)$ the set of all $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ such that there exists $z \in \Gamma, z \neq 0$ for which $z x \in P$.

Corollary 3. Let $P \subset \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ be a finitely generated left Γ-module then $\mathbb{D}(P)$ is a finitely generated left Γ-module.

Proof. Since Γ is a domain then $\mathbb{D}(P)$ is a Γ-submodule in $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$. Using the fact that $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ is a free left Γ-module we conclude that $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right) \simeq F_{P} \oplus F$ where F_{P} and F are free left Γ-modules, F_{P} has a finite rank and $P \subset F_{P}$. Then $\mathbb{D}(P) \subset$ F_{P} and hence it is finitely generated as a module over a noetherian ring.

4. Harish-Chandra modules for $\mathfrak{g l}(2)$ Yangians

Let L be a polynomial algebra in variables $b_{1}, \ldots, b_{p}, g_{1}, \ldots g_{2 p}$. Define a \mathbb{k}-monomorphism $\imath: \Gamma \rightarrow \mathrm{L}$ such that $\imath\left(t_{22}^{(k)}\right)=\sigma_{k, p}\left(b_{1}, \ldots, b_{p}\right), \imath\left(d_{i}\right)=\sigma_{i, 2 p}\left(g_{1}, \ldots\right.$, $g_{2 p}$) where $\sigma_{i, j}$ is the i-th elementary symmetric polynomial in j variables. We will identify the elements of Γ with their images in L and treat them as polynomials in variables $b_{1}, \ldots, b_{p}, g_{1}, \ldots g_{2 p}$ invariant under the action of the group $S_{p} \times S_{2 p}$. Set $\mathcal{L}=\operatorname{Specm} L . W e$ will identify \mathcal{L} with $\mathbb{K}^{3 p}$. If $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right), \gamma=\left(\gamma_{1}, \ldots, \gamma_{2 p}\right)$ and $\ell=\left(\beta_{1}, \ldots, \beta_{p}, \gamma_{1}, \ldots, \gamma_{2 p}\right)$ then we will write $\ell=(\beta, \gamma)$. The map \imath induces an epimorphism $\imath^{*}: \mathcal{L} \rightarrow \operatorname{Specm} \Gamma$. If $\ell \in \mathcal{L}$ and $\mathbf{m}=\imath^{*}(\ell)$ then $D(\ell)$ will denote the equivalence class of \mathbf{m} in $\Delta\left(\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right), \Gamma\right)$.

Let $\mathcal{L}_{0} \subset \mathcal{L}, \mathcal{L}_{0} \simeq \mathbb{Z}^{p}$, be a lattice generated by $\delta_{i} \in \mathbb{K}^{3 p}, i=1, \ldots, p$, where $\delta_{i}=$ $\left(\delta_{i}^{1}, \ldots, \delta_{i}^{3 p}\right), \delta_{i}^{j}=\delta_{i j}, j=1, \ldots, 3 p$. Then \mathcal{L}_{0} acts on \mathcal{L} by shifting $\delta_{i}(\ell):=\ell+\delta_{i}$. Also the group $S_{p} \times S_{2 p}$ acts on \mathcal{L} by permutations. Thus the semidirect product \mathbb{W} of the groups $S_{p} \times S_{2 p}$ and \mathcal{L}_{0} acts on \mathcal{L} and L. Denote by S a multiplicative set in L generated by the elements $b_{i}-b_{j}-m$ for all $i \neq j$ and all $m \in \mathbb{Z}$ and by \mathbb{L} the localization of L by S. Note that S is invariant under the action of \mathbb{W} and hence \mathbb{W} acts on \mathbb{L}.

Let $\mathcal{L}_{1}=\operatorname{Specm} \mathbb{L} \subset \mathcal{L}$, i.e. \mathcal{L}_{1} consists of generic $3 p$-tuples $\ell=(\beta, \gamma)$ such that $\beta_{i}-\beta_{j} \notin \mathbb{Z}$ for all $i \neq j$. If $\ell \in \mathcal{L}_{1}$ then the modules from the category $\mathbb{H}\left(\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)\right.$, $\Gamma, D(\ell))$ are called generic Harish-Chandra modules.

Fix $\ell=(\beta, \gamma) \in \mathcal{L}$. Let I_{ℓ} be the left ideal of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ generated by the coefficients of the polynomials $T_{22}(u)-\beta(u)$ and $D(u)-\gamma(u)$. Define the corresponding quotient module over $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ by

$$
M(\ell)=\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right) / I_{\ell} .
$$

It follows from Theorem that I_{ℓ} is a proper ideal of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ and so $M(\ell)$ is a non-trivial module. Therefore, the image of 1 in $M(\ell)$ is nonzero. We shall denote it by ξ. The next proposition shows the universality of the module $M(\ell)$.

Proposition 4.1. Let $\ell=(\beta, \gamma) \in \mathcal{L}$ and let V be a weight $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module with a central character γ generated by a nonzero $\eta \in V_{\beta}$. Then V is a homomorphic image of $M(\ell)$.

Proof. Indeed, there is a homomorphism $f: M(\ell) \rightarrow V$ which maps ξ to η. Since η generates V the statement follows.
4.1. Weight modules. For $\ell=(\beta, \gamma) \in \mathcal{L}$ the category $\mathbb{H} W\left(\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right), \Gamma, D(\ell)\right)$ consists of finitely generated weight modules V with central character γ and with Supp $V \subset D(\ell)$. For simplicity we will denote it by R_{ℓ}. If $\ell \in \mathcal{L}_{1}$ then the modules from R_{ℓ} will be called generic weight modules.

Let $\ell=(\beta, \gamma) \in \mathcal{L}, \beta=\left(\beta_{1}, \ldots, \beta_{p}\right), \gamma=\left(\gamma_{1}, \ldots, \gamma_{2 p}\right), \beta(u)=\left(u+\beta_{1}\right) \ldots(u+$ $\left.\beta_{p}\right), \gamma(u)=\left(u+\gamma_{1}\right) \ldots\left(u+\gamma_{2 p}\right)$.

A $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module V is an object of R_{ℓ} if V is a direct sum of its weight subspaces:

$$
\begin{equation*}
V=\bigoplus_{\ell \in \mathcal{L}} V_{\ell}, \text { where } V_{\ell}=\left\{\eta \in V \mid T_{22}(u) \eta=\beta(u) \eta, \quad D(u) \eta=\gamma(u) \eta\right\} \tag{4.13}
\end{equation*}
$$

If $V \in R_{\ell}$ then we shall simply write V_{β} instead of V_{ℓ} and identify $\operatorname{Supp} V$ with the set of all β such that the subspace V_{β} is nonzero.

Lemma 4.1. (compare with (2.7)) Let V be a generic weight $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module and let $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right) \in \operatorname{Supp} V$. Then

$$
\begin{equation*}
T_{21}(u) V_{\beta} \subseteq \sum_{i=1}^{p} V_{\beta+\delta_{i}} \quad \text { and } \quad T_{12}(u) V_{\beta} \subseteq \sum_{i=1}^{p} V_{\beta-\delta_{i}} \tag{4.14}
\end{equation*}
$$

where $\beta \pm \delta_{i}=\left(\beta_{1}, \ldots, \beta_{i} \pm 1, \ldots, \beta_{p}\right)$.
Proof. First we show that $T_{21}\left(-\beta_{i}\right) V_{\beta} \subseteq V_{\beta+\delta_{i}}$ for all $i=1, \ldots, p$. Since

$$
T_{22}(u-1) T_{21}(u)=T_{21}(u-1) T_{22}(u)
$$

we have

$$
T_{22}\left(-\beta_{i}-1\right) T_{21}\left(-\beta_{i}\right) \eta=T_{21}\left(-\beta_{i}-1\right) T_{22}\left(-\beta_{i}\right) \eta=0
$$

for all $\eta \in V_{\beta}$. Also,

$$
\begin{aligned}
T_{22}\left(-\beta_{j}\right) T_{21}\left(-\beta_{i}\right) \eta & =\left(\beta_{i}-\beta_{j}\right)^{-1}\left(T_{21}\left(-\beta_{i}\right) T_{22}\left(-\beta_{j}\right)-T_{21}\left(-\beta_{j}\right) T_{22}\left(-\beta_{i}\right)\right) \eta \\
& +T_{21}\left(-\beta_{i}\right) T_{22}\left(-\beta_{j}\right) \eta=0
\end{aligned}
$$

since $T_{22}\left(-\beta_{k}\right) \eta=0$ for all $k=1, \ldots, p$. Using the fact that $\beta_{i}-\beta_{j} \notin \mathbb{Z}$ we conclude that $T_{21}\left(-\beta_{i}\right) V_{\beta} \subseteq V_{\beta+\delta_{i}}$ for all $i=1, \ldots, p$. Since $T_{21}(u)$ is a polynomial of degree $p-1$ in u and $\beta_{i} \neq \beta_{j}$ if $i \neq j$, we have that $T_{21}(u) V_{\beta} \subseteq \sum_{i=1}^{p} V_{\beta+\delta_{i}}$. The case of $T_{12}(u)$ is treated analogously using the identity $T_{22}(u) T_{12}(u-1)=$ $T_{12}(u) T_{22}(u-1)$.

Corollary 4. If V is indecomposable generic weight module over $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ and $\beta \in$ Supp V then $\operatorname{Supp} V \subseteq \beta+\mathbb{Z}^{p}$.

Lemma 4.2. If V is a generic weight $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module with central character $\gamma(u)$ then for any $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right) \in \operatorname{Supp} V$ and any $\eta \in V_{\beta}$ we have

$$
T_{12}\left(-\beta_{r}\right) T_{21}\left(-\beta_{s}\right) \eta=T_{21}\left(-\beta_{s}\right) T_{12}\left(-\beta_{r}\right) \eta,
$$

if $s \neq r$, and

$$
\begin{aligned}
& T_{12}\left(-\beta_{i}-1\right) T_{21}\left(-\beta_{i}\right) \eta=-\gamma\left(-\beta_{i}\right) \eta, \\
& T_{21}\left(-\beta_{i}+1\right) T_{12}\left(-\beta_{i}\right) \eta=-\gamma\left(-\beta_{i}+1\right) \eta .
\end{aligned}
$$

Proof. The first equality follows from the defining relations (1.1). The others follow from (3.12).

Corollary 5. Let V be a generic weight $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module with a central character γ and let $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right) \in \operatorname{Supp} V$.
(i) If $\gamma\left(-\beta_{i}\right) \neq 0$ then $\operatorname{Ker} T_{21}\left(-\beta_{i}\right) \cap V_{\beta}=0$.
(ii) If $\gamma\left(-\beta_{i}+1\right) \neq 0$ then $\operatorname{Ker} T_{12}\left(-\beta_{i}\right) \cap V_{\beta}=0$.
(iii) If V is indecomposable and $\gamma\left(-\beta_{i}+k\right) \neq 0$ for all $k \in \mathbb{Z}$ then

$$
\operatorname{Ker} T_{21}\left(-\psi_{i}\right) \cap V_{\psi}=\operatorname{Ker} T_{12}\left(-\psi_{i}\right) \cap V_{\psi}=0
$$

$$
\text { for all } \psi=\left(\psi_{1}, \ldots, \psi_{p}\right) \in \operatorname{Supp} V \text {. }
$$

Given $(k)=\left(k_{1}, \ldots, k_{p}\right) \in \mathbb{Z}^{p}$ define the corresponding vector of the module $M(\ell)$ by

$$
\begin{aligned}
\xi^{(k)} & =\prod_{i, k_{i}>0} T_{21}\left(-\beta_{i}-k_{i}+1\right) \cdots T_{21}\left(-\beta_{i}-1\right) T_{21}\left(-\beta_{i}\right) \\
& \times \prod_{i, k_{i}<0} T_{12}\left(-\beta_{i}-k_{i}-1\right) \cdots T_{12}\left(-\beta_{i}+1\right) T_{12}\left(-\beta_{i}\right) \xi .
\end{aligned}
$$

Theorem 2. The vectors $\xi^{(k)},(k) \in \mathbb{Z}^{p}$ form a basis of $M(\ell)$. Moreover, we have the formulas

$$
\begin{equation*}
T_{22}(u) \xi^{(k)}=\prod_{i=1}^{p}\left(u+\beta_{i}+k_{i}\right) \xi^{(k)} \tag{4.15}
\end{equation*}
$$

$$
\begin{align*}
& T_{21}(u) \xi^{(k)}=\sum_{i=1}^{p} A_{i}(k) \frac{\left(u+\beta_{1}+k_{1}\right) \cdots \wedge_{i} \cdots\left(u+\beta_{p}+k_{p}\right)}{\left(\beta_{1}-\beta_{i}+k_{1}-k_{i}\right) \cdots \wedge_{i} \cdots\left(\beta_{p}-\beta_{i}+k_{p}-k_{i}\right)} \xi^{\left(k+\delta_{i}\right)}, \tag{4.16}\\
& T_{12}(u) \xi^{(k)}=\sum_{i=1}^{p} B_{i}(k) \frac{\left(u+\beta_{1}+k_{1}\right) \cdots \wedge_{i} \cdots\left(u+\beta_{p}+k_{p}\right)}{\left(\beta_{1}-\beta_{i}+k_{1}-k_{i}\right) \cdots \wedge_{i} \cdots\left(\beta_{p}-\beta_{i}+k_{p}-k_{i}\right)} \xi^{\left(k-\delta_{i}\right)},
\end{align*}
$$

where

$$
A_{i}(k)= \begin{cases}1 & \text { if } \quad k_{i} \geq 0 \\ -\gamma\left(-\beta_{i}-k_{i}\right) & \text { if } \quad k_{i}<0\end{cases}
$$

and

$$
B_{i}(k)= \begin{cases}-\gamma\left(-\beta_{i}-k_{i}+1\right) & \text { if } \quad k_{i}>0 \\ 1 & \text { if } \quad k_{i} \leq 0 .\end{cases}
$$

The action of $T_{11}(u)$ is found from the relation

$$
\begin{equation*}
\left(T_{11}(u) T_{22}(u-1)-T_{21}(u) T_{12}(u-1)\right) \xi^{(k)}=\gamma(u) \xi^{(k)} . \tag{4.17}
\end{equation*}
$$

Proof. We start by proving the formulas for the action of the generators of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$. Relation (4.15) follows by induction from the defining relations (1.1). By Lemma4.2 we have: if $k_{i}>0$ then

$$
\begin{align*}
& T_{21}\left(-\beta_{i}-k_{i}\right) \xi^{(k)}=\xi^{\left(k+\delta_{i}\right)} \\
& T_{12}\left(-\beta_{i}-k_{i}\right) \xi^{(k)}=-\gamma\left(-\beta_{i}-k_{i}+1\right) \xi^{\left(k-\delta_{i}\right)} \tag{4.18}
\end{align*}
$$

if $k_{i}<0$ then

$$
\begin{align*}
& T_{12}\left(-\beta_{i}-k_{i}\right) \xi^{(k)}=\xi^{\left(k-\delta_{i}\right)} \\
& T_{21}\left(-\beta_{i}-k_{i}\right) \xi^{(k)}=-\gamma\left(-\beta_{i}-k_{i}\right) \xi^{\left(k+\delta_{i}\right)} \tag{4.19}
\end{align*}
$$

and if $k_{i}=0$ then

$$
\begin{align*}
& T_{12}\left(-\beta_{i}\right) \xi^{(k)}=\xi^{\left(k-\delta_{i}\right)} \\
& T_{21}\left(-\beta_{i}\right) \xi^{(k)}=\xi^{\left(k+\delta_{i}\right)} \tag{4.20}
\end{align*}
$$

Applying the Lagrange interpolation formula we obtain the remaining formulas.
To show that the vectors $\xi^{(k)}$ form a basis of $M(\ell)$, denote by \mathcal{T}_{β} the subspace of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ spanned by the elements

$$
\begin{aligned}
\tau^{(k)} & =\prod_{i, k_{i}>0} T_{21}\left(-\beta_{i}-k_{i}+1\right) \cdots T_{21}\left(-\beta_{i}-1\right) T_{21}\left(-\beta_{i}\right) \\
& \times \prod_{i, k_{i}<0} T_{12}\left(-\beta_{i}-k_{i}-1\right) \cdots T_{12}\left(-\beta_{i}+1\right) T_{12}\left(-\beta_{i}\right)
\end{aligned}
$$

where (k) runs over \mathbb{Z}^{p}. It suffices to prove the vector space decomposition

$$
\begin{equation*}
\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)=\mathcal{T}_{\ell} \oplus I_{\ell} \tag{4.21}
\end{equation*}
$$

Due to the formulas proved above, $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)=\mathcal{T}_{\ell}+I_{\ell}$. We now need to show that the vectors $\tau^{(k)}$ are linearly independent modulo the left ideal I_{ℓ}. By (4.15) and the genericity assumption, the elements $\tau^{(k)} \bmod I_{\ell}$ are eigenvectors for $T_{22}(u)$ with distinct eigenvalues. So the claim will follow if we demonstrate that each $\tau^{(k)}$ is nonzero modulo I_{ℓ}. Suppose first that γ is generic: $\gamma\left(-\beta_{i}-k\right) \neq 0$ for all $k \in \mathbb{Z}$ and all i. Then we deduce from (4.18)- (4.20) that $\tau^{(k)} \neq 0 \bmod I_{\ell}$ since $1 \neq 0$ $\bmod I_{\ell}$ which gives (4.21) for generic γ.

Let now γ be arbitrary. Suppose that a nonzero element τ belongs to the intersection $\mathcal{T}_{\ell} \cap I_{\ell}$. Then

$$
\begin{equation*}
\tau=\sum_{i=1}^{p} a_{i}\left(t_{22}^{(i)}-\beta^{(i)}\right)+\sum_{i=1}^{2 p} b_{i}\left(D^{(i)}-\gamma^{(i)}\right) \tag{4.22}
\end{equation*}
$$

where $D^{(i)}, \beta^{(i)}$ and $\gamma^{(i)}$ are the coefficients of the polynomials $D(u), \beta(u)$ and $\gamma(u)$, respectively, while $a_{i}, b_{i} \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$. Let $\widetilde{\gamma}$ be generic. Then we can rewrite (4.22) as

$$
\begin{equation*}
\tau=\sum_{i=1}^{p} a_{i}\left(t_{22}^{(i)}-\beta^{(i)}\right)+\sum_{i=1}^{2 p} b_{i}\left(D^{(i)}-\widetilde{\gamma}^{(i)}\right)+\sum_{i=1}^{2 p} b_{i}\left(\widetilde{\gamma}^{(i)}-\gamma^{(i)}\right) \tag{4.23}
\end{equation*}
$$

Consider the unique decompositions of the elements b_{j} in accordance with (4.21) where $\gamma(u)$ is taken to be $\widetilde{\gamma}(u)$:

$$
\begin{equation*}
b_{j}=\tau_{j}+\sum_{i=1}^{p} a_{i j}\left(t_{22}^{(i)}-\beta^{(i)}\right)+\sum_{i=1}^{2 p} b_{i j}\left(D^{(i)}-\widetilde{\gamma}^{(i)}\right) \tag{4.24}
\end{equation*}
$$

for some $a_{i j}, b_{i j} \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$. Using the decomposition (4.21) for generic $\widetilde{\gamma}(u)$ we must have

$$
\begin{equation*}
\tau=\sum_{j=1}^{2 p} \tau_{j}\left(\widetilde{\gamma}^{(j)}-\gamma^{(j)}\right) \tag{4.25}
\end{equation*}
$$

for all such $\widetilde{\gamma}(u)$. This means that the \mathcal{T}_{ℓ}-component of each element $b_{j}\left(\widetilde{\gamma}^{(j)}-\right.$ $\left.\gamma^{(j)}\right)$ is independent of $\widetilde{\gamma}(u)$. However, due to the formulas 4.15)-4.17), this is only possible if all b_{j} are zero. Finally, the elements a_{i} must be zero too by the decomposition (4.22) with generic γ. So, (4.21) holds for all $\gamma(u)$.

Remark 1. Given two monic polynomials $\alpha(u)$ and $\beta(u)$ of degree p define the corresponding Verma module $V(\alpha(u), \beta(u))$ as the quotient of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ by the left ideal generated by the coefficients of the polynomials $T_{11}(u)-\alpha(u), T_{22}(u)-\beta(u)$ and $T_{12}(u)$; cf. T1, T2. Then the same argument as above shows that $V(\alpha(u), \beta(u))$ has a basis $\left\{\xi^{(k)}\right\}$ parameterized by p-tuples of nonnegative integers $(k)=\left(k_{1}, \ldots\right.$, k_{p}). The formulas of Theorem 回 hold for the basis vectors $\xi^{(k)}$, where $\gamma(u)$ should be taken to be $\alpha(u) \beta(u-1)$ which defines the central character γ of $V(\alpha(u), \beta(u))$. In fact, $V(\alpha(u), \beta(u))$ is isomorphic to the quotient of the corresponding universal module $M(\ell), \ell=(\beta, \gamma)$ by the submodule spanned by the vectors $\left\{\xi^{(k)}\right\}$ such that (k) contains at least one negative component k_{i}.

Corollary 6. Let $\ell=(\beta, \gamma) \in \mathcal{L}_{1}$.
(1) The module $M(\ell)$ is a generic weight $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module with central character γ, $\operatorname{Supp} M(\ell)=\mathbb{Z}^{p}$ and all weight spaces are 1-dimensional.
(2) The module $M(\ell)$ has a unique maximal submodule and hence a unique irreducible quotient.
(3) The equivalence class $D(\ell)$ coincides with the set $\ell+\mathcal{L}_{0}$.

Proof. Statement (1) follows immediately from Theorem 2 By Proposition 4.1] the sum of all proper submodules is again a proper submodule. Thus $M(\ell)$ has a unique maximal submodule which implies (2). The statement (3) follows immediately from (11).

We will denote the unique irreducible quotient of $M(\ell)$ by $L(\ell)$. It follows from Corollary 6 that all weight spaces of $L(\ell)$ are 1-dimensional. Using Proposition 4.1 we can now describe all irreducible generic weight $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-modules.

Corollary 7. Let $\ell=(\beta, \gamma) \in \mathcal{L}_{1}$.
(1) There exists an irreducible generic weight $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module $L(\ell)$ with $L(\ell)_{\beta} \neq$ 0 and with central character γ. Moreover, $\operatorname{dim} L(\ell)_{\psi}=1$ for all $\psi \in$ Supp $L(\ell)$.
(2) Any irreducible weight module over $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ with central character γ generated by a nonzero vector of weight β is isomorphic to $L(\ell)$.

5. Properties of Γ as a subalgebra of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$

In this section we adapt the results from DFO2 and Ov for the Yangians. In particular, we show that Γ is a Harish-Chandra subalgebra.

For any $\ell_{0} \in \mathcal{L}_{1}$ the module $M\left(\ell_{0}\right)$ has a basis $\xi^{(k)},(k) \in \mathbb{Z}^{p}$ with the action of generators of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ defined by formulas 4.15)-4.17). Then we can relabel the basis elements of $M\left(\ell_{0}\right)$ by $\xi_{\ell}, \ell \in \ell_{0}+\mathcal{L}_{0}$. It follows from Theorem 2 that for every $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ there exists a finite subset $\mathcal{L}_{x} \subset \mathcal{L}_{0}$ consisting of elements δ such that

$$
\begin{equation*}
\xi_{\ell}=\sum_{\delta \in \mathcal{L}_{x}} \theta(x, \ell, \delta) \xi_{\ell+\delta} \tag{5.26}
\end{equation*}
$$

where $\theta(x, \ell, \delta)=\theta(x, \mathrm{~b}, \delta)(\ell), \theta(x, \mathrm{~b}, \delta) \in \mathbb{L}, \mathrm{b}=\left(b_{1}, \ldots, b_{p}, g_{1}, \ldots, g_{2 p}\right)$. Clearly, the set \mathcal{L}_{x} is $S_{p} \times S_{2 p}$-invariant. Note that for a given x this formula does not depend on ℓ_{0}.

Let $\mathrm{M}_{\mathcal{L}_{0}}(\mathbb{L})$ be the ring of locally finite (with the finite number of non-zero elements in each row and each column) matrices over \mathbb{L} with the entries indexed by the elements of \mathcal{L}_{0}. Any $\ell \in \mathcal{L}_{1}$ defines the evaluation homomorphism $\chi_{\ell}: \mathbb{L} \longrightarrow \mathbb{k}$, which induces the homomorphism of matrix algebras $\mathrm{M}_{\mathcal{L}_{0}}(\ell): \mathrm{M}_{\mathcal{L}_{0}}(\mathbb{L}) \longrightarrow \mathrm{M}_{\mathcal{L}_{0}}(\mathbb{k})$. For $\ell, \ell^{\prime} \in \mathcal{L}_{0}$ denote by $e_{\ell \ell^{\prime}}$ the corresponding matrix unit in $\mathrm{M}_{\mathcal{L}_{0}}(\mathbb{L})$. The group \mathbb{W} acts on $\mathrm{M}_{\mathcal{L}_{0}}(\mathbb{L})$ as follows: $\left(w^{-1} \cdot X\right)_{\ell, \ell^{\prime}}=w^{-1} \cdot X_{w(\ell) w\left(\ell^{\prime}\right)}$ for all $w \in \mathbb{W}$, $X=\left(X_{\ell \ell^{\prime}}\right)_{\ell, \ell^{\prime} \in \mathrm{L}_{0}}, \ell, \ell^{\prime} \in \mathcal{L}_{0}$. Note that this action induces an action of $S_{p} \times S_{2 p}$ on the free \mathbb{L}-module $X_{0}=\sum_{\delta \in \mathcal{L}_{0}} \mathbb{L} e_{\delta, \overline{0}}$ where $\overline{0}$ is a zero element in \mathcal{L}_{0}.

Define a map

$$
\mathrm{G}: \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right) \rightarrow \mathrm{M}_{\mathcal{L}_{0}}(\mathbb{L})
$$

such that for any $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ and any $\ell \in \mathcal{L}_{0}, \mathrm{G}(x)_{\ell \ell^{\prime}}=\theta(x, \mathrm{~b}+\ell, \delta)$ if $\ell^{\prime}-\ell=\delta$ and 0 otherwise.

Lemma 5.1. (1) G is a representation of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$.
(2) $\mathrm{G}(x)$ is \mathbb{W}-invariant for any $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$. In particular, $\mathrm{G}(x)_{\overline{0} \overline{0}} \in K(\Gamma)$.
(3) If $x=x\left(b_{1}, \ldots, b_{p}, g_{1}, \ldots, g_{2 p}\right) \in \Gamma$ then $\mathrm{G}(x)_{\ell \ell}=x\left(b_{1}+l_{1}, \ldots, b_{p}+\right.$ $\left.l_{p}, g_{1}, \ldots, g_{2 p}\right)$ where $\ell=\left(l_{1}, \ldots, l_{p}, 0, \ldots, 0\right) \in \mathcal{L}_{0}$.
(4) $\mathrm{G}(\Gamma)$ consists of \mathbb{W}-invariant diagonal matrices X such that $X_{\overline{0} \overline{0}} \in \Gamma$. In particular, $X_{\overline{0} \overline{0}} \in \Gamma$ determines X.

Proof. Let T be a free (non-commutative) algebra with generators $t_{i j}^{(k)}, i, j=1,2$, $k=1, \ldots, p, \pi: \mathrm{T} \rightarrow \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right), t_{i j}^{(k)} \longmapsto t_{i j}^{(k)}$, be a canonical projection. Define a homomorphism $g: \mathrm{T} \rightarrow \mathrm{M}_{\mathcal{L}_{0}}(\mathbb{L})$ by $g\left(t_{i j}^{(k)}\right)=\mathrm{G}\left(t_{i j}^{(k)}\right)$ for all suitable i, j, k. To prove (11) it is enough to show that $g(\operatorname{Ker} \pi)=0$. Let $f \in \operatorname{Ker} \pi$ and suppose that $g(f)_{\ell^{\prime} \ell^{\prime \prime}} \in \mathbb{L}$ is nonzero for some $\ell^{\prime}, \ell^{\prime \prime} \in \mathcal{L}_{0}$. Then $\mathrm{M}_{\mathcal{L}_{0}}(\ell)(g(f))=0$ and thus $g(f)_{\ell^{\prime} \ell^{\prime \prime}}(\ell)=0$ for any $\ell \in \mathcal{L}_{1}$. Since \mathcal{L}_{1} is dense in $\mathrm{Specm} L$ we conclude that $g(f)=0$ implying (1).

The image of G is \mathbb{W}-invariant since it holds for the generators of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ (4.15)4.17. For any $\sigma \in S_{p} \times S_{2 p},\left(\sigma^{-1} \cdot \mathrm{G}\right)(x)_{\overline{0} \overline{0}}=\sigma^{-1}\left(\mathrm{G}(x)_{\sigma(\overline{0}) \sigma(\overline{0})}\right)=\sigma^{-1}\left(\mathrm{G}(x)_{\overline{0} \overline{0}}\right)$. Hence $\mathrm{G}(x)_{\overline{0} \overline{0}}$ is $S_{p} \times S_{2 p}$-invariant proving (22). The statement (3) follows from (2) if we apply a shift by $\ell \in \mathcal{L}_{0}$ to an arbitrary $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$. The statement (4) follows immediately from (2) and (3).

The composition r_{ℓ} of G and $\mathrm{M}_{\mathcal{L}_{0}}(\ell)$ defines a representation G_{ℓ} of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$. It is easy to see that the corresponding $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module coincides with the module $M(\ell)$ from Theorem 2

Proposition 5.1. The representation $\mathrm{G}: \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right) \longrightarrow \mathrm{M}_{\mathcal{L}_{0}}(\mathbb{L})$ is faithful.
Proof. It is clear that $\operatorname{Ker} \mathrm{G} \subset \cap_{\ell \in \mathcal{L}_{1}} \operatorname{Ker} r_{\ell}$. Hence it is enough to prove that

$$
\bigcap_{\ell \in \mathcal{L}_{1}} \operatorname{Ker} r_{\ell}=0 .
$$

Let $\ell=(\beta, \gamma)$. Then Ker $r_{\ell}=\operatorname{Ann} M(\ell)$ dy definition. Since $M(\ell)=\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right) / I_{\ell}$ we have that $\operatorname{Ker} r_{\ell} \subset I_{\ell}$. Therefore, it is enough to show that $\cap_{\ell \in \mathcal{L}_{1}} I_{\ell}=0$. By Theorem (1) the Yangian $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ is free as a right module over Γ. Let $x_{i}, i \in \mathcal{I}$ be a basis of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ over Γ. If $x=\sum_{i \in \mathcal{I}} x_{i} z_{i}$ for some $z_{i} \in \Gamma$ then $x \in I_{\ell}$ if and only if $z_{i}(\ell)=0$ for all $i \in \mathcal{I}$. Since \mathcal{L}_{1} is dense in \mathcal{L} in Zariski topology it follows immediately that if $x \in \cap_{\ell \in \mathcal{L}_{1}} I_{\ell}$ then $z_{i}=0$ for all $i \in \mathcal{I}$ and thus $x=0$. This completes the proof.

Immediately from the proof of the theorem above and the density of \mathcal{L}_{1} in \mathcal{L} we obtain the following analogue of the Harish-Chandra Theorem for Lie algebras [Di].

Corollary 8. Let $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ be such that $x M(\ell)=0$ for any $\ell \in \mathcal{L}_{1}$. Then $x=0$.
Corollary 9. (1) Γ is a maximal commutative subalgebra in $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$.
(2) If for $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ the matrix $\mathrm{G}(x)$ is diagonal then $x \in \Gamma$.

Proof. Consider an element $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ which commutes with every $z \in \Gamma$. Suppose there exist $\ell_{1}, \ell_{2} \in \mathcal{L}_{0}, \ell_{1} \neq \ell_{2}$ such that $\mathrm{G}(x)_{\ell_{1} \ell_{2}} \neq 0$. There exists $z \in \Gamma$ such that $z\left(\ell_{1}\right) \neq z\left(\ell_{2}\right)$ and thus $\mathrm{G}(z)_{\ell_{1} \ell_{1}} \neq \mathrm{G}(z)_{\ell_{2} \ell_{2}}$ by Lemma 5.1. (3). Then we have $\mathrm{G}(x z)_{\ell \ell^{\prime}}=\mathrm{G}(x)_{\ell \ell^{\prime}} \mathrm{G}(z)_{\ell^{\prime} \ell^{\prime}}=\mathrm{G}(z x)_{\ell \ell^{\prime}}=\mathrm{G}(z)_{\ell \ell} \mathrm{G}(x)_{\ell \ell^{\prime}}$ and therefore $\mathrm{G}(x)$ is diagonal. To conclude the maximality of Γ it is enough to prove the statement (2). By Lemma 5.1 (2), $\mathrm{G}(x)_{\overline{0} \overline{0}}=\frac{f}{g} \in \mathbb{L}$ where $f, g \in \Gamma$ are relatively prime. Suppose that $g \notin \mathbb{k}$. By Lemma [5.1. (4) we have that $\mathrm{G}(x) \mathrm{G}(g)=\mathrm{G}(f)$ and $x g=f$ by Proposition 5.1 It implies that $x \in \Gamma$ by Theorem (1) (1). This completes the proof.

Corollary 10. Let $p: \mathrm{M}_{\mathcal{L}_{0}}(\mathcal{L}) \longrightarrow X_{0}$ be the projection. Then the composition $r: \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right) \xrightarrow{\mathrm{G}} \mathrm{M}_{\mathcal{L}_{0}}(\mathbb{L}) \xrightarrow{p} X_{0}$ is a monomorphism of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-modules. The map p commutes with the action of $S_{p} \times S_{2 p}$ and in particular, $r\left(\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)\right)$ is $S_{p} \times S_{2 p}$-invariant.
Proof. Note that for any $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ the matrix $\mathrm{G}(x) \in \mathrm{M}_{\mathcal{L}_{0}}(\mathbb{L})$ is determined completely by its column $p(\mathrm{G}(x))$. Thus $r(x)=0$ implies $\mathrm{G}(x)=0$ and $x=$ 0 by faithfulness of G. Hence r is a monomorphism. Other statements follow immediately from the definitions and Lemma [5.1 (2).

As in DFO2, we identify the $(\Gamma-\Gamma)$-bimodule structure on $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ with the corresponding $\Gamma \otimes_{\mathbb{k}} \Gamma$-module structure. Let $\mathbf{b}=\left(b_{1}, \ldots, b_{p}, g_{1}, \ldots, g_{2 p}\right)$. For any $z \in \Gamma$ and any $S \subset \mathcal{L}$ introduce the following polynomial

$$
F_{S, z}=\prod_{\delta \in S}(z \otimes 1-1 \otimes z(\mathrm{~b}+\delta))=\sum_{i=0}^{|S|} z^{i} \otimes a_{i}, a_{i} \in \mathbb{L}
$$

Proposition 5.2. (DFO2], Lemma 25). Let S be a finite $S_{p} \times S_{2 p}$-invariant subset in \mathcal{L} and z be any element of $\Gamma, F_{S, z}=\sum_{i=0}^{|S|} z^{i} \otimes a_{i}, a_{i} \in \mathbb{L}$.
(1) $a_{i} \in \Gamma, i=0, \ldots,|S|$.
(2) For any $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ such that $\mathcal{L}_{x} \subset S$ holds $\sum_{i=0}^{q} z^{i} x a_{i}=0$.

Proof. If S is $S_{p} \times S_{2 p}$-invariant then the coefficients of the polynomial $F_{S, z}$ are $S_{p} \times S_{2 p}$-invariant and hence belong to Γ which proves (11). It is enough to check the statement (21) for $S=\mathcal{L}_{x}$ since $F_{S, z}=F_{S \backslash \mathcal{L}_{x}, z} F_{\mathcal{L}_{x}, z}$. Denote $q=|S|$. Let $\ell \in \mathcal{L}_{1}$ and let ξ_{ℓ} be a basis element of $M(\ell)$. Then

$$
\begin{gathered}
\sum_{i=0}^{q} z^{i} x a_{i}\left(\xi_{\ell}\right)=\sum_{i=0}^{q} z^{i} x a_{i}(\ell)\left(\xi_{\ell}\right)= \\
\sum_{i=0}^{q} z^{i} a_{i}(\ell) \sum_{\delta \in \mathcal{L}_{x}} \theta(x, \ell, \delta) \xi_{\ell+\delta}= \\
\sum_{\delta \in \mathcal{L}_{x}} \theta(x, \ell, \delta) \sum_{i=0}^{q} a_{i}(\ell)\left(z^{i} \xi_{\ell+\delta}\right)= \\
\sum_{\delta \in \mathcal{L}_{x}} \theta(x, \ell, \delta) \sum_{i=0}^{q} a_{i}(\ell) z(\ell+\delta)^{i} \xi_{\ell+\delta}=\sum_{\delta \in \mathcal{L}_{x}} \theta(x, \ell, \delta) F_{\mathcal{L}_{x}, z}(z(\ell+\delta), \ell) \xi_{\ell+\delta}=0
\end{gathered}
$$

since $F_{\mathcal{L}_{x}, z}(z(\ell+\delta), \ell)=0$ for every $\delta \in \mathcal{L}_{x}$. Applying Corollary $\}$ we obtain the statement of the proposition.

The main result of this section is the following
Theorem 3. Γ is a Harish-Chandra subalgebra of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$.
Proof. Following DFO2, Proposition 8, it is enough to show that a Γ-bimodule $\Gamma t_{i j}^{(k)} \Gamma$ is finitely generated both as left and as right module for every possible choice of indices i, j, k. It is obvious for $i=j=2$ since $t_{22}^{(k)} \in \Gamma$. We prove it for $i=2, j=1$. Since d_{i} is central for every $i=1, \ldots, 2 p$ we have $d_{i} t_{21}^{(k)}=t_{21}^{(k)} d_{i}$. From formulas (4.16) follows that $\mathcal{L}_{t_{21}^{(k)}}=\left\{\delta_{i} \mid i=1, \ldots, p\right\}$. Then

$$
F_{\mathcal{L}_{t_{21}^{(k)}}, t_{22}^{(i)}}=z^{p} \otimes 1+\sum_{l=0}^{p-1} z^{l} \otimes a_{l}, a_{l} \in \Gamma
$$

and

$$
\begin{equation*}
\left(t_{22}^{(i)}\right)^{p} t_{21}^{(k)}+\sum_{l=0}^{p-1}\left(t_{22}^{(i)}\right)^{l} t_{21}^{(k)} a_{l}=0 \tag{5.27}
\end{equation*}
$$

by Proposition [5.2] (2). Hence the elements $\left(\prod_{i=1}^{p}\left(t_{22}^{(i)}\right)^{k_{i}}\right) t_{21}^{(k)}, 0 \leq k_{i}<p$ form the generators of $\Gamma t_{21}^{(k)} \Gamma$ as a right Γ-module.

Applying a suitable automorphism we conclude that $\Gamma t_{21}^{(k)} \Gamma$ is finitely generated as a left Γ-module.

The cases $i=1, j=2$ and $i=j=1$ can be treated analogously since $\mathcal{L}_{t_{12}^{(k)}}=$ $\left\{-\delta_{i} \mid i=1, \ldots, p\right\}$ and $\mathcal{L}_{t_{11}^{(k)}}=\left\{\delta_{i}-\delta_{j} \mid i, j=1, \ldots, p\right\}$. Hence $\Gamma t_{i j}^{(k)} \Gamma$ is finitely generated as a right and as a left Γ-module.

6. Category of Harish-Chandra modules over $Y_{p}\left(\mathfrak{g l}_{2}\right)$

Since Γ is a Harish-Chandra subalgebra of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ we can apply all the statements from Section 2.1. Denote $\mathcal{A}=\mathcal{A}_{\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right), \Gamma}$. Then by Proposition 1, the categories $\mathcal{A}-\bmod _{d}$ and $\mathbb{H}\left(\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right), \Gamma\right)$ are equivalent. Also the full subcategory $\mathbb{H} W\left(\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right), \Gamma\right)$ consisting of weight modules is equivalent to the module category $\mathcal{A}_{W}-\bmod$. If $\ell \in \mathcal{L}$ then the category R_{ℓ} is equivalent to the block $\mathcal{A}_{W}(D(\ell))-\bmod$ of the category $\mathcal{A}_{W}-\bmod$.

We will show that each character of Γ extends to a finite number of irreducible Harish-Chandra modules over $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$. This is an analogue of the corresponding result in the case of a Lie algebra $\mathfrak{g l}_{n}$ which was conjectured in DFO1 and proved in Ov . In this section we use the techniques of DFO2 and Ov .

Lemma 6.1. For any $x \in \mathrm{Y}_{p}(\mathfrak{g l}(2)), f \in \Gamma \otimes \Gamma, \ell, \ell^{\prime} \in \mathcal{L}_{0}$ holds

$$
\mathrm{G}(f \cdot x)_{\ell \ell^{\prime}}=f\left(\mathrm{~b}+\ell, \mathrm{b}+\ell^{\prime}\right) \mathrm{G}(x)_{\ell \ell^{\prime}} .
$$

Proof. Let $f=\sum_{i} z_{i} \otimes z_{i}^{\prime} \in \Gamma \otimes \Gamma$. Then $\mathrm{G}(f \cdot x)=\sum_{i} \mathrm{G}\left(z_{i}\right) \mathrm{G}(x) \mathrm{G}\left(z_{i}^{\prime}\right)$ and hence

$$
\begin{gathered}
\mathrm{G}(f \cdot x)_{\ell \ell^{\prime}}=\sum_{i} \mathrm{G}\left(z_{i}\right)_{\ell \ell} \mathrm{G}(x)_{\ell \ell^{\prime}} \mathrm{G}\left(z_{i}^{\prime}\right)_{\ell^{\prime} \ell^{\prime}}=\mathrm{G}(x)_{\ell \ell^{\prime}} \sum_{i} \mathrm{G}\left(z_{i}\right)_{\ell \ell} \mathrm{G}\left(z_{i}^{\prime}\right)_{\ell^{\prime} \ell^{\prime}}= \\
\mathrm{G}(x)_{\ell \ell^{\prime}} \sum_{i} z_{i}(\mathrm{~b}+\ell) z_{i}^{\prime}\left(\mathrm{b}+\ell^{\prime}\right)=\mathrm{G}(x)_{\ell \ell^{\prime}} f\left(\mathrm{~b}+\ell, \mathrm{b}+\ell^{\prime}\right) .
\end{gathered}
$$

Lemma 6.2. (DFO2, Lemma 25). Let $z \in \Gamma, S \subset \mathcal{L}$ be a $S_{p} \times S_{2 p}$-invariant set and $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ be such that $\mathrm{G}(x)_{\ell \ell^{\prime}}=0$ for all $\ell, \ell^{\prime}, \ell-\ell^{\prime} \notin S$ then $F \cdot x=0$.
Proof. Let F in the form $F=\sum_{i} z^{i} \otimes a_{i}$ where $a_{i} \in L$. If $\ell-\ell^{\prime} \in S$ then $\mathrm{G}(F \cdot x)_{\ell^{\prime} \ell}=F\left(\mathrm{~b}+\ell, \mathrm{b}+\ell^{\prime}\right) \mathrm{G}(x)_{\ell \ell^{\prime}}$ by Lemma6.1 Then $h=z \otimes 1-1 \otimes z\left(\mathrm{~b}+\ell-\ell^{\prime}\right)$ divides $F, h\left(\mathrm{~b}+\ell, \mathrm{b}+\ell^{\prime}\right)=0, F\left(\mathrm{~b}+\ell, \mathrm{b}+\ell^{\prime}\right)=0$ and $F \cdot x=0$.

Let $S \subset \mathcal{L}_{0}$ be a finite $S_{p} \times S_{2 p}$-invariant set. Define $\mathrm{Y}^{S}=\left\{x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right) \mid \mathcal{L}_{x} \subset\right.$ $S\}$. Clearly Y^{S} is a Γ-subbimodule in $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$. We have the following characterization of the bimodule Y^{S}.
Lemma 6.3. Let $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$. Then
(1) $x \in \mathrm{Y}^{S}$ if and only if whenever $\mathrm{G}(x)_{\ell, \ell^{\prime}} \neq 0$, for some $\ell, \ell^{\prime} \in \mathcal{L}_{0}$, implies that $\ell-\ell^{\prime} \in S$.
(2) $y=F_{\mathcal{L}_{x} \backslash S, z} \cdot x \in \mathrm{Y}^{S}$ for any $z \in \Gamma$.
(3) Y^{S} is a finitely generated left (right) Γ-module and $\mathrm{Y}^{S}=\mathbb{D}\left(\mathrm{Y}^{S}\right)$.
(4) $\mathrm{Y}^{\{0\}}=\Gamma$.

Proof. The statement (11) follows from definitions. Let $F=F_{\mathcal{L}_{x} \backslash S, z}$. To prove (2) calculate the matrix element $\mathrm{G}(y)_{\ell \ell^{\prime}}$ provided $\ell-\ell^{\prime} \notin S$. If $\ell-\ell^{\prime} \notin \mathcal{L}_{x}$ then $\mathrm{G}(x)_{\ell \ell^{\prime}}=0$ and hence $\mathrm{G}(y)_{\ell \ell^{\prime}}=0$. Suppose that $\ell-\ell^{\prime} \in \mathcal{L}_{x} \backslash S$ then by Lemma 6.1] $\mathrm{G}(y)_{\ell \ell^{\prime}}=\mathrm{G}(F \cdot x)_{\ell \ell^{\prime}}=F\left(\mathrm{~b}+\ell, \mathrm{b}+\ell^{\prime}\right) \mathrm{G}(x)_{\ell \ell^{\prime}}$. But

$$
F\left(\mathrm{~b}+\ell, \mathrm{b}+\ell^{\prime}\right)=\prod_{\delta \in \mathcal{L}_{x} \backslash S}\left(z(\mathrm{~b}+\ell)-z\left(\mathrm{~b}+\ell^{\prime}+\delta\right)\right)
$$

which is equal to zero. This proves (2).
Let $x \in \mathbb{D}\left(\mathrm{Y}^{S}\right)$ and $z \in \Gamma$ is such that $z \neq 0$ and $z x \in \mathrm{Y}^{S}$. Since $\mathrm{G}(z x)_{\ell \ell^{\prime}}=$ $z(\mathrm{~b}+\ell) \mathrm{G}(x)_{\ell \ell^{\prime}}$ then $\mathrm{G}(z x)_{\ell \ell^{\prime}}=0$ if and only if $\mathrm{G}(x)_{\ell \ell^{\prime}}=0$ implying that $x \in \mathrm{Y}^{S}$. Hence $\mathrm{Y}^{S}=\mathbb{D}\left(\mathrm{Y}^{S}\right)$.

Consider $r\left(\mathrm{Y}^{S}\right)$ as a Γ-submodule of X_{0} where $r: \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right) \longrightarrow X_{0}$ is defined in Corollary 10 Then $r\left(\mathrm{Y}^{S}\right)$ belongs to a free \mathbb{L}-submodule of X_{0} of finite rank $\sum_{\ell \in S} \mathbb{L} e_{\overline{0} \ell}$. Hence $\mathbb{L} \cdot r\left(\mathrm{Y}^{S}\right)$ is finitely generated \mathcal{L}-module. Without loss of generality we can assume that it is generated by the elements $r\left(x_{1}\right), \ldots, r\left(x_{s}\right) \in r\left(\mathrm{Y}^{S}\right)$, i.e. $\mathbb{L} \cdot r\left(\mathrm{Y}^{S}\right)=\sum_{i=1}^{s} \mathbb{L} \cdot r\left(x_{i}\right)$. Since $\mathbb{D}\left(\mathrm{Y}^{S}\right)=\mathrm{Y}^{S}$ we have that $\mathbb{D}\left(\sum_{i=1}^{s} \Gamma x_{i}\right) \subset$ Y^{S}. Fix $x \in \mathrm{Y}^{S}$. Then $r(x)=\sum_{i=1}^{s} t_{i} r\left(x_{i}\right), t_{i} \in \mathbb{L}$. Note that for any $y \in \mathrm{Y}^{S}$ and any $\sigma \in S_{p} \times S_{2 p}, \sigma \cdot r(y)=r(y)$. Hence $p!(2 p)!r(x)=\sum_{\sigma \in S_{p} \times S_{2 p}} \sigma \cdot r(x)=$ $\sum_{\sigma \in S_{p} \times S_{2 p}} \sum_{i=1}^{s}\left(\sigma \cdot t_{i}\right) \sigma \cdot r\left(x_{i}\right)$ which can be rewritten as follows

$$
r(x)=\frac{1}{p!(2 p!)} \sum_{i=1}^{s} u_{i} r\left(x_{i}\right)
$$

where $u_{i}=\sum_{\sigma \in S_{p} \times S_{2 p}} \sigma \cdot t_{i}$. Since each u_{i} is $S_{p} \times S_{2 p}$-invariant then it belongs to the field of fractions $K(\Gamma)$ for all $i=1, \ldots, s$. Multiplying both parts of the last equality by the common denominator of u_{i} we obtain that $x \in \mathbb{D}\left(\sum_{i=1}^{s} \Gamma x_{i}\right)$ and thus $\mathbb{D}\left(\sum_{i=1}^{s} \Gamma x_{i}\right)=\mathrm{Y}^{S}$. Applying Corollary 3 we conclude that Y^{S} is finitely generated over Γ. This proves (3). By the definition of $\mathrm{Y}^{S}, x \in \mathrm{Y}^{\{0\}}$ if and only if $\mathrm{G}(x)$ is diagonal. Hence $x \in \Gamma$ by Corollary (9) (2).

Let $\mathbf{m}, \mathbf{n} \in \operatorname{Specm} \Gamma, \ell_{\mathbf{m}}, \ell_{\mathbf{n}} \in \mathcal{L}$ are such that $\imath^{*}\left(\ell_{\mathbf{m}}\right)=\mathbf{m}$ and $\imath^{*}\left(\ell_{\mathbf{n}}\right)=\mathbf{n}$. Denote

$$
S(\mathbf{m}, \mathbf{n})=\left\{\sigma_{1} \ell_{\mathbf{n}}-\sigma_{2} \ell_{\mathbf{m}} \mid \sigma_{1}, \sigma_{2} \in S_{p} \times S_{2 p}\right\} \cap \mathcal{L}_{0}
$$

Consider the following subset in \mathcal{L}

$$
\mathcal{L}_{2}=\left\{\ell \in \mathcal{L} \mid \ell_{i}-\ell_{j} \notin \mathbb{Z} \backslash\{0\}, i, j=1, \ldots, p\right\}
$$

and set $\Omega=i^{*}\left(\mathcal{L}_{2}\right)$.
Proposition 6.1. (1) For all $\mathbf{m}, \mathbf{n} \in \operatorname{Specm} \Gamma$ and all $m, n \geq 0$ holds

$$
\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)=\mathrm{Y}^{S}+\mathbf{n}^{n} \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)+\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right) \mathbf{m}^{m}
$$

where $S=S(\mathbf{m}, \mathbf{n})$.
(2) For all $\mathbf{m}, \mathbf{n} \in \operatorname{Specm} \Gamma$ a system of generators of Y^{S} as a left Γ-module (as a right Γ-module) generates $\mathcal{A}(\mathbf{m}, \mathbf{n})$ as a left $\Gamma_{\mathbf{n}}$-module (as a right $\Gamma_{\mathbf{m}}$-module), i.e. $\mathcal{A}(\mathbf{m}, \mathbf{n})$ is finitely generated as a left $\Gamma_{\mathbf{n}}$ and as a right $\Gamma_{\mathbf{m}}$-module. In particular, the algebra Γ is big in every $\mathbf{n} \in \operatorname{Ob} \mathcal{A}$.
(3) If $S(\mathbf{m}, \mathbf{n})=\varnothing$ then $\mathcal{A}(\mathbf{m}, \mathbf{n})=0$ (cf. DFO2, Corollary 27).
(4) If $S(\mathbf{m}, \mathbf{n})=\{0\}$ then $\mathcal{A}(\mathbf{m}, \mathbf{n})$ is generated as a left $\Gamma_{\mathbf{n}}$ and as a right $\Gamma_{\mathbf{m}}$-module by the image of 1 in $\mathcal{A}(\mathbf{m}, \mathbf{n})$.
(5) If $S(\mathbf{m}, \mathbf{m})=\{0\}$ then $\mathbf{m} \in \Omega, \mathcal{A}(\mathbf{m}, \mathbf{m})$ is a quotient algebra of Γ and $\chi_{\mathbf{m}}$ extends uniquely to an irreducible $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module.
(6) If $\ell_{\mathbf{m}} \in \mathcal{L}_{1}$ then $\mathcal{A}(\mathbf{m}, \mathbf{m})=\Gamma_{\mathbf{m}}$.
(7) Let $\ell \in \mathcal{L}_{1}, \mathbf{m}=\imath^{*}(\ell)$ and $\mathbf{n}=\imath^{*}\left(\ell+\delta_{i}\right), i \in\{1, \ldots, p\}$. Then $\mathcal{A}(\mathbf{m}, \mathbf{n})$ is a free of rank 1 right $\Gamma_{\mathbf{m}^{-}}$(left $\Gamma_{\mathbf{n}^{-}}$) module.

Proof. (11) It is enough to show that for any $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ and any $k \geqslant 1$ there exists $x_{k} \in \mathrm{Y}^{S}$ such that

$$
\begin{equation*}
x \in x_{k}+\sum_{i=0}^{k} \mathbf{n}^{k-i} x \mathbf{m}^{i} . \tag{6.28}
\end{equation*}
$$

The statement will follow if we choose $k=m+n+1$. We will use induction on k. If $\mathcal{L}_{x} \subset S$ then $x \in \mathrm{Y}^{S}$ and there is nothing to prove. Note that by the definition of the set S for any $\ell \in \mathcal{L}_{x} \backslash S$ the $S_{p} \times S_{2 p}$-orbits of $\ell_{\mathbf{n}}$ and $\ell_{\mathbf{m}}+\ell$ are disjoint. Hence there exists $z \in \Gamma$ such that $z\left(\ell_{\mathbf{n}}\right) \neq z\left(\ell_{\mathbf{m}}+\ell\right)$ for any $\ell \in \mathcal{L}_{x} \backslash S$. Let $F=F_{\mathcal{L}_{x} \backslash S, z}$. Then $F\left(\ell_{\mathbf{m}}, \ell_{\mathbf{n}}\right)=\prod_{\ell \in \mathcal{L}_{x} \backslash S}\left(z\left(\ell_{\mathbf{n}}\right)-z\left(\ell_{\mathbf{m}}+\ell\right)\right) \neq 0$ since every factor F is non-zero. We can assume that $F\left(\ell_{\mathbf{m}}, \ell_{\mathbf{n}}\right)=1$. Hence we obtain that $F=1+u$ where $u \in \mathbf{n} \otimes \Gamma+\Gamma \otimes \mathbf{m}$. It follows from Lemma (6.3) (2) that $x_{1}=F \cdot x$ belongs to Y^{S}. Hence we have $x_{1}=(1+u) \cdot x \in x+\mathbf{n} x \Gamma+\Gamma x \mathbf{m}$ and $x \in x_{1}+\mathbf{n} x \Gamma+\Gamma x \mathbf{m}$. This proves the base of induction. Assume that 6.28 holds for some $k \geq 1$. Then

$$
x \in x_{k}+\sum_{i=0}^{k} \mathbf{n}^{k-i}\left(x_{k}+\sum_{j=0}^{k} \mathbf{n}^{k-j} x \mathbf{m}^{j}\right) \mathbf{m}^{i} \subset x_{k}+\sum_{i=0}^{k} \mathbf{n}^{k-i} x_{k} \mathbf{m}^{i}+\sum_{i=0}^{k+1} \mathbf{n}^{k+1-i} x \mathbf{m}^{i} .
$$

Since Y^{S} is a Γ-bimodule we conclude that $x_{k}+\sum_{i=0}^{k} \mathbf{n}^{k-i} x_{k} \mathbf{m}^{i} \subset \mathrm{Y}^{S}$ which implies the statement (1). In particular,

$$
x_{k+1}-x_{k} \in \sum_{i=0}^{k} \mathbf{n}^{k-i} \mathrm{Y}^{S} \mathbf{m}^{i} .
$$

(2) We prove the statement for the case of left module, the case of the right module can be treated analogously. By (11) the image \bar{x} of every $x \in \mathrm{Y}^{S}$ in $\mathcal{A}(\mathbf{n}, \mathbf{m})$ is the limit of the sequence $\left(\bar{x}_{k}\right)_{k \geqslant 1}, x_{k} \in \mathrm{Y}^{S}$. Let y_{1}, \ldots, y_{m} be a finite system of generators of Y^{S} as a left Γ-module. Then for every $N>1$ there exists a maximal d_{N} such that

$$
y_{i} \mathbf{m}^{N} \subset \sum_{j=1}^{m} \mathbf{n}^{d_{N}} y_{j}
$$

for all $i=1, \ldots, m$. Note that by the proof of (11), $x_{k+1}-x_{k} \in \sum_{i=0}^{k} \mathbf{n}^{k-i} \mathrm{Y}^{S} \mathbf{m}^{i} \subset$ $\mathbf{n}^{R_{k}} \mathrm{Y}^{S}$ where $R_{k}=\min \left\{[k / 2], d_{[k / 2]}\right\}$. Since Y^{S} is a finitely generated right Γ module and Γ is noetherian then the intersection $\cap_{k \geq 1} \mathrm{Y}^{S} \mathbf{m}^{k}=0$. It follows that
$d_{N} \rightarrow \infty$ while $N \rightarrow \infty$. Since

$$
\bar{x}=\bar{x}_{1}+\sum_{k=1}^{\infty} \overline{\left(x_{k+1}-x_{k}\right)}
$$

we have $\bar{x} \in \sum_{k=1}^{\infty} \overline{\mathbf{n}^{R_{k}} Y^{S}} \subset \sum_{l=1}^{m} \Gamma_{\mathbf{n}} \overline{y_{l}}$. Note that the first sum is well defined since $R_{k} \rightarrow \infty$ when $k \rightarrow \infty$. We conclude that $\mathcal{A}(\mathbf{n}, \mathbf{m})$ is finitely generated as left $\Gamma_{\mathrm{n}}-$ module. This completes the proof of (2).
(3) If $S=\varnothing$, then $\mathrm{Y}^{S}=0$ and the statement follows from (11) and the definition of the category \mathcal{A} (2.8).
(44) By the definition of Y^{S} for every $x \in \mathrm{Y}^{\{0\}}$ the matrix $\mathrm{G}(x)$ is diagonal. Following Corollary (2) (2) means $x \in \Gamma$, in particular $\mathcal{A}(\mathbf{m}, \mathbf{n})$ is generated (both as a left and as a right module) by the image of $1 \in \Gamma$.
(5) By (4), $\mathrm{Y}^{0}=\Gamma$, i.e. $\mathcal{A}(\mathbf{m}, \mathbf{n})$ is 1-generated as a left $\Gamma_{\mathbf{m}}$-module. Then the \mathbb{k}-algebra homomorphism $\hat{\imath}_{\mathbf{m}}: \Gamma_{\mathbf{m}} \longrightarrow \mathcal{A}(\mathbf{m}, \mathbf{m}), z \longmapsto z \cdot \mathbf{1}_{\mathbf{m}}$, where $\mathbf{1}_{\mathbf{m}}$ is a unit morphism, is an epimorphism which shows that $A(\mathbf{m}, \mathbf{m})$ is a quotient algebra of $\Gamma_{\mathbf{m}}$. The uniqueness of extension follows from the uniqueness of the simple $A(\mathbf{m}, \mathbf{m})$-module and DFO2, Theorem 18.
(6) Let $\ell=\ell_{\mathbf{m}}$. Since $\ell \in \mathcal{L}_{1}$ then for any $k>0$ there exists a canonical projection $\pi_{k}: \mathbb{L} \longrightarrow \mathbb{L} / \ell^{k} \mathbb{L}$. It induces a homomorphism of the matrix algebras $\pi_{k}: \mathrm{M}_{\mathcal{L}_{0}}(\mathbb{L}) \longrightarrow \mathrm{M}_{\mathcal{L}_{0}}\left(\mathbb{L} / \ell^{k}\right)$ and defines a Harish-Chandra module by the following composition

$$
\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right) \xrightarrow{\mathrm{G}} \mathrm{M}_{\mathcal{L}_{0}}(\mathbb{L}) \xrightarrow{\pi_{k}} \mathrm{M}_{\mathcal{L}_{0}}\left(\mathbb{L} / \ell^{k}\right) .
$$

For any $x \in \Gamma$ there exists $k>0$, such that $x \notin(\ell)^{k}$. Then $\pi_{k} \mathrm{G}(x)_{\overline{0}, \overline{0}}=x+(\ell)^{k} \neq 0$ that completes the proof.
(77) The proof is analogous to the proof of (6). Let $z \in \Gamma, z \neq 0$. Suppose $\mathcal{A}(\mathbf{m}, \mathbf{n}) z=0$. Then by the construction of the equivalence $\mathbb{F}: \mathcal{A}-\bmod _{d} \longrightarrow$ $\mathbb{H}(U, \Gamma)$ for any Harish-Chandra module M and any $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ the linear operator $x z$ on M induces a zero map between $M(\mathbf{m})$ and $M(\mathbf{n})$. It is enough to construct a Harish-Chandra module where this is failed. For $k \geq 1$ consider a natural map $\pi_{k}: \mathbb{L} \rightarrow \mathbb{L} /(\ell)^{k}$ and a composition $\pi_{k} \cdot \mathrm{G}: \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right) \rightarrow \mathrm{M}_{\mathcal{L}_{0}}\left(\mathbb{L} /(\ell)^{k}\right)$. It defines a Harish-Chandra module structure on a free $\mathbb{L} /(\ell)^{k}$-module $\bar{X}=\sum_{\delta \in \mathcal{L}_{0}} \mathbb{L} /(\ell)^{k} e_{\delta, \overline{0}}$. Consider $x \in \mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ such that $\mathrm{G}(x)_{\delta_{i} \overline{0}} \neq 0$. Then $\mathrm{G}(x z)_{\delta_{i} \overline{0}}=\mathrm{G}(x)_{\delta_{i} \overline{0}} \mathrm{G}(z)_{\overline{00}}=$ $\mathrm{G}(x)_{\delta_{i} \overline{0}} z \neq 0$. Choose k such that $\mathrm{G}(x z)_{\delta_{i} \overline{0}} \notin(\ell)^{k}$. Hence $\left(\pi_{k} \cdot \mathrm{G}\right)(x z)_{\delta_{i}, \overline{0}} \neq 0$ and the linear operator $x z$ induces a non-zero map between $\bar{X}(\mathbf{m})=\mathbb{L} /(\ell)^{k}$ and $\bar{X}(\mathbf{n})=\mathbb{L} /\left(\ell+\delta_{i}\right)^{k}$. The obtained contradiction shows that $\mathcal{A}(\mathbf{m}, \mathbf{n}) z \neq 0$. The case $z \mathcal{A}(\mathbf{m}, \mathbf{n})=0$ is treated analogously.

Now we are in the position to state the main result of this section which follows immediately from Lemma 2.1) and Proposition 6.1 (2).

Theorem 4. Let $\mathbf{m} \in \operatorname{Specm} \Gamma$. Then the left ideal $\mathrm{Y}_{p}(\mathfrak{g l}(2)) \mathbf{m}$ is contained in finitely many maximal left ideals of $\mathrm{Y}_{p}(\mathfrak{g l}(2))$. In particular, \mathbf{m} extends to a finitely many (up to an isomorphism) irreducible $\mathrm{Y}_{p}(\mathfrak{g l}(2))$-modules and for each such module M, $\operatorname{dim} M(\mathbf{n})<\infty$ for all $\mathbf{n} \in \operatorname{Specm} \Gamma$.

7. Category of generic Harish-Chandra modules

Lemma 7.1. Let $\ell \in \mathcal{L}_{1}, \ell=(\beta, \gamma), \mathbf{m}=\imath^{*}(\ell) \in \operatorname{Specm} \Gamma, \mathbf{n}=\imath^{*}\left(\ell+\delta_{i}\right)$, $i \in\{1, \ldots, p\}$. If $\beta_{i} \notin\left\{\gamma_{1}, \ldots, \gamma_{2 p}\right\}$ then the objects of \mathcal{A} represented by \mathbf{m} and \mathbf{n} are isomorphic.

Proof. Choose $z_{1}, z_{2} \in \Gamma$ such that $z_{1}\left(\ell+\delta_{j}\right)=\delta_{i j}, z_{2}\left(\ell+\delta_{i}-\delta_{j}\right)=\delta_{i j}, j=1, \ldots, p$. Denote $z=z_{2} t_{12}^{(1)} z_{1} t_{21}^{(1)}$. Then $G(z)$ is diagonal by Lemma 6.1 and hence $z \in \Gamma$ by Corollary 9 (2). We will show that the image of z in Γ_{m} is invertible. Clearly, this is equivalent to the fact that $z(\mathbf{m}) \neq 0$. Note that $z(\mathbf{m})=z(\ell)$. Thus applying formulas (4.15) (4.17) we have $z(\mathbf{m})=\gamma\left(-\beta_{i}\right) \neq 0$ since $\ell \in \mathcal{L}_{1}$. Denote by T_{1} (respectively T_{2}) the generator of $\hat{\Gamma}$-bimodule $\mathcal{A}(\mathbf{m}, \mathbf{n})$ (respectively $\mathcal{A}(\mathbf{n}, \mathbf{m})$) (Proposition 6.1 (7)). Then $z_{2} t_{12}^{(1)}=z_{\mathbf{m}} T_{2}, z_{1} t_{21}^{(1)}=T_{1} z_{\mathbf{m}}^{\prime}$ for some $z_{\mathbf{m}}, z_{\mathbf{m}}^{\prime} \in \Gamma_{\mathbf{m}}$ and $z=z_{\mathbf{m}} T_{2} T_{1} z_{\mathbf{m}}^{\prime}$. Since $z(\mathbf{m}) \neq 0$ it follows that $z_{\mathbf{m}}^{\prime}(\mathbf{m}) \neq 0, z_{\mathbf{m}}(\mathbf{m}) \neq 0$ and hence $T_{2} T_{1}=z_{\mathbf{m}}^{-1} z\left(z_{\mathbf{m}}^{\prime}\right)^{-1}$ is invertible in $\Gamma_{\mathbf{m}}$. The similar argument shows that $T_{1} T_{2}$ is invertible in $\Gamma_{\mathbf{n}}$. Therefore the objects \mathbf{m} and \mathbf{n} are isomorphic.
Corollary 11. Let $\ell \in \mathcal{L}_{1}, \ell=(\beta, \gamma), \beta_{i}-\gamma_{j} \notin \mathbb{Z}$ and $\mathbf{m}=\imath^{*}(\ell) \in \operatorname{Specm} \Gamma$. Then the category $\mathbb{H}\left(\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right), \Gamma, D(\ell)\right)$ is hereditary. Moreover,

$$
\operatorname{dim} \operatorname{Ext}_{\mathbb{H}\left(\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right), \Gamma, D(\ell)\right)}^{1}(L(\ell), L(\ell))=3 p
$$

Proof. By Lemma 7.1 and our assumptions all objects of the category $\mathcal{A}(D(\ell))$ are isomorphic and hence the category $\mathcal{A}(D(\ell))-\bmod { }_{d}$ is equivalent to the category of finite-dimensional modules over Γ_{m}. Applying Proposition 2.1 we conclude that the category $\mathbb{H}\left(\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right), \Gamma, D(\ell)\right)$ is hereditary. Since $\Gamma_{\mathbf{m}}$ is an algebra of power series in $3 p$ variables the statement about dim Ext ${ }^{1}$ follows.
7.1. Category of generic weight modules. Fix $\ell \in \mathcal{L}_{1}, \mathbf{m}=\imath^{*}(\ell), \mathbf{n}=\imath^{*}(\ell+$ $\left.\delta_{i}\right) \in \operatorname{Specm} \Gamma, i \in\{1, \ldots, p\}$. Then $\mathcal{A}_{W}(\mathbf{m}, \mathbf{m}) \simeq \Gamma_{\mathbf{m}} / \Gamma_{\mathbf{m}} \mathbf{m} \simeq \mathbb{k}$ by Proposition 6.1 (6) and $\operatorname{dim} \mathcal{A}_{W}(\mathbf{m}, \mathbf{n})=1$ by Proposition 6.1 (7). We will give a direct construction of the category $\mathcal{A}_{W}(D(\ell))$.

Suppose $\ell=(\beta, \gamma), \beta=\left(\beta_{1}, \ldots, \beta_{p}\right) \in \mathbb{k}^{p}, \gamma=\left(\gamma_{1}, \ldots, \gamma_{2 p}\right) \in \mathbb{k}^{2 p}$ and

$$
\begin{equation*}
\gamma(u)=\prod_{i=1}^{2 p}\left(u+\gamma_{i}\right) \tag{7.29}
\end{equation*}
$$

Since $\ell \in \mathcal{L}_{1}$ then $\beta_{i}-\beta_{j} \notin \mathbb{Z}$ for all $i, j=1, \ldots, p, i \neq j$. Consider the following category $K_{\ell}: \mathrm{Ob}\left(K_{\ell}\right)=\mathbb{Z}^{p}$ and the morphisms are generated by

$$
\begin{equation*}
f_{i}(k):(k) \mapsto\left(k+\delta_{i}\right) \quad \text { and } \quad e_{i}(k):(k) \mapsto\left(k-\delta_{i}\right), \tag{7.30}
\end{equation*}
$$

where $i=1, \ldots, p$ and $(k)=\left(k_{1}, \ldots, k_{p}\right) \in \mathbb{Z}^{p}$ with the following relations:

$$
\begin{aligned}
f_{j}\left(k+\delta_{i}\right) f_{i}(k) & =f_{i}\left(k+\delta_{j}\right) f_{j}(k), \\
e_{j}\left(k-\delta_{i}\right) e_{i}(k) & =e_{i}\left(k-\delta_{j}\right) e_{j}(k), \\
e_{i}\left(k+\delta_{j}\right) f_{j}(k) & =f_{j}\left(k-\delta_{i}\right) e_{i}(k) \quad \text { for } \quad i \neq j, \\
e_{i}\left(k+\delta_{i}\right) f_{i}(k) & =-\gamma\left(-\beta_{i}-k_{i}\right) 1_{(k)}, \\
f_{i}\left(k-\delta_{i}\right) e_{i}(k) & =-\gamma\left(-\beta_{i}-k_{i}+1\right) 1_{(k)} .
\end{aligned}
$$

It follows immediately from Lemmas 4.1 and 4.2 that any module in the category R_{ℓ} can be naturally viewed as a module over the category K_{ℓ} which defines a functor $F: R_{\ell} \rightarrow K_{\ell}-\bmod$. Consider the cyclic subalgebra $C_{\ell}(a)=\operatorname{Hom}_{K_{\ell}}(a, a)$ for any
$a \in \mathbb{Z}^{p}$. Clearly, $C_{\ell}(a) \simeq \mathbb{k}$ for any $a \in \mathbb{Z}^{p}$ due to the defining relations of K_{ℓ}. For any $a=\left(k_{1}, \ldots, k_{p}\right) \in \mathbb{Z}^{p}$ we can construct a universal module $M(\ell, a) \in K_{\ell}-\bmod$. Consider \mathbb{k} as a $C_{\ell}(a)$-module with

$$
\begin{aligned}
& e_{i}\left(k+\delta_{i}\right) f_{i}(k) 1=-\gamma\left(-\beta_{i}-k_{i}\right), \\
& f_{i}\left(k-\delta_{i}\right) e_{i}(k) 1=-\gamma\left(-\beta_{i}-k_{i}+1\right) .
\end{aligned}
$$

Let $A_{\ell, a}$ be an algebra of paths in K_{ℓ} originating in a. Now construct a \mathbb{Z}^{p}-graded K_{ℓ}-module

$$
M(\ell, a)=A_{\ell, a} \otimes_{C_{\ell}(a)} \mathbb{k}
$$

Clearly, all graded components of $M(\ell, a)$ are 1-dimensional and $M(\ell, a)_{a}=1_{a} \otimes \mathbb{k}$. A module $M(\ell, a)$ contains a unique maximal \mathbb{Z}^{p}-graded submodule which intersects $M(\ell, a)_{a}$ trivially and hence has a unique irreducible quotient $L(\ell, a)$ with $L(\ell, a)_{a} \simeq \mathbb{k}$ and $\operatorname{dim} L(\ell, a)_{b} \leq 1$ for all $b \in \mathbb{Z}^{p}$. If V is another irreducible $K_{\ell^{-}}$ module with $V_{a} \neq 0$ then there exists a non-trivial $C_{\ell}(a)$-homomorphism from \mathbb{k} to V_{a} which can be extended to an epimorphism from $M(\ell, a)$ to V. Since V is irreducible we conclude that $V \simeq L(\ell, a)$.

Obviously, we can view $M(\ell)$ as a module over the category K_{ℓ} with a natural action of the morphisms of K_{ℓ} and $F(M(\ell))=M(\ell, \beta)$. Thus a K_{ℓ}-module $M(\ell, \beta)$ can be extended to a $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module $M(\ell)$. Moreover, the functor F preserves the submodule structure of $M(\ell)$. In particular, $F(L(\ell))=L(\ell, \beta)$.

Proposition 7.1. If $\ell \in \mathcal{L}_{1}$ then the categories $K_{\ell}-\bmod$ and R_{ℓ} are equivalent.
Proof. Let $\ell=(\beta, \gamma)$. We already have a functor $F: R_{\ell} \rightarrow K_{\ell}-\bmod$. Suppose that $V \in K_{\ell}$-mod. We want to show that V can be extended to a $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module. Fix $v \in V_{(k)} \backslash\{0\}$. Let $W \subseteq V$ be a submodule generated by v. Then $W_{(k)}=\mathbb{k} v$ and there is an epimorphism from $M(\ell, a)$ to W, where $a=\left(k_{1}, \ldots, k_{p}\right)$, which maps $1_{a} \otimes 1$ to v. Since $F\left(M\left(\ell^{\prime}\right)\right)=M(\ell, a)$, where $\ell^{\prime}=(\beta+a, \gamma)$, then W can be extended to a corresponding quotient of $M\left(\ell^{\prime}\right)$. Since v was an arbitrary element of V we conclude that V can be extended to a $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module and will denote that module by $G(V)$. Clearly, G defines a functor from $K_{\ell}-\bmod$ to R_{ℓ} (action on morphisms is obvious). One can easily see that the functors F and G define an equivalence between the categories $K_{\ell}-\bmod$ and R_{ℓ}.
7.2. Support of irreducible generic weight modules. To complete the classification of irreducible modules we have to know when two irreducible modules $L(\ell)$ and $L\left(\ell^{\prime}\right)$ are isomorphic. For that we need to describe the support Supp $L(\ell)$.

We shall say that the weight subspaces $M(\ell)_{\psi}$ and $M(\ell)_{\psi+\delta_{i}}$ are strongly isomorphic if $\gamma\left(-\psi_{i}\right) \neq 0$ where $\psi=\left(\psi_{1}, \ldots, \psi_{p}\right)$. This implies

$$
f_{i}\left(\psi_{1}, \ldots, \psi_{p}\right) M(\ell)_{\psi} \neq 0 \quad \text { and } \quad e_{i}\left(\psi_{1}, \ldots, \psi_{i}+1, \ldots, \psi_{p}\right) M(\ell)_{\psi+\delta_{i}} \neq 0
$$

The statement below follows immediately from the relations in K_{ℓ} (cf. also Corollary (5).

Lemma 7.2. If $M(\ell)_{\psi}$ and $M(\ell)_{\psi+\delta_{i}}$ are strongly isomorphic, then $M(\ell)_{\psi \pm \delta_{j}}$ and $M(\ell)_{\psi+\delta_{i} \pm \delta_{j}}$ are strongly isomorphic for all $i, j=1, \ldots, p, i \neq j$. Moreover, if

$$
f_{i}\left(\psi_{1}, \ldots, \psi_{p}\right) M(\ell)_{\psi}=0 \quad \text { or } \quad e_{i}\left(\psi_{1}, \ldots, \psi_{p}\right) M(\ell)_{\psi}=0
$$

then

$$
\begin{array}{ll}
f_{i}\left(\psi_{1}, \ldots, \psi_{j} \pm 1, \ldots, \psi_{p}\right) M(\ell)_{\psi \pm \delta_{j}}=0 & \text { or } \\
e_{i}\left(\psi_{1}, \ldots, \psi_{j}+1, \ldots, \psi_{p}\right) M(\ell)_{\psi \pm \delta_{j}}=0, &
\end{array}
$$

respectively, for all $j \neq i$.
Let $a_{i}, a_{i}^{\prime} \in \mathbb{Z} \cup\{ \pm \infty\}, a_{i} \leq a_{i}^{\prime}, i \in\{1, \ldots, p\}$. Denote

$$
P\left(a_{1}, \ldots, a_{p}, a_{1}^{\prime}, \ldots, a_{p}^{\prime}\right)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{Z}^{p} \mid a_{i} \leq x_{i} \leq a_{i}^{\prime}, i=1, \ldots, p\right\}
$$

a parallelepiped in \mathbb{Z}^{p}. Note that some faces of the parallelepiped can be infinite in some directions. In particular, in the case $a_{i}=-\infty, a_{i}^{\prime}=\infty$ for all i, the parallelepiped coincides with \mathbb{Z}^{p}.

Theorem 5. For any irreducible weight module $L(\ell)$ over $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$ there exist elements $a_{i}, b_{i} \in \mathbb{Z} \cup\{ \pm \infty\}, a_{i} \leq a_{i}^{\prime}, i \in\{1, \ldots, p\}$ such that

$$
\operatorname{Supp} L(\ell)=P\left(a_{1}, \ldots, a_{p}, a_{1}^{\prime}, \ldots, a_{p}^{\prime}\right)
$$

Proof. Let $\ell=(\beta, \gamma) \in \mathcal{L}_{1}$. Fix $i \in\{1, \ldots, p\}$. If $\gamma\left(-\beta_{i}+k\right) \neq 0$ for all $k \in \mathbb{Z}$ then $\left(k_{1}, \ldots, k_{i}+m, \ldots, k_{p}\right) \in \operatorname{Supp} L(\ell)$ as soon as $\left(k_{1}, \ldots, k_{p}\right) \in \operatorname{Supp} L(\ell)$. This follows immediately from Lemma 7.2 In this case we set $a_{i}=-\infty$ and $a_{i}^{\prime}=\infty$. Let now $\gamma\left(-\beta_{i}+k\right)=0$ for some $k \in \mathbb{Z}$. Let $m \geq 0$ be the smallest integer (if exists) such that $\gamma\left(-\beta_{i}-m\right)=0$ and let $n \leq 0$ be the largest integer (if exists) such that $\gamma\left(-\beta_{i}-n+1\right)=0$. It follows from Lemma 7.2 that

$$
\operatorname{Supp} L(\ell) \cap\left\{\beta+k \delta_{i} \mid k \in \mathbb{Z}\right\}=\left\{\beta+n \delta_{i}, \ldots, \beta, \ldots, \beta+m \delta_{i}\right\}
$$

If $\beta+s \delta_{j} \in \operatorname{Supp} L(\ell), j \neq i$ then
$\operatorname{Supp} L(\ell) \cap\left\{\beta+s \delta_{j}+k \delta_{i} \mid k \in \mathbb{Z}\right\}=\left\{\beta+s \delta_{j}+n \delta_{i}, \ldots, \beta+s \delta_{j}, \ldots, \beta+s \delta_{j}+m \delta_{i}\right\}$.
In this case we set $a_{i}=\beta_{i}+n$ and $a_{i}^{\prime}=\beta_{i}+m$. The statement of the theorem now follows.
7.3. Indecomposable generic weight modules. Fix $\ell=(\beta, \gamma) \in \mathcal{L}_{1}$. A full subcategory $\mathcal{S} \subseteq K_{\ell}$ is called a skeleton of K_{ℓ} provided the objects of \mathcal{S} are pairwise non-isomorphic and any object of K_{ℓ} is isomorphic to some object of \mathcal{S}. In this case the categories of $K_{\ell}-\bmod$ and $\mathcal{S}-\bmod$ are equivalent.

For each $i \in\{1, \ldots, p\}$ consider a set $I_{i}=\left\{k \in \mathbb{Z} \mid \gamma\left(-\beta_{i}-k\right)=0\right\}$. Define a category S_{ℓ} as a \mathbb{k}-category with the set of objects

$$
S_{0}=\left\{0, \ldots,\left|I_{1}\right|\right\} \times \ldots \times\left\{0, \ldots,\left|I_{p}\right|\right\}
$$

and with morphisms generated by

$$
\begin{aligned}
& r_{\left(i_{1}, \ldots, i_{p}\right)}^{k}:\left(i_{1}, \ldots, i_{p}\right) \mapsto\left(i_{1}, \ldots, i_{k}+1, \ldots, i_{p}\right), \\
& s_{\left(j_{1}, \ldots, j_{p}\right)}^{k}:\left(j_{1}, \ldots, j_{p}\right) \mapsto\left(j_{1}, \ldots, j_{k}-1, \ldots, j_{p}\right)
\end{aligned}
$$

where $k \in\{1, \ldots, p\}$ is such that $I_{k} \neq \emptyset, i_{k}<\left|I_{k}\right|, j_{k}>0$, subject to the relations:

$$
s_{\left(i_{1}, \ldots, i_{k}+1, \ldots, i_{p}\right)}^{k} r_{\left(i_{1}, \ldots, i_{p}\right)}^{k}=r_{\left(i_{1}, \ldots, i_{p}\right)}^{k} s_{\left(i_{1}, \ldots, i_{k}+1, \ldots, i_{p}\right)}^{k}=0
$$

and

$$
x_{\left(a_{1}, \ldots, a_{p}\right)}^{k} y_{\left(e_{1}, \ldots, e_{p}\right)}^{r}=y_{\left(c_{1}, \ldots, c_{p}\right)}^{r} x_{\left(e_{1}, \ldots, e_{p}\right)}^{k}
$$

for all $k \neq r$ and all possible $x, y \in\{r, s\}, a_{i}, e_{i}, c_{i}, 1 \leq i \leq p$ for which this equality makes sense.

It follows from the construction that S_{ℓ} is the skeleton of the category K_{ℓ}. Note that the corresponding algebra is finite-dimensional. In particular, S_{ℓ} is semisimple when $I_{k}=\emptyset$ for all $1 \leq k \leq p$, i.e. when $\gamma\left(-\beta_{k}+r\right) \neq 0$ for all $k \in \mathbb{Z}$ and all $i=1, \ldots, p$. Hence it is enough to describe all indecomposable modules over S_{ℓ}.

Fix $a \in S_{0}$ and define a simple S_{ℓ}-module S_{a} such that $S_{a}(b)=\delta_{a, b} \mathbb{k}$ for all $b \in S_{0}$ and all morphisms are trivial. Since S_{ℓ} defines a finite-dimensional algebra we have the following

Proposition 7.2. Any simple module over S_{ℓ} is isomorphic to S_{a} for some $a \in S_{0}$.
This is another confirmation of the fact that all weight spaces in any irreducible generic weight $\mathrm{Y}_{p}\left(\mathfrak{g l}_{2}\right)$-module are 1-dimensional. But this need not to be the case for indecomposable modules. We restrict ourselves to a full subcategory $R_{\ell}^{f} \subseteq R_{\ell}$ which consists of weight modules V with $\operatorname{dim} V_{\psi}<\infty$ for all $\psi \in \operatorname{Supp} V$. We will establish the representation type of the category R_{ℓ}^{f} (finite, tame or wild). For necessary definitions we refer to Dr .

To establish the representation type of the category R_{ℓ}^{f} it is enough to consider the category $S_{\ell}-\bmod ^{f}$, of modules over the category S_{ℓ} with finite-dimensional weight spaces. Denote $X_{\ell}=\left\{k \in\{1, \ldots, p\} \mid I_{k} \neq \emptyset\right\}$.
7.3.1. Indecomposable modules in the case $\left|X_{\ell}\right|=1$. In this section we describe all indecomposable modules over S_{ℓ} in the case $\left|X_{\ell}\right|=1$. Let $X_{\ell}=\{i\}$ and let $\left|I_{i}\right|=r>0$. In this case the category S_{ℓ} has the following quiver A with relations:

We denote by $S_{i}, i \in\{1, \ldots, r+1\}$, the simple module corresponding to the point i. These modules correspond to all irreducible modules in R_{ℓ}^{f} by Proposition 7.2 Now describe remaining indecomposable modules for a quiver above. Fix integers $1 \leq k_{1}<k_{2} \leq r+1$ and a function $\xi_{k_{1}, k_{2}}:\left\{k_{1}, k_{1}+1, \ldots, k_{2}\right\} \rightarrow\{0,1\}$. Define a module $M=M\left(k_{1}, k_{2}, \xi_{k_{1}, k_{2}}\right)$ as follows: $M(i)=\mathbb{k} e_{i}, k_{1} \leq i \leq k_{2}, M(j)=0$ otherwise, $a_{i} e_{i}=e_{i+1}, b_{i} e_{i+1}=0$ if $\xi_{k_{1}, k_{2}}(i)=1$ and $a_{i} e_{i}=0, b_{i} e_{i+1}=e_{i}$ if $\xi_{k_{1}, k_{2}}(i)=0$ for all $1 \leq i<k_{2}$.

The proof of the following proposition is standard; see e.g. GR.
Proposition 7.3. The modules $S_{i}, 1 \leq i \leq r+1$ and $M\left(k_{1}, k_{2}, \xi_{k_{1}, k_{2}}\right)$ with $1 \leq$ $k_{1}<k_{2} \leq r+1$ and

$$
\xi_{k_{1}, k_{2}}:\left\{k_{1}, k_{1}+1, \ldots, k_{2}\right\} \rightarrow\{0,1\}
$$

exhaust all non-isomorphic indecomposable modules for \mathbf{A}.
7.3.2. Indecomposable modules in the case $|X|_{\ell}=2$. In this section we describe the indecomposable modules for S_{ℓ} when $|X|_{\ell}=2$ and $\left|I_{k}\right|=1$ for each $k \in X_{\ell}$. Then S_{ℓ} is isomorphic to the following category \mathbf{B} considered in BB .

$$
\begin{aligned}
& a_{i} b_{i}=b_{i} a_{i}=0, \quad i=0, \ldots, 3, \\
& a_{i} a_{j}=b_{l} b_{m} \quad \text { for any } \quad i, j, l, m \in\{0,1,2,3\},
\end{aligned}
$$

where possible.

By Proposition 7.2 this category has four non-isomorphic simple modules $S_{i}, 0 \leq$ $i \leq 3$, with a support in a chosen point i. The indecomposable modules were described in BB . For the sake of completeness we repeat here this classification.

We will treat the objects of \mathbf{B} as elements of $\mathbb{Z} / 4 \mathbb{Z}$. Consider the following three families of non-simple indecomposable modules.

Finite family. Fix an $0 \leq i \leq 3$ and define the \mathbf{B}-module M_{i} such that $M_{i}(j)=\mathbb{k} e_{j}$ for each $j=0, \ldots, 3$ and $a_{i} e_{i}=e_{i+1}, a_{i+1} e_{i+1}=e_{i+2}, b_{i-1} e_{i}=e_{i-2}, b_{i-2} e_{i-1}=$ e_{i-2} and $u_{j} e_{k}=0$ for all other cases of $u \in\{a, b\}$ and $j, k=0, \ldots, 3$. Obviously, M_{i} is indecomposable module for any i.

Infinite discrete families. Let $n \in \mathbb{N}, n>1$, and $j \in \mathbb{Z}_{4}$. Define a B-module $M_{n, j, 1}$ (resp., $M_{n, j, 2}$) as follows. Consider n elements e_{1}, \ldots, e_{n}. A \mathbb{k}-basis of the vector space $M_{n, j, 1}(l)\left(\right.$ resp., $\left.M_{n, j, 2}(l)\right)$ is the set of e_{k} such that $j+k-1 \equiv l(\bmod 4)$. The elements a_{l} and b_{l-1} act as follows:

$$
\begin{aligned}
& a_{l} e_{k}= \begin{cases}e_{k+1}, & \text { if } l \text { is even }(\text { resp., odd }), k<n \text { and } j+k-1 \equiv l(\bmod 4) \\
0, & \text { otherwise. }\end{cases} \\
& b_{l-1} e_{k}= \begin{cases}e_{k-1}, & \text { if } l \text { is even (resp., odd }), k>1 \text { and } j+k-1 \equiv l(\bmod 4) \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

All modules $M_{n, j, 1}$ and $M_{n, j, 2}, n>1,0 \leq j \leq 3$ are non-isomorphic indecomposable B-modules.
Infinite continuous families. For each $\lambda \in \mathbb{k}, \lambda \neq 0$, and $d \in \mathbb{Z}, d>0$ define the B-modules $M_{d, \lambda, 1}$ and $M_{d, \lambda, 2}$ as follows. Set

$$
\begin{aligned}
M_{d, \lambda, 1}(i) & =\mathbb{k}^{d} \\
M_{d, \lambda, 1}\left(a_{0}\right) & =M_{d, \lambda, 1}\left(a_{2}\right)=M_{d, \lambda, 1}\left(b_{1}\right)=\mathbf{I}_{d} \\
M_{d, \lambda, 1}\left(b_{0}\right) & =M_{d, \lambda, 1}\left(b_{2}\right)=M_{d, \lambda, 1}\left(a_{1}\right)=M_{d, \lambda, 1}\left(a_{3}\right)=0, \\
M_{d, \lambda, 1}\left(b_{3}\right) & =J_{d, \lambda}
\end{aligned}
$$

and

$$
\begin{aligned}
M_{d, \lambda, 2}(i) & =\mathbb{k}^{d} \\
M_{d, \lambda, 2}\left(b_{0}\right) & =M_{d, \lambda, 2}\left(b_{2}\right)=M_{d, \lambda, 2}\left(a_{1}\right)=\mathbf{I}_{d} \\
M_{d, \lambda, 2}\left(a_{0}\right) & =M_{d, \lambda, 2}\left(a_{2}\right)=M_{d, \lambda, 2}\left(b_{1}\right)=M_{d, \lambda, 2}\left(b_{3}\right)=0 \\
M_{d, \lambda, 2}\left(a_{3}\right) & =J_{d, \lambda}
\end{aligned}
$$

where $J_{d, \lambda}$ is the Jordan cell of dimension d with the eigenvalue λ.
All modules $M_{d, \lambda, k}, k=1,2$ are indecomposable and corresponding indecomposable modules in R_{ℓ}^{f} have all weight spaces of dimension d.

Proposition 7.4. (BB , Proposition 3.3.1). The modules $S_{i}, M_{i}, M_{n, i, 1}, M_{n, i, 2}$, $M_{d, \lambda, 1}, M_{d, \lambda, 2}$ where $0 \leq i \leq 3$, d is a positive integer, $\lambda \in \mathbb{k}, \lambda \neq 0$, and $n \geq 2$ is an integer, constitute an exhaustive list of pairwise non-isomorphic indecomposable B-modules.

The following theorem which describes the representation type of R_{ℓ}^{f}.
Theorem 6. (i) If $\left|X_{\ell}\right|=0$ then R_{ℓ}^{f} is a semisimple category with a unique indecomposable ($=$ irreducible) module;
(ii) If $\left|X_{\ell}\right|=1$ then R_{ℓ}^{f} has finite representation type;
(iii) If $\left|X_{\ell}\right|=2$ then R_{ℓ}^{f} has tame representation type if and only if $\left|I_{k}\right|=1$ for all $k \in X$. Otherwise, R_{ℓ}^{f} has wild representation type;
(iv) If $\left|X_{\ell}\right|>2$ then R_{ℓ}^{f} has wild representation type.

Proof. In the case when $\left|X_{\ell}\right|=1$ all indecomposable modules for S_{ℓ} are described in Proposition 7.3 Hence R_{ℓ}^{f} has finite representation type. If $\left|X_{\ell}\right|=2$ and $\left|I_{k}\right|=1$ for each $k \in X$ then all indecomposable modules for S_{ℓ} are described in Proposition [7.4] It follows from the definition that R_{ℓ}^{f} has tame representation type in this case. If $\left|I_{k}\right|>1$ for at least one k then it is easy to construct a family of indecomposable modules that depends on two continuous parameters. Hence, in this case R_{ℓ}^{f} has wild representation type. Suppose now that $\left|X_{\ell}\right|>2$. Then S_{ℓ} contains a full subcategory of wild representation type considered in BB, Theorem 1. We immediately conclude that R_{ℓ}^{f} has wild representation type. This completes the proof.

Corollary 12. (1) If $\left|X_{\ell}\right|=0$ then the category R_{ℓ} is a semisimple category with a unique indecomposable module.
(2) If $\left|X_{\ell}\right|=1$ then R_{ℓ} has finite representation type with indecomposable modules as in Proposition 7.3

Proof. Since cases $\left|X_{\ell}\right| \leq 1$ correspond to finite representation type then the corresponding categories do not admit infinite-dimensional indecomposable modules by [A] and hence every indecomposable module belongs to R_{ℓ}^{f}.

8. Acknowledgment

The first author is a Regular Associate of the ICTP and is supported by the CNPq grant (Processo 300679/97-1) The second and the third authors are grateful to FAPESP for the financial support (Processos 2001/13973-0 and 2002/01866-7) and to the University of São Paulo for the hospitality during their visits.

References

[A] Auslander M., Representation theory of artin algebras II, Comm. Algebra 2 (1974), 269-310.
[BB] Bavula V., Bekkert V., Indecomposable representations of generalized Weyl algebras, Comm. Algebra, to appear.
[BBF] Bekkert V., Benkart G. and Futorny V., Weyl algebra modules, MSRI Preprint, 2002-009.
[BH] Bruns W., Herzog J. Cohen-Macauley rings, Cambrige Studies in Adv. Math. 39, Camb. Univ. Press, 1993.
[CP] Chari V., Pressley A., Yangians and R-matrices, L'Enseign. Math. 36 (1990), 267-302.
[C1] Cherednik I.V., A new interpretation of Gelfand-Tzetlin bases, Duke Math. J. 54 (1987), 563-577.
[C2] Cherednik I.V., Quantum groups as hidden symmetries of classic representation theory, in "Differential Geometric Methods in Physics" (A. I. Solomon, Ed.), World Scientific, Singapore, 1989, pp. 47-54.
[Di] Dixmier J., Algèbres Enveloppantes. Paris: Gauthier-Villars, 1974.
[D1] Drinfeld V.G., Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254-258.
[D2] Drinfeld V.G., A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 (1988), 212-216.
[Dr] Drozd Yu.A. Tame and wild matrix problem, Springer LNM 832 (1980), 242-258.
[DFO1] Drozd Yu.A., Ovsienko S.A., Futorny V.M. On Gelfand-Zetlin modules, Suppl. Rend. Circ. Mat. Palermo, 26 (1991), 143-147.
[DFO2] Drozd Yu.A., Ovsienko S.A., Futorny V.M., Harish - Chandra subalgebras and Gelfand Zetlin modules, in: "Finite dimensional algebras and related topics", NATO ASI Ser. C., Math. and Phys. Sci., 424, (1994), 79-93.
[FO] Futorny V., Ovsienko S., Kostant theorem for special PBW algebras, Preprint, RT-MAT 2002-28.
[GR] Gabriel P., Roiter A.V., Representations of finite-dimensional algebras, in "Encyclopedia of the Mathematical Sciences", Vol. 73, Algebra VIII, (A. I. Kostrikin and I. R. Shafarevich, Eds), Berlin, Heidelberg, New York, 1992.
[Ge] Geoffriau F., Une propriété des algèbres de Takiff, C. R. Acad. Sci. Paris 319 (1994), Série I, 11-14.
[IK] Izergin A.G., Korepin V.E., A lattice model related to the nonlinear Schrödinger equation, Sov. Phys. Dokl. 26 (1981) 653-654.
[K] Kostant B. Lie groups representations on polynomial rings. Amer.J.Math. 85, (1963), 327404.
[KS] Kulish P., Sklyanin E., Quantum spectral transform method: recent developments, in "Integrable Quantum Field Theories", Lecture Notes in Phys. 151 Springer, Berlin-Heidelberg, 1982, pp. 61-119.
[M1] Molev A.I., Gelfand-Tsetlin basis for representations of Yangians, Lett. Math. Phys. 30 (1994), 53-60.
[M2] Molev A.I., Casimir elements for certain polynomial current Lie algebras, in "Group 21, Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras," Vol. 1, (H.-D. Doebner, W. Scherer, P. Nattermann, Eds). World Scientific, Singapore, 1997, 172-176.
[NT] Nazarov M., Tarasov V., Representations of Yangians with Gelfand-Zetlin bases, J. Reine Angew. Math. 496 (1998), 181-212.
[Ov] Ovsienko S. Finiteness statements for Gelfand-Tsetlin modules, In: Algebraic structures and their applications, Math. Inst., Kiev, 2002.
[TF] Takhtajan L.A., Faddeev L.D., Quantum inverse scattering method and the Heisenberg XYZ-model, Russian Math. Surv. 34 (1979), no. 5, 11-68.
[T1] Tarasov V., Structure of quantum L-operators for the R-matrix of the XXZ-model, Theor. Math. Phys. 61 (1984), 1065-1071.
[T2] Tarasov V., Irreducible monodromy matrices for the R-matrix of the XXZ-model and lattice local quantum Hamiltonians, Theor. Math. Phys. 63 (1985), 440-454.

Universidade de São Paulo, Caixa Postal 66281- CEP 05315-970, São Paulo, Brazil E-mail address: futorny@ime.usp.br

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia E-mail address: alexm@maths.usyd.edu.au

Faculty of Mechanics and Mathematics, Kiev Taras Shevchenko University, Vladimirskaya 64, 00133, Kiev, Ukraine

E-mail address: ovsienko@sita.kiev.ua

