AN INFRASOLVMANIFOLD WHICH DOES NOT BOUND

J.A.HILLMAN

Abstract. Orientable 4-dimensional infrasolvmanifolds bound orientably. We show that every non-orientable 4-dimensional infrasolvmanifold M with $\beta = \beta_1(M; \mathbb{Q}) > 0$ or with geometry Nil^3 or $\text{Sol}^3 \times \mathbb{E}^1$ bounds. However there are Sol^4_1-manifolds which are not boundaries. The question remains open for $\text{Nil}^3 \times \mathbb{E}^1$-manifolds. Any possible counter-examples have severely constrained fundamental groups. We also find simple cobounding 5-manifolds for all but five of the 74 flat 4-manifolds, and investigate which flat 4-manifolds embed in \mathbb{R}^n, for $n = 5, 6$ or 7.

1. INTRODUCTION

Flat n-manifolds are boundaries [8]. This result has been extended to restricted classes of infranilmanifolds [7, 12]. We shall show that it does not extend to all infrasolvmanifolds. Since every 3-manifold bounds, and every orientable 3-manifold bounds orientably, dimension 4 is the first case of interest. Here there is a geometric simplification. Every 4-dimensional infrasolvmanifold is either a mapping torus or the union of two twisted I-bundles. Simple algebraic arguments show that every such mapping torus bounds, while a geometric construction applies to many of the others. We find severe constraints on possible counter-examples, which lead to a Sol^4_1-manifold which is not a boundary. In the latter part of the paper we seek explicit constructions of 5-manifolds with boundary a given flat 4-manifold, and we consider also the related question of which flat 4-manifolds embed in low codimensions.

Every infrasolvmanifold is finitely covered by a quotient $\Gamma \backslash S$, where Γ is a discrete cocompact subgroup of a 1-connected solvable Lie group S [1]. Such quotients are parallelizable, and so the rational Pontrjagin classes of infrasolvmanifolds are 0. In particular, orientable 4-dimensional infrasolvmanifolds have signature $\sigma = 0$. Therefore they

1991 Mathematics Subject Classification. 57R75.
Key words and phrases. boundary, embedding, 4-manifold, geometry, infrasolvmanifold.
bound orientably, and those with \(w_2 = 0 \) bound as \(\text{Spin} \)-manifolds, since \(\Omega_4 \) and \(\Omega_4^{\text{Spin}} \) are detected by \(\sigma \).

Non-orientable bordism is detected by Stiefel-Whitney numbers. In our context, the only Stiefel-Whitney class of interest is \(w_4 \). It follows easily that every 4-dimensional infrasolvmanifold \(M \) with \(\beta = \beta_1(M; \mathbb{Q}) > 0 \) bounds non-orientably. (This class includes all \(\text{Sol}^{4}_{m,n} \)-manifolds with \(m \neq n \) and all \(\text{Sol}^{4}_{3} \)-manifolds.) If \(\beta = 0 \) then \(\pi_1(M) \cong A \ast_C B \), where \(A, B \) and \(C \) are fundamental groups of 3-dimensional infranilmanifolds and \([A : C] = [B : C] = 2 \). In §4–§9 we use a construction based on mapping cylinders of double covers to show that many such manifolds bound. In particular, all \(\text{Nil}^{4} \) and \(\text{Sol}^{3} \times \mathbb{E}^{1} \)-manifolds bound. We do not yet have a complete result for the remaining two geometries.

In §10 we show that if \(\beta \geq 2 \) (and in many cases with \(\beta = 1 \)) then \(M \) is also the total space of an \(S^{1} \)-bundle over a closed 3-manifold, and so bounds the associated disc bundle. If the \(S^{1} \)-bundle space \(M \) is orientable then so is the disc bundle space. In §11 we show that the mapping cylinder construction applies to most of the 24 flat 4-manifolds which are not \(S^{1} \)-bundle spaces. Closed hypersurfaces in euclidean spaces bound. In §12 we show that, with one possible exception, all flat 4-manifolds embed in \(\mathbb{R}^{7} \), while between 24 and 56 embed in \(\mathbb{R}^{6} \) and between 11 and 13 embed in \(\mathbb{R}^{5} \).

2. SOLVABLE LIE GEOMETRIES OF DIMENSION 4

If \(G \) is a group let \(G' \), \(\zeta G \) and \(\sqrt{G} \) denote its commutator subgroup, centre and Hirsch-Plotkin radical, respectively. Let \(G^{ab} = G/G' \) be the abelianization, and let \(I(G) = \{ g \in G \mid \exists n > 0, g^n \in G' \} \) be the isolator subgroup. This is clearly a characteristic subgroup, since \(G/I(G) \) is the maximal torsion-free abelian quotient of \(G \). If \(S \) is a subset of \(G \) then \(\langle S \rangle \) shall denote the subgroup of \(G \) generated by \(S \), and \(\langle \langle S \rangle \rangle \) shall denote the normal closure of \(\langle S \rangle \). We use the notation of Chapter 8 of [9] for automorphisms of flat 3-manifold groups.

Every 4-dimensional infrasolvmanifold is geometric. There are six relevant families of geometries: \(\mathbb{E}^{4} \), \(\text{Nil}^{4} \), \(\text{Nil}^{3} \times \mathbb{E}^{1} \), \(\text{Sol}^{4}_{0} \), \(\text{Sol}^{4}_{1} \) and \(\text{Sol}^{4}_{m,n} \). (The final family includes the product geometry \(\text{Sol}^{3} \times \mathbb{E}^{1} = \text{Sol}^{4}_{m,0} \), for all \(m > 0 \), as a somewhat exceptional case.)

Let \(G \) be a 1-connected solvable Lie group of dimension 4 with a left invariant metric, corresponding to a geometry \(\mathbb{G} \) of solvable Lie type. Let \(\text{Isom}(\mathbb{G}) \) be the group of isometries, and let \(K_{G} < \text{Isom}(\mathbb{G}) \) be the stabilizer of the identity in \(G \). Let \(\pi < \text{Isom}(\mathbb{G}) \) be a discrete subgroup which acts freely and cocompactly on \(G \), and let \(M = \pi \backslash G \). If \(\beta = \)}
$\beta_1(M; \mathbb{Q}) \geq 1$ then M is the mapping torus of a self-diffeomorphism of a E^3-, Nil^3- or Sol^3-manifold. If $\beta = 1$ the mapping torus structure is essentially unique. If $\beta \geq 2$ then M also fibres over the torus T, with fibre T or the Klein bottle Kb.

All orientable Sol_3^2-manifolds are coset spaces $\pi \setminus \tilde{G}$ with π a discrete subgroup of a 1-connected solvable Lie group \tilde{G}, which in general depends on π. (See page 138 of [9].) In all other cases, the translation subgroup $G \cap \pi$ is a lattice in G, and is a characteristic subgroup of π [4]. If G is nilpotent then $G \cap \pi = \sqrt{\pi}$; in general, $\sqrt{\pi} \leq G \cap \pi$, and the holonomy $\pi/G \cap \pi$ is finite.

If $g : X \to X$ is a self-homeomorphism let $M(g) = X \times [0,1]/(z,0) \sim (g(z),1)$ be the mapping torus of g, and let $[x,t]$ be the image of (x,t) in $M(g)$. If $f : Y \to Z$ let $MCyl(f)$ be the mapping cylinder of f.

3. Stiefel-Whitney classes and the cases with $\beta \geq 1$

We give first some simple observations on the Stiefel-Whitney classes of 4-manifolds, which we shall use to show that 4-dimensional infrasolvmanifolds with $\beta \geq 1$ are boundaries.

Lemma 3.1. Let M be a closed 4-manifold and $w_i = w_i(M)$. Then $w_4 = w_2^2 + w_1^4$ and $w_1w_3 = 0$.

Proof. The Wu formulae give $v_1 = w_1, v_2 = w_2 + w^2, w_3 = Sq^1w_2$ and $w_4 = w_2^2 + w^4$, since $v_3 = v_4 = 0$. Hence $Sq^1z = w_1z$, for $z \in H^3(M; \mathbb{F}_2)$. If $x \in H^1(M; \mathbb{F}_2)$ then $Sq^1(xw_2) = x^2w_2 + xSq^1w_2$. Therefore

$$xw_3 = (w_1x + x^2)w_2 = (w_1x + x^2)^2 + (w_1x + x^2)w_1^2 = x^4 + w_1x^3.$$

In particular, $w_1w_3 = w^4 + w^4 = 0$. \hfill \Box

If M is a 4-dimensional infrasolvmanifold then $w_4(M) = 0$, since $w_4(M) \cap [M]$ is the reduction of $\chi(M) = 0 \mod (2)$. Therefore $w_1 = w_2^2 = w_3^2$ is the only Stiefel-Whitney class of interest.

Lemma 3.2. Let M be a closed n-manifold and $x \in H^1(M; \mathbb{F}_2)$. If $n > 2$ and $x^{n-1} \neq 0$ then $x^n \neq 0$.

Proof. This follows easily from the non-degeneracy of Poincaré duality, since $x^2 \neq 0$ and $H^1(M; \mathbb{F}_2)$ is generated by x and Ker$(x \cup -)$. \hfill \Box

Lemma 3.3. If N is a non-orientable 3-manifold then $\beta_1(N; \mathbb{Q}) > 0$.

Proof. This is clear, since $\chi(N) = 0$ and $H_3(N; \mathbb{Q}) = 0$. \hfill \Box

Similarly, if M is an orientable 4-manifold with $\chi(M) = 0$ then $\beta_1(M; \mathbb{Q}) > 0$.

AN INFRASOLVMANIFOLD WHICH DOES NOT BOUND 3
Lemma 3.4. If a manifold M fibres over an r-manifold, with orientable fibre, then $w_1(M)^{r+1} = 0$.

Proof. This is clear, since $w_1(M)$ is induced from a class on the base of the fibration. □

Theorem 3.5. Let M be a 4-dimensional infrasolvmanifold with $\beta = \beta_1(M; \mathbb{Q}) > 0$. Then $M = \partial W$ for some 5-manifold W.

Proof. The manifold M is the mapping torus of a (based) self diffeomorphism f of a closed 3-manifold N. Let $\pi = \pi_1(M)$ and $\nu = \pi_1(N)$. Then π and ν are virtually polycyclic, and $\pi \cong \nu \rtimes \mathbb{Z}$, where $\theta = \pi_1(f)$.

If N is not orientable then $I(\nu) < \nu$, by Lemma 3.3, and so $I(\nu) \cong \mathbb{Z}$, \mathbb{Z}^2 or $\pi_1(Kb) = \mathbb{Z} \rtimes \mathbb{Z}$. In the latter case $I(I(\nu)) \cong \mathbb{Z}$. In all cases, M fibres over a lower-dimensional manifold with orientable fibre, and so $w_1^4 = 0$, by Lemma 3.4. Therefore all the Stiefel-Whitney numbers of M are 0, and so $M = \partial W$ for some 5-manifold W. □

If M is a non-orientable Sol$_3^4$-manifold then $\beta = 0$. There are non-orientable manifolds with $\beta > 0$ for each of the other geometries.

For all but three flat 4-manifolds, either $w_1^2 = 0$ or $w_2 = 0$ or $w_3^2 = w_2$ [10]. Hence $w_1^4 = 0$, so all Stiefel-Whitney numbers are 0, and the manifold bounds. Two more are total spaces of S^1-bundles, and so bound the associated disc bundles. Thus only the example with group $G_6 \ast_\phi B_4$ requires further argument. (See the next section.)

All Sol$_{m,n}^4$-manifolds (with $m \neq n$) and all Sol$_3^4$-manifolds are mapping tori of self-diffeomorphisms of $\mathbb{R}^3/\mathbb{Z}^3$. (See Corollary 8.4.1 of [9].) Thus they all bound.

We may assume henceforth that $\beta = 0$ (so the manifolds considered are not orientable) and the geometry is Nil3, Nil$^3 \times \mathbb{E}^1$, Sol$_3^1$ or Sol$_3^4 \times \mathbb{E}^1$. (However we shall also consider \mathbb{E}^4 in some detail.)

We shall need the following more specialized lemmas later.

Lemma 3.6. Let $w : \pi \to \mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ be a homomorphism. Then $p : \pi \to G = \pi/(k^2 \mid w(k) = 0)$ induces an isomorphism $H^1(G; \mathbb{F}_2) \cong H^1(\pi; \mathbb{F}_2)$. If $p^*(uw) = 0$ in $H^2(\pi; \mathbb{F}_2)$ then $uw = 0$ in $H^2(G; \mathbb{F}_2)$.

Proof. If $p^*(uw) = 0$ in $H^2(\pi; \mathbb{F}_2)$ there is a function $f : \pi \to \mathbb{F}_2$ such that $u(g)w(g') = f(g) + f(g') - f(gg')$, for all $g, g' \in \pi$. Let $K = \text{Ker}(w)$ and $H = \langle k^2 \mid w(k) = 0 \rangle$. Then $f|_K$ is a homomorphism, and so $f(h) = 0$, for all $h \in H$. Hence $f(g) = f(gh)$, for all $g \in \pi$ and $h \in H$. Thus f factors through a function $\tilde{f} : G \to \mathbb{F}_2$, and so $uw = 0$ in $H^2(G; \mathbb{F}_2)$. □

The next lemma uses the non-degeneracy of Poincaré duality.
Lemma 3.7. Let M be a non-orientable closed 4-manifold with $\chi(M) = 0$, and let $w = w_1(M)$. Suppose that $H^1(M; \mathbb{F}_2) = \langle u, w \rangle$, where $u^2 = 0$. Then

(1) if $w^2 \neq 0$ and $uw \neq 0$, then $w^3 = 0$.
(2) if $w^2 \neq 0$ and $uw = 0$ then $w^4 \neq 0 \iff w_2(M) \neq 0$ or w^2.

Proof. (1). Since $u.uw^2 = u^2w^2 = 0$ and $w.uw^2 = Sq^1(uw^2) = u^2w^2 = 0$, we have $uw^2 = 0$, by Poincaré duality. Now $\beta_2(M, \mathbb{F}_2) = 2\beta_1(M, \mathbb{F}_2) - 2 = 2$. Since $uw.w^2 = uw.uw = 0$ but $uw \neq 0$ and $w^2 \neq 0$ we must have $uw = w^2$, by Poincaré duality. Hence $w^3 = uw^2 = 0$.

(2). Let $v = w_2(M) + w^2 = v_2(M)$. If $w_2(M) \neq 0$ or w^2 then $H^2(M; \mathbb{F}_2) = \langle w^2, v \rangle$. Since $\chi(M) = 0$ we have $v^2 = w_4 = 0$. Therefore $w^4 = (w^2)^2 = w^2v \neq 0$, by Poincaré duality. The converse is clear, since $v_2^2 = w_4 = 0$.

The second condition may be generalized as follows. Let $H^i = H^i(M; \mathbb{F}_2)$ for $i = 1$ and 2. If $w_i^2 \neq 0$, $w_1 \cup - : H^1 \to H^2$ has rank 1, w_2 is not in the image of $H^1 \cap H^1$ and $H^2 = \langle H^1 \cap H^1, w_2 \rangle$, then $w_i^4 \neq 0$. However these conditions are harder to check if $\beta_1(\pi; \mathbb{F}_2) > 2$.

There are two (flat) 4-manifolds which fibre over T with fibre Kb, and thus bound, but for which none of the conditions $w_i^2 = 0$, $w_2 = 0$ or $w_2 = w_1^2$ hold. Thus these conditions are not necessary for a 4-manifold to bound. Nevertheless, manifolds which are not mapping tori and whose orientable double covers are not Spin 4-manifolds may provide non-bounding examples.

4. 4-MANIFOLDS WITH $\chi = \beta = 0$

If M is a closed 4-manifold with $\chi(M) = 0$ and $\beta = 0$ then M is non-orientable, and there is an epimorphism $f : \pi \to D_\infty$, where $D_\infty = \mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z}$ is the infinite dihedral group, by Lemma 3.14 of [9]. Hence $\pi \cong A \ast C B$, where $C = \text{Ker}(f)$ and $[A : C] = [B : C] = 2$. Since $D_\infty \cong \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, the group π has a subgroup of index 2 which is a semidirect product $C \rtimes \mathbb{Z}$. Since $\beta = 0$ the Mayer-Vietoris sequence for the homology of π gives an epimorphism from $H_1(C; \mathbb{Q})$ to $H_1(A; \mathbb{Q}) \oplus H_1(B; \mathbb{Q})$, and so $\beta_1(A; \mathbb{Q}) + \beta_1(B; \mathbb{Q}) \leq \beta_1(C; \mathbb{Q})$.

If, moreover, M is an infrasolvmanifold then A, B and C are the fundamental groups of 3-dimensional infrasolvmanifolds X, Y and Z, say, and $M = MCyl(c) \cup Z MCyl(d)$, where $c : Z \to X$ and $d : Z \to Y$ are double covers. The next two lemmas are clear.

Lemma 4.1. If $c : Z \to X$ is a double cover of an n-manifold X then $MCyl(c)$ is an $(n + 1)$-manifold with boundary Z. If Z is connected
the mapping cylinder is orientable if and only if \(X \) is non-orientable and \(c \) is the orientable double cover.

In particular, if \(f \) is an orientation-preserving self-diffeomorphism of a 3-manifold \(N \) then \(M(f^2) \) bounds a non-orientable 5-manifold.

Lemma 4.2. Let \(X \) and \(Y \) be connected \((n - 1)\)-manifolds which have double covers \(c : Z \to X \) and \(d : Z \to Y \) with the same domain, and let \(M = MCyl(c) \cup_Z MCyl(d) \). Suppose that \(X \), \(Y \) and \(Z \) each bound \(n \)-manifolds \(\hat{X} \), \(\hat{Y} \) and \(\hat{Z} \), and that \(c \) and \(d \) extend to double covers \(\hat{c} : \hat{Z} \to \hat{X} \) and \(\hat{d} : \hat{Z} \to \hat{Y} \). Let \(W = MCyl(\hat{c}) \cup_Z MCyl(\hat{d}) \). Then \(\partial W = M \). If \(c \) and \(d \) are the orientable covers of non-orientable manifolds then \(W \) and \(M \) are orientable.

We shall show that this construction applies to many 4-dimensional infrasolvmanifolds.

Theorems 8.4–8.9 of [9] limit the possibilities for \(A, B \) and \(C \). In particular, if \(C \) is virtually \(\mathbb{Z}^3 \) but \(\pi \) is not virtually abelian then \(C \) has holonomy of order \(\leq 2 \). There are four such, two orientable: \(\mathbb{Z}^3 \) and \(G_2 = \mathbb{Z}^2 \ltimes_{-1} \mathbb{Z} \), and two non-orientable: \(B_1 = \mathbb{Z} \times \pi_1(K\beta) \) and \(B_2 \). Similarly, if \(C \) is a Nil\(\mathbb{Z}^3 \)-group but \(\pi \) is not virtually nilpotent then \([C : \sqrt{C}] \leq 2 \). We shall not need to consider the possibility that \(C \) be a Sol\(\mathbb{Z}^3 \)-group.

We note also the following simple result.

Lemma 4.3. If \(\pi \cong A \ast C B \) where \([A : C] = [B : C] = 2 \) and \(A, B \) and \(C \) are the groups of 3-dimensional infranilmanifolds then the holonomy of \(A \) maps injectively to the holonomy of \(\pi \).

5. **AMALGAMATION OVER FLAT 3-MANIFOLD GROUPS**

If \(C = \mathbb{Z}^3 \) then \(A \) and \(B \) have holonomy of order \(\leq 2 \). Since \(\beta_1(A; \mathbb{Q}) \) and \(\beta_1(B; \mathbb{Q}) \geq 1 \) and \(\beta_1(A; \mathbb{Q}) + \beta_1(B; \mathbb{Q}) \leq 3 \), we may assume that \(A \cong G_2 \) and \(B \) is not \(\mathbb{Z}^3 \). Let \(f, g \) and \(h \) be the involutions of \(S^1 \times D^2 \) given by \(f(u, v) = (\bar{u}, \bar{v}), g(u, v) = (u, \bar{v}) \) and \(h(u, v) = (\bar{u}, uv) \), for all \((u, v) \in S^1 \times D^2 \). The boundaries of the mapping tori \(M(f), M(g) \) and \(M(h) \) are the flat 3-manifolds with groups \(G_2, B_1 \) and \(B_2 \), respectively, and in each case the mapping torus is doubly covered by \(S^1 \times D^2 \times S^1 \), with boundary the 3-torus \(\mathbb{R}^3 / \mathbb{Z}^3 \). Therefore the mapping cylinder construction shows that \(M \) is a boundary.

If \(C = G_2 \) then \(\beta_1(C; \mathbb{Q}) \geq 1 \). We may assume that \(A = G_6 \) and \(B \) is one of \(G_2, G_4, G_6, B_3 \) or \(B_4 \). If \(B = G_2 \cong C \) then the inclusion of \(C \) into \(B \) induces an isomorphism \(C/I(C) \cong B/I(B) \), and is induced by a double cover from \(M(f) \) to itself. Non-orientable 3-manifolds bound
non-orientable 4-manifolds, and their orientable double covers bound
the orientable double covers of such manifolds. If \(f \) is the involution
of \(S^1 \times D^2 \) defined above then \(M(f) \) has an orientation-preserving free
involution given by \([u, v, t] \mapsto [-u, \bar{v}, -t] \). The quotient manifold has
boundary \(HW \), the Hantzsche-Wendt flat 3-manifold with group \(G_6 \).
Thus the mapping cylinder construction applies, provided \(B \not\cong G_4 \).

If \(C = B_1 \) or \(B_2 \) then \(A \) and \(B \) must be \(B_3 \) or \(B_4 \), and \(I(I(A)) = I(I(B)) \cong I(C) \cong \mathbb{Z} \). Hence \(\pi/I(C) \cong A/I(C) \ast_{\mathbb{Z}^2} B/I(C) \) and so
is a 3-manifold group. The manifold \(M \) is then the total space of an
\(S^1 \)-bundle. (The mapping cylinder construction can also be used here.)

There remains the possibility that \(A = G_6, B = G_4 \) and \(C = G_2 \).
In this case the holonomy group \(Z/4Z \) of \(G_4 \) does not act diagonally, and
there is no obvious construction of a 4-manifold with boundary the flat
3-manifold with group \(G_4 \). Instead we may use algebraic arguments.
The group \(\pi \) then has a presentation

\[
\langle t, x, y, z \mid xy^2x^{-1} = y^{-2}, yx^2y^{-1} = x^{-2}, z = xy, tx^2t^{-1} = x^{2m}y^{2p},
\]

\[
ty^2t^{-1} = x^{2n}y^{-2m}, tzt^{-1} = x^{-2r}y^{2s}z, t^2 = x^{2a}y^{2b}z \rangle,
\]

where \(a, b, m, n, p, \in \mathbb{Z}, r = (m - 1)a + pb, s = -na + (m + 1)b \) and
\(m^2 + np = -1 \). (We may assume also that \(0 \leq a, b \leq 1 \).) Here
\(C = \langle x^2, y^2, z \rangle \), and \(\pi/C \cong D_\infty \) is generated by the images of \(t \) and \(x \). The automorphism of \(\sqrt{C} = \langle x^2, y^2, z^2 \rangle \) determined by conjugation
by \(tx \) has eigenvalues \(m \pm \sqrt{m^2 + 1} \). If \(m = 0 \) then \(\pi \) is virtually
abelian, and the corresponding manifold \(M \) is flat. In this case \(\pi \) is
also isomorphic to \(G_2 \ast_{\mathbb{Z}^3} B_3 \), and so \(M \) bounds. Otherwise, \(\pi \) is not
virtually nilpotent, and \(M \) is a \(\text{Sol}^3 \times \mathbb{E}^1 \)-manifold.

The generators \(t, x \) and \(y \) in this presentation represent orientation-
reversing elements of \(\pi \). If \(m \) is even, or if \(m \) is odd and \(n, p \) are both
even, then \(\pi/\pi' \cong (Z/4Z)^2 \), and so \(\omega^2 = 0 \). Thus we may assume
that \(m, n \) are odd (and hence \(p \) is even). In this case \(\pi/\pi' \cong Z/8Z \oplus
Z/2Z \), where the summands are generated by the images of \(tx^{-1} \) and
\(x \), respectively. Thus \(w = w_1 \) is projection onto the second summand.
Let \(u : \pi \to Z/2Z \) be the homomorphism determined by \(u(t) = 1 \)
and \(u(x) = 0 \). Let \(H = \langle k^2 \mid w(k) = 0 \rangle \), as in Lemma 3.6. Then
\(G = \pi/H \cong Z/4Z \oplus Z/2Z \), and so \(u^2 = 0 \) and \(uw \neq 0 \) in \(H^2(G; \mathbb{F}_2) \).
Hence \(uw \neq 0 \) in \(H^2(\pi; \mathbb{F}_2) \), by Lemma 3.6, and so \(w^3 = 0 \), by part (1)
of Lemma 3.7. Thus all such manifolds bound.

These results apply immediately to the flat 4-manifolds with \(\beta = 0 \).
In the next section we shall use them to confirm that all \(\text{Nil}^1 \)- and
\(\text{Sol}^3 \times \mathbb{E}^1 \)-manifolds are boundaries.
6. \textit{Nil}^3\text{- AND \textit{Sol}^3 \times \mathbb{E}^1\text{-MANIFOLDS}}

Let \(M\) be a \(\textit{Nil}^3\)-manifold and let \(C\) be the centralizer of \(I(\sqrt{\pi}) \cong \mathbb{Z}^2\) in \(\sqrt{\pi}\). Then \(C \cong \mathbb{Z}^3\), and \(1 < \zeta \sqrt{\pi} < I(\sqrt{\pi}) < C < \sqrt{\pi}\) is a characteristic series with all successive quotients \(\mathbb{Z}\). (See Theorem 1.5 of [9].) In particular, \(C\) is normal in \(\pi\) and \(\pi/C\) has two ends. The preimage in \(\pi\) of any finite normal subgroup of \(\pi/C\) is a flat 3-manifold group which is normal in \(\pi\). This must be \(\mathbb{Z}^3\), by Theorem 8.4 of [9], and so \(\pi/C\) has no non-trivial finite normal subgroup. Hence \(\pi/C \cong \mathbb{Z}\) or \(D_\infty\), and \([\pi : \sqrt{\pi}]\) divides 4. In particular, if \(\beta = 0\) the mapping cylinder construction of §4 applies, and so all \(\textit{Nil}^3\)-manifolds bound. (Note that since \(\zeta \sqrt{\pi} \cong \mathbb{Z}\) the result of [7] applies here if and only if either \(\pi = \sqrt{\pi}\) or \(\pi/\sqrt{\pi} = Z/2Z\) and acts by inversion on \(\zeta \sqrt{\pi}\).)

If \(M\) is a \(\textit{Sol}^3 \times \mathbb{E}^1\)-manifold then \(\sqrt{\pi} \cong \mathbb{Z}^3\) and the quotient \(\pi/\sqrt{\pi}\) has two ends. Therefore \(\pi \cong A \ast_C B\), where \(\sqrt{\pi} \leq C\), \([C : \sqrt{\pi}]\) is finite and \([A : C] = [B : C]\) = 2, since we are assuming that \(\beta = 0\). Since \(\pi\) is not virtually nilpotent, \([C : \sqrt{\pi}] \leq 2\), by Theorem 8.4 of [9]. In all cases \(M\) is a boundary, by the results of §4.

7. \textit{AMALGAMATION OVER \textit{Nil}^3\text{-MANIFOLD GROUPS}}

The other cases that we shall need to consider are when \(A\), \(B\) and \(C\) are fundamental groups of \(\textit{Nil}^3\)-manifolds. These have canonical Seifert fibrations, with base a flat 2-orbifold with no reflector curves. (There are seven such orbifolds: \(T\), \(Kb\), \(S(2, 2, 2, 2)\), \(P(2, 2)\), \(S(2, 4, 4)\), \(S(2, 3, 6)\) and \(S(3, 3, 3)\).) The quotients \(\overline{A} = A/\zeta \sqrt{A}\), \(\overline{B} = B/\zeta \sqrt{B}\) and \(\overline{C} = C/\zeta \sqrt{C}\) are the orbifold fundamental groups of the bases. If the image of \(g \in A\) generates a maximal finite cyclic subgroup of \(\overline{A}\) then \(\zeta \sqrt{A} \leq \langle g \rangle\), since \(\langle g, \zeta \sqrt{A} \rangle\) is torsion-free and virtually \(\mathbb{Z}\).

\textbf{Lemma 7.1.} Suppose that \(\pi \cong A \ast_C B\), where \(C\) is a \(\textit{Nil}^3\)-group and \(A = \langle C, t \rangle\) and \(B = \langle C, u \rangle\), with \(t^2, u^2 \in C\). Then

1. if \([\sqrt{A} : \sqrt{C}] = 2\) or if \(C = \sqrt{C}\) and \(A/\zeta \sqrt{A} \cong \mathbb{Z}^2 \times_{-I} Z/2Z\) then the automorphism of \(\sqrt{C}/\zeta \sqrt{C}\) induced by conjugation by \(tu\) has finite order;
2. if \(\pi\) is not virtually nilpotent then \(\sqrt{A} = \sqrt{B} = \sqrt{C}\);
3. if the inclusion of \(C\) into each of \(A\) and \(B\) induces isomorphisms \(C/\zeta \sqrt{C} \cong A/\zeta \sqrt{A}\) and \(C/\zeta \sqrt{C} \cong B/\zeta \sqrt{B}\) then \(M\) bounds.

\textbf{Proof.} If \([\sqrt{A} : \sqrt{C}] = 2\) then \(t \in \sqrt{A}\), and so \(t\) centralizes \(\sqrt{C}/\zeta \sqrt{C}\). If \(C\) is nilpotent and \(A/\zeta \sqrt{A} \cong \mathbb{Z}^2 \times_{-I} Z/2Z\) then \(t\) acts via \(-I\) on \(\sqrt{C}/\zeta \sqrt{C}\). Since \(u^2 \in C\) and \([C : \sqrt{C}]\) is finite, in each case some power of \(tu\) acts trivially on \(\sqrt{C}/\zeta \sqrt{C}\). Hence \(\pi\) is virtually nilpotent.
Part (2) is an immediate consequence of part (1).

The hypotheses of part (3) imply that $\pi/\zeta\sqrt{C} \cong C/\zeta\sqrt{C} \times D_\infty$. (Hence π is virtually a product $\sqrt{C} \times \mathbb{Z}$.) Let $N = K(C, 1)$ and let i be the free involution of $N \times D^2$ which is the antipodal map on the S^1 fibres of N and reflection across a diameter of D^2. Then the quotient $N \times D^2/\langle i \rangle$ is a 5-manifold with boundary $M = K(\pi, 1)$.

As in the flat case, $\beta_1(A; \mathbb{Q}) + \beta_1(B; \mathbb{Q}) \leq \beta_1(C; \mathbb{Q}) \leq 2$. If $C = \sqrt{C}$ we may assume that either $A = \sqrt{A}$ and $K(B, 1)$ has base $S(2, 2, 2, 2)$, or the bases for $K(A, 1)$ and $K(B, 1)$ are Kb or $S(2, 2, 2, 2)$.

If $[C : \sqrt{C}] = 2$ then $K(C, 1)$ has base $S(2, 2, 2, 2)$ or Kb. In the first case $K(A, 1)$ and $K(B, 1)$ have base $S(2, 2, 2, 2)$, $P(2, 2)$ or $S(2, 4, 4)$. In the second case we may assume that $K(A, 1)$ has base $P(2, 2)$ and $K(B, 1)$ has base Kb or $P(2, 2)$.

Lemma 7.2. Suppose that $\pi \cong A \ast_C B$, where C is a Nil^3-group and $A = \langle C, t \rangle$ and $B = \langle C, u \rangle$, with $t^2, u^2 \in C$. Then $w^2 = 0$ if either

1. $q = [\zeta\sqrt{C} : \zeta\sqrt{C} \cap \sqrt{C}]$ is even, and either $C = \sqrt{C}$ or $t^n, u^n \in \zeta\sqrt{C}$ for some $n \geq 2$; or
2. $C = \sqrt{C}$ and $K(A, 1)$ and $K(B, 1)$ fibre over Kb; or
3. $K(C, 1)$ has base $S(2, 2, 2, 2)$ and $K(A, 1)$ and $K(B, 1)$ both have base $S(2, 2, 2, 2)$; or
4. $K(C, 1)$ has base $S(2, 2, 2, 2)$ and $K(A, 1)$ and $K(B, 1)$ both have base $P(2, 2)$.

Proof. Since Nil^3-manifolds are orientable the orientation reversing elements of π are of the form xc, where $x \in (A \cup B) \setminus C$ and $c \in C$. In each case, such elements have images in π/π' of order divisible by 4.

This does not always hold if $K(A, 1)$ has base $P(2, 2)$ and $K(B, 1)$ has base $S(2, 4, 4)$. When $\zeta\sqrt{A} = \zeta\sqrt{B} = \zeta\sqrt{C}$ and $K(C, 1)$ and $K(A, 1)$ have bases $S(2, 2, 2, 2)$ and $P(2, 2)$, respectively, the automorphism of $\sqrt{C}/\zeta\sqrt{C}$ induced by tu has matrix

$$\xi = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \left(\begin{array}{cc} m & p \\ n & -m \end{array} \right) = \left(\begin{array}{cc} m & p \\ -n & m \end{array} \right),$$

where $m^2 + np = 1$ if $K(B, 1)$ has base $P(2, 2)$ and $m^2 + np = -1$ if $K(B, 1)$ has base $S(2, 4, 4)$. If $m = 0$ this has finite order, and so M is a $\text{Nil}^3 \times \mathbb{E}^1$-manifold. If $m = \pm 1$ and $np = 0$ then $K(B, 1)$ must also have base $P(2, 2)$, and M is a $\text{Nil}^3 \times \mathbb{E}^1$-manifold if $n = p = 0$, and is a Nil^4-manifold if one of n or p is not 0. In all these cases $w^2 = 0$, and so M bounds. Otherwise (if $m^2 = 1$ and $np = -2$, or if $|m| > 1$) the eigenvalues of ξ are not roots of unity, and so M is a Sol^4-manifold.
If \([C : \sqrt{C}] > 2\) then \(M\) must be a \(\text{Nil}^3 \times \mathbb{E}^1\)-manifold. These cases are considered in the next section. (In most such cases part (3) of Lemma 7.1 applies.)

The mapping cylinder construction appears to have limited applicability here. Let \(\Theta_m\) and \(\Psi_n\) be the self-diffeomorphisms of \(S^1 \times D^2\) given by \(\Theta_m(u, d) = (u, u^m d)\) and \(\Psi_n(u, d) = (\bar{u}, u^n d)\), for all \((u, d) \in S^1 \times D^2\), respectively, and let \(\theta_m = \Theta_m|_T\) and \(\psi_n = \Psi_n|_T\) be the restrictions to \(T = \partial(S^1 \times D^2)\). The mapping tori \(M(\Theta_m)\) and \(M(\Psi_n)\) are \(D^2\)-bundles over \(T\) and \(Kb\), respectively. The double covers of \(M(\Theta_m)\) are all diffeomorphic to \(M(\Theta_{2m})\), while the double covers of \(M(\Psi_n)\) are diffeomorphic to \(M(\Theta_{2n})\) or \(M(\Psi_{2n})\). In particular, if \(C = \sqrt{A} = \sqrt{B}\) and \(K(A, 1)\) and \(K(B, 1)\) each fibre over \(Kb\) then \(M\) bounds.

8. \(\text{Nil}^3 \times \mathbb{E}^1\)-manifolds

If \(M\) is an infranilmanifold with holonomy a finite 2-group which acts effectively on \(\zeta \sqrt{\pi}\) then \(M\) bounds, by Proposition 1.3 of [7]. (The hypotheses of the later result of [12] imply that \(M\) must be an orientable \(\text{Nil}^3 \times \mathbb{E}^1\)-manifold, and so this is of limited interest for our problem.)

Let \(M\) be a \(\text{Nil}^3 \times \mathbb{E}^1\)-manifold. Then \(\sqrt{\pi} \cong \Gamma_q \times \mathbb{Z}\), for some \(q \geq 1\), and so \(\zeta \sqrt{\pi} \cong \mathbb{Z}^2\) and \(\sqrt{\pi}/\zeta \sqrt{\pi} \cong \mathbb{Z}^2\). Moreover, \(I(\sqrt{\pi}) \cong \mathbb{Z}\) and \(I(\sqrt{\pi}) < \zeta \sqrt{\pi}\). Let \(\theta : \pi \to \operatorname{Aut}(\zeta \sqrt{\pi}), \bar{\theta} : \pi \to \operatorname{Aut}(\zeta \sqrt{\pi}/I(\sqrt{\pi}))\) and \(\psi : \pi \to \operatorname{Aut}(\sqrt{\pi}/\zeta \sqrt{\pi})\) be the homomorphisms induced by conjugation in \(\pi\). Since \(I(\sqrt{\pi})\) is a characteristic subgroup of \(\pi\), the image of \(\theta\) lies in the diagonal group \((\mathbb{Z}/2\mathbb{Z})^2\) of \(\text{GL}(2, \mathbb{Z})\). The manifold \(M\) is non-orientable if and only if \(\bar{\theta}\) is nontrivial. (In that case the holonomy \(\gamma = \pi/\sqrt{\pi}\) acts by inversion on the Euclidean factor of \(\text{Nil}^3 \times \mathbb{R}\).)

Let \(K = \ker(\theta)\). Then \(\sqrt{K} = \sqrt{\pi}\), since \(\pi \leq K \leq \pi\). Moreover, \(\zeta \sqrt{\pi} \leq \zeta K \leq \sqrt{K}\), and so \(\zeta K = \zeta \sqrt{\pi}\). The quotient \(K/\zeta K\) is a flat 2-orbifold group with holonomy \(\sqrt{K}/\sqrt{\pi}\). Since \(K\) acts trivially on \(\zeta K\) this orbifold is orientable, and so \(K/\sqrt{K}\) is cyclic, of order 1, 2, 3, 4 or 6. The preimage in \(\pi\) of any finite normal subgroup of \(\pi/I(\sqrt{\pi})\) is an infinite cyclic normal subgroup, and therefore is \(I(\sqrt{\pi})\). Therefore the induced action of \(\gamma\) on \(\sqrt{\pi}/I(\sqrt{\pi})\) is effective, and so \((\psi, \bar{\theta}) : \gamma \to \text{GL}(2, \mathbb{Z}) \times \mathbb{Z}^\omega\) is injective. Hence \(\gamma\) is isomorphic to a subgroup of \(D_{2m} \times Z/2\mathbb{Z}\), for \(n = 4\) or 6. All the possibilities are realized, except for the products \(D_{2n} \times Z/2\mathbb{Z}\), with \(n = 3, 4\) or 6 [5].

Although some \(\text{Nil}^3 \times \mathbb{E}^1\)-groups with \(\beta = 0\) are amalgamated free products \(\pi \cong A *_C B\) with \(A, B\) and \(C\) virtually \(\mathbb{Z}^3\), the cases with \(A = G_6\), \(B = G_4\) and \(C = G_2\) do not arise here, and so the corresponding manifolds bound. Thus we may assume that \(\pi \cong A *_C B\), where \(A, B\) and \(C\) are fundamental groups of \(\text{Nil}^3\)-manifolds. If \(K(C, 1)\) has base
$P(2, 2)$, $S(2, 4, 4)$ or $S(2, 3, 6)$ then $\overline{A} = \overline{B} = \overline{C}$, and so M bounds, by part (3) of Lemma 7.1. However, if $K(C, 1)$ has base $S(3, 3, 3)$ then $K(A, 1)$ or $K(B, 1)$ could have base $S(2, 3, 6)$. In this case there are non-normal subgroups of index 3, with similar structures $\overline{A} \ast \sqrt{\overline{C}} \overline{B}$, where $K(\overline{A}, 1)$ and $K(\overline{B}, 1)$ have base T or $S(2, 2, 2, 2)$. Since coverings of odd degree induce isomorphisms on cohomology with coefficients \mathbb{F}_2, we may further assume that $[C : \sqrt{C}] \leq 2$, and that $\gamma = \pi/\sqrt{\pi}$ is a 2-group, of order dividing 8.

If $\gamma = Z/2Z$ then γ must act trivially on $I(\sqrt{\pi})$ and via $-I_3$ on $\sqrt{\pi}/I(\sqrt{\pi}) \cong \mathbb{Z}^3$ (since $\beta = 0$). Thus γ acts effectively on $\zeta \sqrt{\pi}$, and so M bounds, by Proposition 1.3 of [7]. Thus we may assume that either $\gamma = (Z/2Z)^2$ and $\zeta \pi = I(\sqrt{\pi})$ (i.e., γ does not act effectively on $\zeta \sqrt{\pi}$) or $\gamma = Z/4Z, Z/4Z \oplus Z/2Z, (Z/2Z)^3$ or D_8.

If $C = \sqrt{C}$ then the orientable double cover of M is a Spin 4-manifold. If, moreover, either $K(A, 1)$ and $K(B, 1)$ both fibre over Kb or $q = [\zeta \sqrt{C} : \zeta \sqrt{C} \cap \sqrt{C}]$ is even then $w_2^2 = 0$ and so M bounds, by part (1) of Lemma 7.2. If $K(C, 1)$ has base $S(2, 2, 2, 2)$ and $\sqrt{A} = \sqrt{B} = \sqrt{C}$ (and π is virtually nilpotent) then $w_2^2 = 0$. There are mapping tori of self-diffeomorphisms of such $K(C, 1)$ which are not Spin [10]. Thus the cases when $K(A, 1)$ and $K(C, 1)$ have base $S(2, 2, 2, 2)$ may give examples of $\text{Nil}^3 \times \mathbb{E}^1$-manifolds which are not boundaries.

9. Sol^4-MANIFOLDS

If M is a Sol^4-manifold then $\sqrt{\pi} \cong \Gamma_q$ for some $q \geq 1$, and $\pi/\sqrt{\pi}$ has two ends. Therefore $\pi \cong A \ast_C B$, where $[A : C] = [B : C] = 2$, $\sqrt{\pi} = \sqrt{C}$ and $[C : \sqrt{C}]$ is finite. Thus A, B and C are fundamental groups of Nil^3-manifolds. Since π is not virtually nilpotent, $[C : \sqrt{C}] \leq 2$, by Theorem 8.4 of [9], and so $[A : \sqrt{\pi}]$ and $[B : \sqrt{\pi}]$ are each ≤ 4. Moreover $\sqrt{A} = \sqrt{B} = \sqrt{C}$, by part (2) of Lemma 7.1. The possibilities are limited further by the fact that π cannot have \mathbb{Z}^2 as a normal subgroup, since Sol^4-manifolds are not Seifert fibred. In particular, $K(C, 1)$ cannot be fibred over Kb, for otherwise the characteristic subgroup $I(C) \cong \mathbb{Z}^2$ would be normal in π.

If $C = \sqrt{\pi}$ then $K(A, 1)$ and $K(B, 1)$ are S^1-bundles over Kb, by part (1) of Lemma 7.1. The mapping cylinder construction then applies to show that M bounds. If $[C : \sqrt{\pi}] = 2$ then $K(C, 1)$ has base $S(2, 2, 2, 2)$, and so $K(A, 1)$ and $K(B, 1)$ have bases $P(2, 2)$ or $S(2, 4, 4)$. If the bases are the same then $w_2^2 = 0$, by parts (3) and (4) of Lemma 7.2, and so M bounds. There remains the possibility that $K(A, 1)$ has base $S(2, 4, 4)$ and $K(B, 1)$ has base $P(2, 2)$.

Theorem 9.1. Let M be a Sol^4-manifold with $\pi = \pi_1(M) \cong A \ast_C B$, where $K(A, 1)$ is Seifert fibred over $S(2, 4, 4)$ and $K(B, 1)$ is Seifert fibred over $P(2, 2)$. If $q = [\zeta \sqrt{C} : \zeta \sqrt{C} \cap \sqrt{C}]$ is odd then M bounds if and only if $w_2 = 0$.

Proof. Since $K(C, 1)$ is a double cover of each of $K(A, 1)$ and $K(B, 1)$, it is Seifert fibred over $S(2, 2, 2, 2)$, and $\sqrt{\Delta} = \sqrt{B} = \sqrt{C}$. The orbifold fundamental groups of the bases $\overline{A} = \pi^{\text{orb}}(S(2, 4, 4))$ and $\overline{B} = \pi^{\text{orb}}(P(2, 2))$ have presentations $\langle a, x \mid a^4 = (a^2x)^2, [x, axa^{-1}] = 1 \rangle$ and $\langle j, u \mid j^2 = (jua^2)^2 = 1 \rangle$, and their maximal abelian normal subgroups are $\langle x, axa^{-1} \rangle$ and $\langle u^2, (ju)^2 \rangle$, respectively.

After suitable normalizations we may assume that A has a presentation

$$
\langle a, x, y \mid y = axa^{-1}, [x, y] = a^4q, a^2xa^{-2} = x^{-1} \rangle,
$$

and that $C = \langle a^2, x, y \rangle$. We may then assume that B has a presentation

$$
\langle j, k, x, y \mid [x, y] = j^2q, jxy^{-1} = x^{-1}, jyx^{-1} = y^{-1}, kxk^{-1} = x^my^n, j^2 = x^py^mq^n, (jk)^2 = x^py^mq^n \rangle,
$$

where m is odd and p and n are even (since $(\frac{m}{n}, \frac{p}{m})$ must be conjugate to $(\frac{1}{n}, \frac{0}{1})$), and $ru - ts = \pm 1$. Here C is the subgroup $\langle j, x, y \rangle$, and we may identify j with a^2. Hence π has a presentation

$$
\langle a, k, x, y \mid axa^{-1} = y, a^2xa^{-2} = x^{-1}, kxk^{-1} = x^my^na^4, j, k^2 = x^py^mq^n, (a^2k)^2 = x^py^mq^n, [x, y] = a^4q \rangle.
$$

Abelianizing this presentation gives $[x] = [y]$, $4q[a] = 0$, $2[x] = 0$, $(m + n + 1)[x] = 4q[a]$, $(m + p + 1)[x] = 4f[a]$, $2[k] = (r + s)[x] + 4q[a]$ and $2[k] = (t + u)[x] + 4(h - 1)[a]$. Since $m + n + 1$ and $m + p + 1$ are even two of these simplify to $4q[a] = 4f[a] = 0$. Moreover $2q[k] = q[x]$. Since $r + s$ and $t + u$ cannot both be even, we can solve for $[x]$ in terms of $[a]$ and $[k]$. If they are both odd then $\pi/\pi' \cong Z/4qZ \oplus Z/4Z$, where $q = h.c.f.\{q, e, f, g - h + 1\}$, and then $w_2 = 0$. Otherwise $\pi/\pi' \cong Z/4qZ \oplus Z/2Z$, where q divides $h.c.f.\{q, e, f\}$, and $w_2 \neq 0$. If (say) $r + s$ is even then $2([k] - 2g[a]) = 0$ and so ka^{-2g} is an orientation reversing element with image in π/π' of order 2.

The projection to the quotient $\pi/\langle (a^4, (ak)^2, x) \rangle \cong D_e$ induces an isomorphism $H^1(D_e; \mathbb{F}_2) \cong H^1(\pi; \mathbb{F}_2) = \langle u, w \rangle$. Since $uw = 0$ in $H^2(D_e; \mathbb{F}_2)$ it follows that $uw = 0$ in $H^2(\pi; \mathbb{F}_2)$ also.

The orientable double cover of M is the mapping torus of the self-diffeomorphism of $K(C, 1)$ corresponding to $t = ak$, and is not a Spin manifold, since q is odd. (See §7 of [10].) Therefore $w_2(M) \neq 0$ or w^2. It now follows from part (2) of Lemma 3.7 that $w^4 \neq 0$, and so M does not bound. \qed
In particular, the Sol^4_1-manifold M whose group has presentation
\[\langle a, k, x, y \mid axa^{-1} = y, \ a^2xa^{-2} = x^{-1}, \ kxk^{-1} = x^3y^{-4}, \ kyk^{-1} = x^2y^{-3}, \ k^2 = xy^{-1}, \ (a^2k)^2 = xy^{-2}, \ [x, y] = a^4 \rangle. \]
is not a boundary.

10. S^1-bundle spaces

In many cases a 4-dimensional infrasolv manifold M is the boundary of the total space of a D^2-bundle over a 3-manifold.

In all, 50 of the 74 flat 4-manifolds are total spaces of S^1-bundles. The exceptions have $\beta \leq 1$, and are three with group $G_2 \rtimes \mathbb{Z}$ (all non-orientable), three with group $G_3 \rtimes \mathbb{Z}$ (all orientable), two with group $G_4 \rtimes \mathbb{Z}$ (both orientable), one with group $G_5 \rtimes \mathbb{Z}$ (orientable), twelve with group $G_6 \rtimes \mathbb{Z}$ (seven orientable) and three with $\beta = 0$ and groups $G_2 \ast_{\varphi} B_2$, $G_6 \ast_{\varphi} B_3$ and $G_6 \ast_{\varphi} B_4$ (all non-orientable). In §11 we shall show that the mapping cylinder construction applies to most of these.

Coset spaces of $\text{Nil}^3 \times \mathbb{R}$ or $\text{Sol}^3 \times \mathbb{R}$ are products $N \times S^1$, with N a Nil^3- or Sol^3-coset space, respectively, and so bound $N \times D^2$. Coset spaces of Nil^4 or Sol^4_1 are also S^1-bundle spaces, since the action of the centre \mathbb{R} induces a free S^1-action on the coset space. A Nil^4-manifold is such a coset space if and only if $\beta = 2$, while a $\text{Nil}^3 \times \mathbb{E}^1$-manifold is such a coset space if and only if $\beta = 3$. These coset spaces are orientable, and so bound orientably.

If M is a Nil^4-manifold or a $\text{Nil}^3 \times \mathbb{E}^1$-manifold, but is not a coset space, then $\beta \leq 1$ or $\beta \leq 2$, respectively. If M is non-orientable and $\beta > 0$, or if M is an orientable $\text{Nil}^3 \times \mathbb{E}^1$-manifold and $\beta = 2$, then $\pi \cong \nu \rtimes_{\varphi} \mathbb{Z}$, where $\nu = \mathbb{Z}^3, G_2, B_1$ or B_2. (See Theorems 8.4 and 8.9 of [9].) The manifold M is the mapping torus of a self-diffeomorphism of the corresponding flat 3-manifold N. (If M is orientable then $\nu = \mathbb{Z}^3$ or G_2, and if M is a non-orientable Nil^4-manifold then $\nu = \mathbb{Z}^3$.) If $\nu = \mathbb{Z}^3$ or G_2 then $\theta|_{I(\nu)}$ has an eigenvalue ± 1, since π is virtually nilpotent. (If $\beta = 1$ and $\nu = \mathbb{Z}^3$ the eigenvalue must be -1.) The quotient of π by the corresponding infinite cyclic normal subgroup is torsion-free, and so M is also the total space of an S^1-bundle over a closed 3-manifold. A similar result holds if $\nu = B_1$ or B_2, for in these cases $I(\nu) \cong \mathbb{Z}$.

Orientable $\text{Nil}^3 \times \mathbb{E}^1$- and Nil^4-manifolds with $\beta = 1$, and all orientable Sol^4_1-manifolds (which have $\beta = 1$) are mapping tori of diffeomorphisms of Nil^3-manifolds. If the fibre is a Nil^3-coset space, with group $\nu = \sqrt{\nu}$, then $\pi/I(\nu)$ is torsion-free, and so the 4-manifold is the total space of an S^1-bundle over a Nil^3-manifold. However if $\nu \neq \sqrt{\nu}$
then π has no infinite cyclic normal subgroup with torsion-free quotient, and the manifold is not an S^1-bundle space.

If M is a $\text{Sol}^3 \times E^1$-manifold then $\beta \leq 2$, and if $\beta = 2$ then $\pi \cong \mathbb{Z}^3 \rtimes_{\theta} \mathbb{Z}$. In this case θ has an eigenvalue 1, and so M is an S^1-bundle space. This is also the case if $\beta = 1$ and $\pi \cong \sigma \rtimes \mathbb{Z}$, where σ is the group of a Sol^3-manifold, or $\beta = 0$.

11. MAPPING CYLINDER CONSTRUCTIONS

The mapping cylinder construction of Lemma 4.1 and 4.2 apply to many of the flat 4-manifolds which are not realizable by S^1-bundle spaces. We note here the following variation: if $c : Z \to X$ is a double cover and f is a self-diffeomorphism X such that $f_* c_* \pi_1(Z) = c_* \pi_1(Z)$ then f extends to a self-diffeomorphism F of $MCyl(c)$, and so $M(f) = \partial M(F)$.

All the mapping tori of self-diffeomorphisms of orientable flat 3-manifolds with cyclic holonomy and $\beta = 1$ also fibre over $K\theta$, and so their groups map onto D_∞. The groups $G_6 \rtimes_{\theta} \mathbb{Z}$ corresponding to the outer automorphism classes $\theta = a, ab, i$ and ei also map onto D_∞. The groups corresponding to $cej, abej$ and j have abelianization \mathbb{Z}, and so Lemma 4.2 does not apply to these. The classes $ace = (ci)^2$, $bce = (ei)^2$ and and $abcej = j^4$ are squares in $\text{Out}(G_6)$ (as are $1 = 1^2$ and $ab = (cei)^2$). These bound, since $M(f^2)$ bounds the mapping cylinder of the canonical double cover of $M(f)$. (Since cei and ci are orientation-reversing, two of these mapping cylinders are orientable.) The classes a, ce, cei, ci and j are not squares, since they are orientation-reversing. The classes i and ei are not squares, as they have order 4 and $\text{Out}(G_6)$ has no elements of order 8. The class cej is not a square, as it has order 6 and $\text{Out}(G_6)$ has no elements of order 12.

The mapping cylinder construction applies to show that each of the four flat 4-manifolds with $\beta = 0$ is a boundary. There remain five flat 4-manifolds (corresponding to ce, cei, cej, ci and j) for which we do not yet have simple cobounding 5-manifolds, and a further two orientable flat 4-manifolds (corresponding to $abej$ and bce) for which we do not have simple orientable cobounding 5-manifolds.

12. EMBEDDING FLAT 4-MANIFOLDS IN \mathbb{R}^n

If a closed smooth n-manifold embeds in \mathbb{R}^k then the kth normal Stiefel-Whitney classes $w_k(M)$ is 0, since this is the $\text{mod}(2)$ normal Euler class. (See Theorem 10.2 of [11].) This necessary condition is also sufficient when $n = 4$ and $k = 3$: a closed smooth 4-manifold
\(M \) embeds in \(\mathbb{R}^7 \) if and only if \(\varpi_3(M) = 0 \) [6]. (Note that \(\varpi_3(M) = w_3(M) + w_1(M)^3 = Sq w_2(M) + w_1(M)^3 \), by the Whitney sum theorem and the Wu formulae.) In particular, every orientable closed smooth 4-manifold embeds in \(\mathbb{R}^7 \). An orientable closed smooth 4-manifold \(M \) embeds in \(\mathbb{R}^6 \) if and only if \(w_2(M) = 0 \) and \(\sigma(M) = 0 \) [2]. However, there is as yet no general criterion for non-orientable 4-manifolds to embed in \(\mathbb{R}^6 \).

It follows from these results (and Lemma 3.1) that if a 4-dimensional infrasolvmanifold \(M \) is a boundary and \(w_3(M) = 0 \) then \(M \) embeds in \(\mathbb{R}^7 \), since \(w_1^4 = 0 \) implies \(w_1^3 = 0 \), by Lemma 3.2, and then \(\varpi_3(M) = 0 \). If \(M \) is orientable then it embeds in \(\mathbb{R}^6 \) if and only if \(w_2(M) = 0 \).

In [10] it is shown that \(w_2 \) is integral (and hence \(w_3 = 0 \)) for all but at most two flat 4-manifolds. The exceptions have groups \(\pi = G_6 \rtimes_\omega \mathbb{Z} \) or \(G_6 \rtimes_\omega \mathbb{Z} \). When \(\pi = G_6 \rtimes_\omega \mathbb{Z} \), the Wang sequence for \(\pi \) as an extension of \(\mathbb{Z} \) and the Universal Coefficient Theorem imply that \(H^2(\pi; Z/4Z) \cong (Z/4Z)^2 \) maps onto \(H^2(\pi; F_2) \). Therefore \(w_3 = Sq w_2 = 0 \). Thus, with one possible exception, every 4 flat 4-manifold embeds smoothly in \(\mathbb{R}^7 \).

Three orientable flat 4-manifolds have \(w_2 \neq 0 \); they are mapping tori of self-diffeomorphisms of \(HW \), corresponding to \(\theta = e, bce \) or \(e \) in \(Out(G_6) \). The other 24 embed in \(\mathbb{R}^6 \). Since \(\varpi_2(M) = w_2(M) + w_1(M)^2 \), non-orientable flat 4-manifolds which embed in \(\mathbb{R}^6 \) must have \(Pin^- \) structures. This condition excludes 15 of the 47 non-orientable flat 4-manifolds, but we do not know whether all the others embed in \(\mathbb{R}^6 \).

If \(M \) embeds in \(\mathbb{R}^5 \) then it bounds a compact region and is s-parallelizable. Thus \(M \) is parallelizable if also \(\chi(M) = 0 \). Moreover, if \(X \) and \(Y \) are the closures of the components of \(S^5 \setminus M \) then \(X \) and \(Y \) are connected and \(H^1(X) \oplus H^1(Y) \cong H^1(M) \). In particular, if \(\beta = 1 \) then \(M \) has an essentially unique infinite cyclic covering \(M' \), and this bounds a covering of \(X \), say. Let \(t \) generate the covering group, and let \(T \) be the maximal finite submodule of \(H_1(M; \Lambda) \). Then Poincaré duality with coefficients in the group ring \(\Lambda = \mathbb{Z}[t, t^{-1}] \) and the Universal coefficient spectral sequence together give an isomorphism \(T \cong Ext^2_\Lambda(T, \Lambda) \). This is equivalent to a non-degenerate pairing \(\ell_p : T \times T \to \mathbb{Q}/\mathbb{Z} \), with an isometric action of the covering group. When \(M' \) is homotopy equivalent to a 3-manifold this pairing is the standard torsion linking pairing on \(M' \), with the action of the covering group \(\langle t \rangle \). (In knot theory this pairing is known as the Farber-Levine pairing.) If \(M = \partial W \) and \(p \) extends to a homomorphism from \(\pi_1(W) \) to \(\mathbb{Z} \) then \(K = \text{Ker}(T \to H_1(W; \Lambda)) \) is a submodule which is its own annihilator with respect to \(\ell_p \). Hence \(\ell_p \) is metabolic.
Every closed 3-manifold N embeds in \mathbb{R}^5 [13]. The normal bundle of an embedding $j : N \rightarrow \mathbb{R}^5$ is classified by an Euler class $e(j) \in H^2(N; \mathbb{Z}^w) \cong H_1(N; \mathbb{Z})$. If M is the boundary of a regular neighbourhood of j then M is the total space of an S^1-bundle over N, and $e(j)$ is also the class of the corresponding extension of $\pi_1(N)$ by \mathbb{Z}. If N is orientable the normal bundle is trivial, and so $M = N \times S^1$.

The six orientable flat 4-manifolds which are products $N \times S^1$ (with groups $G_i \rtimes \mathbb{Z}$, for $1 \leq i \leq 6$) all embed in \mathbb{R}^5. Since $G_{3i}^{ab} \cong \mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ and $G_{4i}^{ab} \cong \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, the flat 4-manifolds with groups $G_i \rtimes_\theta \mathbb{Z}$ (for $i = 3$ or 4) and $\beta = 1$ do not embed in \mathbb{R}^5. The group $G_{6i}^{ab} \cong (\mathbb{Z}/4\mathbb{Z})^2$ does not have a subgroup which is its own annihilator with respect to the torsion linking pairing of HW, and so no flat 4-manifold with group $G_i \rtimes \mathbb{Z}$ and $\beta = 1$ can embed in \mathbb{R}^5. However, such considerations do not apply to the flat 4-manifold with group $G_5 \rtimes_\theta \mathbb{Z}$ and $\beta = 1$, since $G_5^{ab} \cong \mathbb{Z}$ is torsion-free. In this case $H_1(\pi) \cong \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ is the sum of two cyclic groups. Since the corresponding flat 4-manifold M has $w_2(M) = 0$ and $\sigma(M) = 0$, it embeds in \mathbb{R}^5, by Theorem 6.2 of [3].

If $\pi \cong \mathbb{Z}^3 \rtimes_T \mathbb{Z}$ has cyclic holonomy and $\beta = 2$, then any basis for $\pi/I(\pi) \cong \mathbb{Z}^2$ will contain at least one element whose image generates the holonomy. Therefore if M embeds in S^5 with closed complementary regions X and Y there will be an infinite cyclic cover M' with fundamental group an orientable flat 3-manifold group with the same holonomy, which bounds an infinite cyclic cover of X, say. This is again impossible if the holonomy has order 3 or 4.

The remaining six orientable flat 4-manifolds are mapping tori of self-diffeomorphisms of the half-turn flat 3-manifold, with groups $G_2 \rtimes \mathbb{Z}$, and five of these have $\beta = 1$. These also fibre over non-orientable flat 3-manifolds. In three of these cases the group is a semidirect product $\mathbb{Z} \rtimes_w B_i$, where $w = w_1(B_2)$ and $2 \leq i \leq 4$. These correspond to S^1-bundles with a section, i.e., to bundles with Euler class 0. We shall show that they each embed in \mathbb{R}^5.

If a flat 4-manifold M is the boundary of a regular neighbourhood of an embedding j of a non-orientable flat 3-manifold N in \mathbb{R}^5, then $\pi = \pi_1(M)$ is a non-trivial extension of $\pi_1(N)$ by \mathbb{Z}, $\beta = \beta_1(N)$ and $e(j)$ must have finite order. In particular, if $\pi_1(N) = B_1$ or B_2 then $\pi \cong G_2 \times \mathbb{Z}$ or $\mathbb{Z} \rtimes_w B_2$. The semidirect product is the only orientable, virtually abelian extension of B_2 by \mathbb{Z}, since $H_1(B_2; \mathbb{Z})$ is torsion-free. If $\pi_1(N) = B_3$ or B_4 then $\beta = 1$, $\pi \cong G_2 \rtimes_\theta \mathbb{Z}$ and the holonomy is $(\mathbb{Z}/2\mathbb{Z})^2$.

Since Kb embeds in G_2, $Kb \times S^1$ embeds in \mathbb{R}^5 with normal Euler class 0, and so the flat 4-manifold with group $\mathbb{Z} \rtimes_w B_1$ embeds. (This is of course $G_2 \times S^1$.) Let R be the orientation preserving involution of
\(D^2 \times D^2\) which swaps the factors. Then \(R\) restricts to an orientation-reversing involution of \(T = S^1 \times S^1\), and \(M(R_T) \cong K(B_2, 1)\) embeds in \(M(R) \cong S^1 \times D^3 \subset \mathbb{R}^5\). Since this embedding can be isotoped off itself, the flat 3-manifold \(K(B_2, 1)\) embeds in \(\mathbb{R}^5\), with normal Euler class 0.

Two of the non-orientable flat 3-manifolds fibre over the torus, while the other two fibre over the Klein bottle. Let \(p_i : E_i \to F\) be the projection of the associated \(\mathbb{R}^3\)-bundle, let \(s : F \to E_i\) be the 0-section, and let \(j_i : K(B_i, 1) \to E_i\) be the natural inclusion of the unit circle bundle. Note that \(j_i\) may be isotoped to a disjoint nearby embedding. Let \(\eta_i\) be the line bundle over \(F\) with \(w_1(\eta_i) = s^*w_1(E_i)\). Then the Whitney sum \(p_i \oplus \eta_i\) is an \(\mathbb{R}^3\)-bundle over \(F\), with orientable total space \(\hat{E}_i = E(p_i \oplus \eta_i)\).

If \(i = 2\) or 4 the fibres of the projections \(p_i j_i\) have image 0 in \(H_1(B_i; \mathbb{F}_2)\), and so \(p_i j_i\) induces isomorphisms \(H^q(F; \mathbb{F}_2) \cong H^q(B_i; \mathbb{F}_2)\), for \(q \leq 2\). Since \(w_2 = w_2^2\) for any 3-manifold, by the Wu relations, the Whitney sum formula gives \(w_2(\hat{E}_i) = 0\). Regular neighbourhoods of any embedding of \(T\) or \(Kb\) in \(\mathbb{R}^5\) are \(D^3\)-bundles with parallelizable total space. Therefore if \(i = 2\) or 4 then \(\hat{E}_i\) embeds in \(\mathbb{R}^5\). Hence the flat 3-manifold \(K(B_i, 1)\) also embeds in \(\mathbb{R}^5\), with normal Euler class 0. The boundary of a regular neighbourhood is an orientable flat 4-manifold with group \(\mathbb{Z} \ltimes_w B_4\).

When \(i = 1\) or 3 it is not so clear that \(w_2(\hat{E}_i) = 0\). Instead we use more explicit constructions. We have already done this for \(i = 1\). We may embed \(Kb\) in \(S^1 \times D^3\) as the subset \(\{(u^2, x, yu) \mid u \in S^1, x, y \in \mathbb{R}, x^2 + y^2 = 1\}\). Let \(h\) be the orientation-preserving diffeomorphism of \(S^1 \times D^3\) given by \(h(u, x, y, z) = (\bar{u}, x, y, -z)\). Then \(h\) reverses the \(S^1\) factor, \(h(Kb) = Kb\) and \(h\) fixes pointwise the fibre of \(Kb\) over \(u = 1\). The mapping torus \(M(h)\) is an orientable \(D^3\)-bundle over \(Kb\), and \(M(h)(Kb) = B_3\). Since \(h|_0\) has 1-dimensional fixed point set, the boundary of \(M(h)\) is the orientable \(S^2\)-bundle over \(Kb\) with \(w_2 = 0\), and so \(w_2(M(h)) = 0\). Therefore \(M(h)\) embeds in \(\mathbb{R}^5\) as a regular neighbourhood of an embedding of \(Kb\). Hence \(K(B_3, 1)\) also embeds in \(\mathbb{R}^5\), with normal Euler class 0. The boundary of a regular neighbourhood is an orientable flat 4-manifold with group \(\mathbb{Z} \ltimes_w B_3\).

One of the three remaining groups \(G_2 \ltimes \mathbb{Z}\) has abelianization \(\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}\). The corresponding flat 4-manifold embeds in \(\mathbb{R}^5\), by Theorem 6.2 of [3]. The group is a non-split extension of \(B_4\) by \(\mathbb{Z}\), and so the normal Euler class is a non-zero torsion class.

The two undecided cases have groups with presentations
\[
\langle t, x, y, z \mid ttx^{-1} = x^{-1}yz, tgy = yt, tz^{-1}t = z^{-1}\rangle,
\]
\[
xyx^{-1} = y^{-1}, \quad xzx^{-1} = z^{-1}, \quad yz = zy
\]
and
\[
\langle t, x, y, z \mid txt^{-1} = x^{-1}, \quad tyt^{-1} = z, \quad tzt^{-1} = y, \quad xyx^{-1} = y^{-1}, \quad xzx^{-1} = z^{-1}, \quad yz = zy \rangle,
\]
respectively. These manifolds are \textit{Spin}, and so embed in \(\mathbb{R}^6\). In each case the Farber-Levine pairing is metabolic, and so provides no obstruction to an embedding in \(\mathbb{R}^5\). On the other hand, the abelianizations each need at least three generators, and so the result of [3] does not apply.

\section*{References}

\textbf{School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia}

\textit{E-mail address:} jonathan.hillman@sydney.edu.au