1. Find the **surface area** of the part of the sphere $x^2 + y^2 + z^2 = 25$ that lies between the planes $z = 3$ and $z = 4$.

Solution: Let S be the part of the sphere between the planes $z = 3$ and $z = 4$. Let R be the projection of S onto the xy-plane. So R is given by $9 \leq x^2 + y^2 \leq 16$
Surface area of $S = \int \int_S dS = \int \int_R \sqrt{f_x^2 + f_y^2 + 1} \, dx \, dy,$

where $z = f(x, y) = \sqrt{25 - x^2 - y^2}$.

So $f_x = -\frac{x}{\sqrt{25 - x^2 - y^2}}, \quad f_y = -\frac{y}{\sqrt{25 - x^2 - y^2}},$

and $\sqrt{f_x^2 + f_y^2 + 1} = \frac{5}{\sqrt{25 - x^2 - y^2}}$.

Hence, the surface area of $S = \int \int_R \frac{5}{\sqrt{25 - x^2 - y^2}} \, dx \, dy$.

Using polar coordinates, R is described by $x = r \cos \theta, \ y = r \sin \theta,$

with $0 \leq \theta \leq 2\pi$ and $3 \leq r \leq 4$. Therefore, the surface area is

$$\int_0^{2\pi} \int_3^4 \frac{5}{\sqrt{25 - r^2}} \, r \, dr \, d\theta = \int_0^{2\pi} -5\sqrt{25 - r^2} \bigg|_3^4 \, d\theta$$

$$= \int_0^{2\pi} 5 \, d\theta = 10\pi.$$
2. Find the surface area of the part of the paraboloid \(z = 10 - x^2 - y^2 \) which lies above the \(xy \)-plane.

Solution: Let \(S \) be the surface of the paraboloid, and \(R \) the projection of \(S \) onto the \(xy \)-plane. So \(R \) is given by \(x^2 + y^2 \leq 10 \)

Surface area of \(S = \iint_S dS \)

\[
= \iint_R \sqrt{f_x^2 + f_y^2 + 1} \, dx \, dy,
\]

where \(z = f(x, y) = 10 - x^2 - y^2 \).

So \(f_x = -2x \); \(f_y = -2y \)

and \(\sqrt{f_x^2 + f_y^2 + 1} = \sqrt{4x^2 + 4y^2 + 1} \).

Hence, surface area = \(\iint_R \sqrt{4x^2 + 4y^2 + 1} \, dx \, dy \)
Using polar coordinates, \(R \) is described by \(x = r \cos \theta, \ y = r \sin \theta \), with \(0 \leq \theta \leq 2\pi \) and \(0 \leq r \leq \sqrt{10} \). Therefore, the

\[
\text{surface area} = \int_0^{2\pi} \int_0^\sqrt{10} \sqrt{4r^2 + 1} r \ dr \ d\theta \quad \text{(via polars)}
\]

\[
= 2\pi \times \frac{1}{8} \times \frac{2}{3} (4r^2 + 1)^{3/2} \bigg|_0^\sqrt{10} = \frac{(41^{3/2} - 1)\pi}{6}.
\]

3. Let \(S \) be the triangular portion of the plane \(3x + 3y + 5z = 30 \) in the first octant — that is, the portion of the plane cut off by the planes \(x = 0, \ y = 0 \) and \(z = 0 \), for \(x \geq 0, \ y \geq 0 \) and \(z \geq 0 \).

(i) Sketch the region \(S \).

(ii) Let \(R \) be the projection of \(S \) onto the \(xy \)-plane. Describe \(R \), in terms of \(x \) and \(y \).

(iii) Suppose that a thin plate in the shape of \(S \) has density \((x + y + z) \) at each point \((x, y, z) \). Find the mass of the plate.

\[
(\text{Mass} = \iint_S (x + y + z) \ dS.)
\]

Solution:
(i) The region S is as sketched below:

(ii) R is described by $0 \leq x \leq 10; 0 \leq y \leq 10 - x.$ and is as sketched above.
(iii) Recall that

\[\iint_S \phi(x, y, z) \, dS = \iint_R \phi(x, y, f(x, y)) \sqrt{f_x^2 + f_y^2 + 1} \, dx \, dy \]

where \(S \) is a surface given by the equation \(z = f(x, y) \) and \(R \) is the projection of \(S \) onto the \(xy \)-plane.

Mass of \(S \) = \[\iint_S (x + y + z) \, dS \]

= \[\iint_R (x + y + z) \sqrt{f_x^2 + f_y^2 + 1} \, dx \, dy, \]

where \(z = f(x, y) = \frac{30 - 3x - 3y}{5} \).

So \[\sqrt{f_x^2 + f_y^2 + 1} = \sqrt{\left(\frac{-3}{5}\right)^2 + \left(\frac{-3}{5}\right)^2 + 1} = \frac{\sqrt{43}}{5}. \]
Mass of $S = \int\int_{S} (x + y + z) \, dS$

\[= \int\int_{R} \left(x + y + \frac{30 - 3x - 3y}{5} \right) \frac{\sqrt{43}}{5} \, dx \, dy \]

\[= \frac{\sqrt{43}}{25} \int_{0}^{10} \int_{0}^{10-x} (2x + 2y + 30) \, dy \, dx \]

\[= \frac{\sqrt{43}}{25} \int_{0}^{10} \left[2xy + y^2 + 30y \right]_{0}^{10-x} \, dx \]

\[= \frac{\sqrt{43}}{25} \int_{0}^{10} (2x(10 - x) + (10 - x)^2 + 30(10 - x)) \, dx \]

\[= \frac{\sqrt{43}}{25} \times \frac{6500}{3} = \frac{1300\sqrt{43}}{15}. \]

4. Let S be the surface defined by the following set of points in \mathbb{R}^3:

\[\{(x, y, z) \mid x + z = 5, \ 0 \leq x \leq 3, \ 0 \leq y \leq 4\}. \]

(i) Sketch S, and its projection onto the xy-plane.

(ii) Find the cost of painting this surface if the cost is $$(xy + z^2)$$
per unit area. (Cost = \(\int \int_{S} (xy + z^2) \, dS \).)

Solution:

(i) \(S \) is the plane shown. Let \(R \) be the projection of \(S \) onto the \(xy \)-plane. \(R \) is the rectangular region \(0 \leq x \leq 3, \ 0 \leq y \leq 4 \).
(ii) The equation of S can be rewritten as $z = f(x, y) = 5 - x$.

So $f_x = -1$ $f_y = 0$ and $\sqrt{f_x^2 + f_y^2 + 1} = \sqrt{2}$.

On S: $xy + z^2 = xy + (5 - x)^2$.

Cost of painting $= \int\int_S (xy + z^2) \, dS$

$= \int\int_R (xy + (5 - x)^2) \sqrt{f_x^2 + f_y^2 + 1} \, dx \, dy$

$= \int_0^4 \int_0^3 (xy + (5 - x)^2) \sqrt{2} \, dx \, dy$

$= \sqrt{2} \int_0^4 \left[\frac{x^2y}{2} - \frac{(5 - x)^3}{3} \right]_0^3 \, dy$

$= \sqrt{2} \int_0^4 \left(39 + \frac{9y}{2} \right) \, dy = 192\sqrt{2}$.