* Definitions

1. A time series (ts) is a collection of observations made sequentially in time.
2. A sequence of ts observations obtained at regular time intervals is called a regular time series (rts).

* Getting ready for Splus

1. Start Splus by typing

 Splus_tutorial.

2. Open a graphic window.

3. Set up your graphic window for multiple plots by typing

 >par (mfrow = c(m,n)) [to plot m x n = mn graphs on your graphic window]

* Time series analysis

1. Preliminary analysis of ts data

 (a.) **Time series plots**

 (i.) Suppose that d contains some regular ts data.

 >d <- c(48, 71, 50, 46, 40, 45, 18, 48, 32, 23, 22, 62, 31, 24, 40, 47, 54, 60, 54, 44, 59, 71, 64, 41)

 >ts.plot(rts(d))
Further,

(ii.) Suppose that the data are annual and starts from 1948. Now use the following sequence of commands

> d1 <- rts (d, start = 1948)
> ts.plot (d1, xlab = ‘’year’’)
> title (‘’Time Series plot of My Data’’, ylab = ‘’My value’’)

(iii.) Suppose that the data are monthly and starts from March 1948. Then use

> d2 <- rts (d, start = c (1948, 3), freq = 12, units = ‘’months’’)
> ts.plot (d2)
> title (‘’’, ylab = ‘’’)

(b.) Use the method of least squares (l.s.) to fit the l.s. trend line to the data in d

> t <- 1 : 24 (since d contains 24 values)
> l <- lm (d ~ t) [or >lsfit (t,d)]
> summary (l) [or > coef (l)]

(c.) Estimation of trend values

(d.) Plot of the trend line together with the ts plot

> ts.plot (rts (d), rts (dh))

or

> ts.plot (rts (d))
> abline (l)

Note:

The first command produces a better plot.

(e.) Plot of the detrended series

> ts.plot (rts(d - dh))

or

> g1<- rts(d - dh, start = 1948)
> ts.plot(g1)
or
> g2 <- rts(d - dh, start = c(1948, 3), freq = 12, units = 'months')
> ts.plot(g2)

2. Moving Averages (ma) of the data in \(d \)

Let \(l \) be the length (or span) of the required ma.

(a.) **When \(l \) is odd**

\[
f_1 > \text{filter} \ (d, \text{rep} \ (1/l, \ 1))
\]

or
\[
> \text{filter} \ (d, \text{c} \ (1/l, \ 1/l, \ldots, \ 1/l))
\]

(there are \(l \) times of \(1/l \))

when \(l \) is odd the output will have \(n - (l - 1) \) observations with \((l - 1)/2 \),
\text{NA} (not available) points at each end.

Example: For \(l = 5 \),
\[
> \text{filter} \ (d, \text{rep} \ (1/5, \ 5))
\]

or
\[
> \text{filter} \ (d, \text{c} (1/5, \ 1/5, \ 1/5, \ 1/5, \ 1/5))
\]

(b.) **When \(l \) is even**

In this case we use a centred ma with weights \((1/2l, 1/l, \ldots, 1/l, 1/2l) \)
(there are \(l - 1 \) times of \(1/l \) between the first and the last \(1/2l \))

\[
f_2 > \text{filter} \ (d, \text{c} \ (1/2l, \ 1/l, \ldots, \ 1/l, \ 1/2l))
\]

Example: For \(l = 4 \)

the weights are \((1/8, 1/4, 1/4, 1/4, 1/8) \). The command is:
\[
> \text{filter} \ (d, \text{c} \ (1/8, \ 1/4, \ 1/4, \ 1/4, \ 1/8))
\]
Further,
In many practical problems we need to produce the ts plot together with ma’s. The command is:

```r
> ts.plot (rts(d), rts(f1), rts(f2))
```
This will produce 2 ma’s calculated above on the ts plot of data.
(3 graphs together on the same plot)

Label of graphs

If you need to label each graph by a different symbol, then use:

```r
> ts.plot (rts(d), rts(f1), rts(f2), lty = c(1, 2, 3))
> legend (x, y, c('data', 'ma, l= 5', 'ma, l = 4'),
        lty = c(1, 2, 3))
```

Legend

(i.) x, y: location of the top left corner of the rectangle in which to put the legend.

(ii.) To change the size of the rectangle, replace x by $c(x_1, x_2)$ and y by $c(y_1, y_2)$, where (x_1, y_1) is the top left corner and (x_2, y_2) is the one opposite such that $x_2 > x_1$ & $y_2 < y_1$.

3. **Differencing.**

This is a very powerful tool of removing trend and/or periodicities of a homogeneous nonstationary time series.

(a.) **lag 1 differencing**

```r
> diff(d)
```

(b.) **lag l differencing**

```r
> dif <- diff(d, lag = 1)
```
Note:

dif will contain only $n - l$ number of observations. If you want to arrange the output in the correct time order (and the same length as in d), then use

```r
diff <- c(rep(NA, l), diff(d, lag = 1))
```

4. Visualising correlation of the data in d

(a.) **Lagged scatter plots**

```r
> lag.plot (d, lags = m, layout = c(a, b))
```

This produces m scatter plots of pairs of values (x_t, x_{t+k}) for $k = 1, 2, ..., m$. `layout = c(a,b)` is to set up these $m = ab$ plots in a suitable way as an aXb matrix.

As an example,

```r
> lag.plot (d, lags = 6, layout = c(3, 2))
```

produces 6 scatter plots of (x_t, x_{t+k}) for $k = 1, ..., 6$ and set up these 6 plots as a 3X2 matrix.

Note:

These lagged scatter plots can be used to detect the correlation at various lags.

(b.) **Autocorrelation plot (acf)**

```r
> acf (d)
```

Note:

you can specify the number of lags of the acf plot using

```r
> acf (d, lag.max = number)
```

Example:

If you need to see the acf values up to lag 30, then use

```r
> cf <- acf (d, lag.max = 30)
> cf
```
(c.) Partial Autocorrelation plot (pacf)

\[\text{acf}(d, \text{lag.max} = \text{number}, \text{type} = "\text{partial}") \]

Example:

\[\text{acf}(d, \text{lag.max} = 30, \text{type} = "\text{partial}") \]

produces the pacf plot of data up to lag 30.

5. Simulation of AR, ARMA and ARIMA processes

Let \(\{X_t\} \) be a stationary time series.

Note: \(X_t \) may contain the \(d \)th \((d \geq 1)\) difference of the original data if it is non-stationary. There is no constant term in the model. Thus the mean is 0.

Notation: A zero mean ARMA\((p,q)\) model is given by

\[X_t - \phi_1 X_{t-1} - \cdots - \phi_p X_{t-p} = Z_t - \theta_1 Z_{t-1} - \cdots - \theta_q Z_{t-q}, \]

where \(Z_t \sim WN(0, \sigma^2) \). i.e. the \(Z_t \) are uncorrelated, and have zero mean and variance \(\sigma^2 \).

Simulation of pure AR processes

A recursive filter can be used to simulate a pure AR process of the form

\[X_t = \phi_1 X_{t-1} + \cdots + \phi_p X_{t-p} + Z_t. \]

Recursive filters

\[v \leftarrow \text{rnorm (number)} \] # number: specify the required length of the series.

\[\text{ar} \leftarrow \text{filter}(v, \text{c(phi 1, phi 2,..., phi p)}, \"r\", \text{init = rnorm(p)}) \]

Example:

\[v \leftarrow \text{rnorm (200)} \]

\[\text{arsim} \leftarrow \text{filter}(v, \text{c(0.4, 0.5)}, \"r\", \text{init=rnorm(2)}) \]
generates 200 values from
\[x_t = 0.4x_{t-1} - 0.5x_{t-2} + Z_t \]
using Graussian innovations.

Simulation of general ARIMA processes

```r
> arima.sim (number, model = list (ndiff = number, 
ar = c(phi 1, phi 2,..., phi p), ma = c(theta 1,theta 2,...,theta q)))
```

Example:

```r
>x <- arima.sim (500, model = list (ndiff=1, ar = c(0.4, 0.5), ma = c(0.7, 0.1)))
```
generates 500 values from the ARIMA(2,1,2) process
\[x_t - 0.4x_{t-1} + 0.5x_{t-2} = Z_t - 0.7Z_{t-1} - 0.1Z_{t-2} \]
using Graussian innovations.

Notes:

(i.) The innovation vector \(Z_t \) can be replaced by another vector or by another random generator.

(ii.) There are number of optional arguments in arima.sim command. Please type `?arima.sim` for more details.

(iii.) arima.sim command can be used to simulate pure AR or pure MA processes. For example,

```r
>x <- arima.sim (300, model = list (ar = c(0.4, 0.5)))
```
generates 300 values from the AR(2) process
\[x_t - 0.4x_{t-1} + 0.5x_{t-2} = Z_t \]
using Graussian innovations.

Remark: To avoid the effect of the initialization, a series longer than the one needed is generated, and the simulated series is taken from the end of the generated series.
6. **Parameter estimation of ARIMA models.**

In this section we consider the maximum likelihood estimation (mle) procedure for estimation of parameter of an ARIMA. This is also called the fitting an ARIMA model for a set of data in \(d \). Notice that we need a prior knowledge of \(p, q \) and \(d \) from the tsplot, the acf and pacf plots.

(a.) **Fitting an \(ARMA(p, q) \) model**

\[
fit1 <- arima.mle(d - mean(d), model = list(order = c(p, o, q)))
\]

(b.) **Fitting an \(ARIMA(p, r, q) \) model, \(r(\neq 0) \)**

\[
fit2 <- arima.mle(d, model = list(order = c(p, r, q)))
\]

Splus output

The output contains:
- Estimated ar and ma coefficients in \$model$ar and \$model$ma;
- Variance - covariance matrix of estimates in \$var.coef;
- AIC (Akaike Information Criterion) value in \$aic;
- Maximum value of the loglikelihood in \$loglik;
- Estimate of \(\sigma^2 \) is in \$sigma2.

7. **Diagnostic checking**

This stage of fitting ARIMA models consists of validation the model. The command

\>

produces 3 graphs consisting

(i) the plot of standardized residuals,
(ii) ACF plot of residuals, and
(iii) \(P-values \) for Goodness of fit statistic.
\(\chi^2 \) Goodness of fit test

In Splus the goodness of fit (gof) statistic is calculated by
\[Q = N \sum_{k=1}^{K} \hat{r}_k^2, \]
where \(N \) is the number of observations, \(K \) is a fixed number, and \(\hat{r}_k \) is the lag \(k \) acf of the residuals via the estimated model. If \(r \) is the number of parameters in the fitted model, then under the null hypothesis of \(H_0 : X_t \sim \text{model} \), \(Q \) is approximately Chi-square (\(\chi^2 \)) random variable on \(K - r \) degrees of freedom.

This portmanteau test is due to Box and Pierce (1970). The corresponding gof statistic and associated \(P \)-values can be found in \(> \text{g} \), where

\[> \text{g} <- \text{arima.diag} (\text{fit1, gof.lag=k}) \]

\(> \text{g} \)

note: In practice \(k \) is between 10 and 30

Plots (i) & (ii) in \(> \text{arima.diag} \) (fit1) are viewed to ensure that the residuals can be thought of as white noise. Large \(P \)-values of the gof statistic (for large lags) support the null hypothesis of \(H_0 : x_t \sim \text{model} \)

Note:

A better gof test is available in the ts literature based on the statistic
\[Q^* = N(N + 2) \sum_{k=1}^{K} \frac{\hat{r}_k^2}{N - k}. \]
Under \(H_0 : X_t \sim \text{model} \), it is known that \(Q^* \) is approximately \(\chi^2 \) random variable on \(K - r \) degrees of freedom (as in \(Q \)).

This test is known as Ljung-Box-Pierce test. (This statistic is not available in Splus. You may perform your own calculations and do this test for a better, and a reliable result.)

8. Forecasting.

Use fit1 or fit2 in section 6.

(i) \(\text{fore1} <- \text{arima.forecast} (\text{d - mean(d), n = number, model = fit1$model}) \)
or
(ii) fore2 <- arima.forecast (d, n=number, model=fit2$model)

Note:
n= number is used to represent the leadtime of the forecasts.
As an example, n=3 gives the first 3 forecast values from the last observation of the data set.

Output

$mean - forecast values
$std.err - standard errors

In (I) we need to add the mean(d) to recover the correct forecast values. That is:
>fore11 <- fore1$mean + mean(d)
>fore11 (this gives the adjusted forecast values)

9. Confidence intervals (CI) of forecast values

Upper (u) and lower (l) limits of CI’s are calculated using:

>ul <- fore11 + Z * fore1 $std.err
>ll <- fore11 - Z * fore1 $std.err

where Z is the appropriate percentile value from the $N(0,1)$ distribution.

Example:
For a symmetric 95% CI, replace Z by qnorm(0.975) or by 1.96

10. Fitted values.

Using the results of fit2, the following command produces the fitted values as one-step-ahead predicted values:

arima.fitted <- arima.filt (d-mean(d),model=fit2$model)