1. Prove that for all real numbers x, y,
 (a) $-|x| \leq x \leq |x|$
 (b) $|x + y| \leq |x| + |y|$,
 (c) $||x| - |y|| \leq |x - y|$.

Solution
(a) If $x \geq 0$, then $|x| = x$ and so $-|x| \leq 0 \leq x = |x|$. If $x < 0$, then $|x| = -x$ and so $-|x| = x < 0 < |x|$. Hence $-|x| \leq x \leq |x|$, for every x.
(b) Hence

 $|y| = |x| \leq |x| + |y|$

 and adding these three inequalities, we get

 $-(|x| + |y|) \leq x + y \leq |x| + |y|$.

 Hence

 $|x + y| \leq |x| + |y|$.

(c) Now

 $|x| = |x - y + y| \leq |x - y| + |y|$

 and so

 $|x - y| \geq |x| - |y|$.

 Similarly,

 $|y| = |y - x + x| \leq |y - x| + |x|$

 and so

 $|y - x| = |x - y| \geq |y| - |x|$.

 Hence $|x - y|$ is greater than or equal to both $|x| - |y|$ and $-(|x| - |y|)$ and so

 $|x - y| \geq ||x| - |y||$.

2. Find the least upper bound and the greatest lower bound (if they exist) of the following sets. Also decide whether the LUBs and/or GLBs are elements of the sets.

 (a) $\{\frac{1}{n} : n \in \mathbb{N}^+\}$
 (b) $\{\frac{1}{n} : n \in \mathbb{Z}, n \neq 0\}$

 (c) $\{x : x = 0, \text{ or } x = \frac{1}{n}, n \in \mathbb{N}^+\}$
 (d) $\{x : x^2 + x + 1 \geq 0\}$

 (e) $\{\frac{1}{n} + (-1)^n : n \in \mathbb{N}^+\}$
 (f) $\{\frac{1}{2}, \frac{1}{3}, \ldots, \frac{2}{3}, \frac{3}{4}, \ldots\}$.

Solution
(a) LUB 1, which is in the set; GLB 0, which is not in the set.
(b) The set is
\[\{1, \frac{1}{2}, \frac{1}{3}, \ldots, -1, -\frac{1}{2}, -\frac{1}{3}, \ldots\} \]
LUB 1 which is in the set; GLB –1 which is in the set.
(c) LUB 1, which is in the set; GLB 0, which is in the set.
(d)
\[x^2 + x + 1 = (x + \frac{1}{2})^2 + \frac{3}{4} \geq \frac{3}{4} \]
Hence the set is the set of all real numbers \(\mathbb{R} \) and so is neither bounded above or below.
(e) The set is
\[\{0, \frac{3}{2}, \frac{2}{3}, \frac{5}{4}, \frac{7}{6}, \frac{6}{7}, \ldots\} \]
LUB \(\frac{3}{2} \) which is in the set; GLB –1 which is not in the set.
(f) LUB 1 which is not in the set; GLB 0 which is not in the set.

3. Which if the following sequences are (a) bounded? (b) monotonic? Which are convergent?

(a) \(\{0.2^n\} \)
(b) \(\{\frac{3n+1}{2n-1}\} \)
(c) \(\{\cos \frac{n\pi}{2}\} \)
(d) \(\{\frac{2^n}{100n}\} \)
(e) \(\{\frac{5^n}{n!}\} \)
(f) \(\{(1 + \frac{1}{n})^n : n \in \mathbb{N}^+\} \)

Solution

(a) Bounded above by 1 and below by 0; monotonic decreasing. Convergent with limit 0.
\[a_{n+1} < a_n, \quad \text{since} \quad \frac{a_{n+1}}{a_n} = 0.2 < 1. \]

(b) Bounded below by 0 and above by 4; monotonic decreasing. Convergent with limit \(\frac{3}{2} \).
\[a_{n+1} < a_n, \quad \text{since} \quad \frac{a_{n+1}}{a_n} = \frac{3n + 4n - 1}{2n + 1} = \frac{6n^2 + 5n - 4}{6n^2 + 5n + 1} = 1 - \frac{5}{6n^2 + 5n + 1} < 1, \quad \text{if} \quad n \geq 1. \]

(c) The sequence is
\[\{0, -1, 0, 1, 0, -1, 0, 1, \ldots\}. \]

(d) Bounded below by 0. Not bounded above. Not monotonic, though it is monotonic increasing for \(n \geq 15 \). Not convergent.
\[\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{100(n+1)} \cdot \frac{100n}{2^n} = \frac{2n}{n+1} > \frac{3}{2} > 1, \quad \text{if} \quad n \geq 3. \]
This is easy to prove by induction on n.
Hence
\[a_{n+1} > \frac{3}{2} a_n > \ldots > \left(\frac{3}{2}\right)^n a_1 \to \infty \]
as $n \to \infty$.

(e) The sequence is
\[\{5, 12.5, 20.83, 26.04, 26.04, 21.70, \ldots \} \]
Bounded above by $\frac{5^4}{24}$ and bounded below by 0. Obviously not monotonic but monotonic decreasing if $n \geq 5$. Convergent with limit 0.
\[\frac{a_{n+1}}{a_n} = \frac{5^{n+1} n!}{(n+1)! 5^n} = \frac{5}{n+1} \leq 1, \text{ if } n \geq 5. \]

(f) Bounded above by 3 and below by 0. Monotonic increasing and convergent with limit e.
\[
\left(1 + \frac{1}{n}\right)^n = 1 + \frac{1}{n} + \frac{n(n-1)}{2! n^2} + \frac{n(n-1)(n-2)}{3! n^3} + \ldots
\]
\[
= 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \frac{1}{3!} (1 - \frac{1}{n})(1 - \frac{2}{n}) + \ldots + \frac{1}{n!} (1 - \frac{1}{n})(1 - \frac{2}{n}) \ldots (1 - \frac{n-1}{n})
\]
\[
< 1 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots
\]
\[
= 1 + \frac{1}{1 - \frac{1}{2}}
\]
\[
= 3.
\]
One way to see that the sequence is monotonic increasing is to notice that each term in
\[
\left(1 + \frac{1}{n}\right)^n = 1 + \frac{n}{n} + \frac{n(n-1)}{2! n^2} + \frac{n(n-1)(n-2)}{3! n^3} + \ldots
\]
has the form
\[
\frac{1}{p!} (1 - \frac{1}{n})(1 - \frac{2}{n}) \ldots (1 - \frac{p-1}{n}).
\]
This is positive and increases with n. Hence $\left(1 + \frac{1}{n}\right)^n$ increases with n.

4. (a) Prove that given any two rational numbers, a and b, there is a rational number c with $a < c < b$.

(b) Prove that given any two rational numbers a and b, there exists an irrational number d such that $a < d < b$.

Solution

(a) If $a < b$ are rational numbers, then
\[a < \frac{a+b}{2} < b \]
and $\frac{a+b}{2}$ is rational.
(b) Suppose that $a < b$ where a and b are rational. Then choose $k \in \mathbb{N}$ such that
\[
\frac{\sqrt{2}}{k} < \frac{b - a}{2}.
\]
Consider the irrational numbers $x \frac{\sqrt{2}}{k}$, where x is an integer.
These are all irrational numbers which are $\frac{\sqrt{2}}{k}$ apart. Hence at least one of them must lie in the interval (a, b).

5. Answer true or false. If false, give reasons.
(a) Every monotonic decreasing sequence has a limit.
(b) $\{\sqrt{n}\}$ is a convergent sequence.
(c) Between any two irrational numbers a, b there is an irrational number c with $a < c < b$.
(d) $\{n - \sqrt{n + 5\sqrt{n + 7}}\}$ is a divergent sequence.
(e) If $\{a_n\}$ is a monotonic decreasing sequence of positive real numbers, then $\lim_{n \to \infty} a_n$ is also positive.
(f) Every real number is a limit of a sequence of rational numbers.

Solution

(a) False. $\{0, -1, -2, \ldots\}$.
(b) True. (By L’Hôpital, $x^{1/x}$ tends to 1 as $x \to \infty$.
(c) True. The proof in Exercise (ii) doesn’t need a and b to be rational.
(d) False.
\[
n - \sqrt{n + 5\sqrt{n + 7}} = \frac{(n - \sqrt{n + 5\sqrt{n + 7}})(n + \sqrt{n + 5\sqrt{n + 7}})}{n + \sqrt{n + 5\sqrt{n + 7}}}
\]
\[
= \frac{n^2 - (n + 5)(n + 7)}{n + \sqrt{n + 5\sqrt{n + 7}}}
\]
\[
= \frac{n^2 - n^2 - 12n - 35}{n + \sqrt{n + 5\sqrt{n + 7}}}
\]
\[
= \frac{12 - \frac{35}{n}}{1 + \sqrt{1 + \frac{7}{n}}}
\]
\[
\to -12
\]
\[
= -\frac{2}{2}
\]
\[
= -6.
\]
(e) False $\{1, \frac{1}{2}, \frac{1}{3}, \ldots\}$ is monotonic decreasing, positive with limit 0.
(f) True. Every real number is the limit of a decimal expansion and the truncated terms in each representation are all rational numbers.

6. (Harder)
(a) Prove that if $0 < a < 2$, then $a < \sqrt{2a} < 2$.
(b) Prove that the sequence $\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \ldots$ converges.
(c) Find its limit. (Hint: Use the fact that \(\lim_{n \to \infty} a_n = l \), then \(\lim_{n \to \infty} \sqrt{2a_n} = \sqrt{2l} \).

Solution

(a) \(a < \sqrt{2a} \) with a positive, if and only if \(a^2 < 2a \) which is true if \(a < 2 \). Similarly \(\sqrt{2a} < 2 \).

(b) The sequence is defined by \(a_1 = \sqrt{2}, a_{n+1} = \sqrt{2a_n} \). Part (i) then gives immediately that \(a_n < 2 \) for every \(n \). Hence the sequence is a Bounded sequence.

Also \[
\frac{a_{n+1}}{a_n} = \frac{\sqrt{2a_n}}{\sqrt{2a_{n-1}}} = \frac{a_n}{a_{n-1}}.
\]

Hence since \(a_1 = \sqrt{2} < a_2 = \sqrt{2\sqrt{2}} \), it is an easy induction to show that \(a_{n+1} > a_n \), for all \(n \geq 1 \). Hence the sequence is a monotonic increasing sequence.

Hence the sequence has a limit \(l \).

(c) Since \(a_{n+1} = \sqrt{2a_n} \), in the limit, \(l = \sqrt{2l} \) and so \(l = 2 \).

7. (Harder)

(a) Show that if \(x \) and \(y \) are positive real numbers then \(\sqrt{xy} \leq \frac{x + y}{2} \), with equality only when \(x = y \).

(b) Suppose that \(0 < a_1 < b_1 \). Define

\[
a_{n+1} = \sqrt{a_n b_n} \quad b_{n+1} = \frac{a_n + b_n}{2}.
\]

(i) Show that the sequence \(\{a_n\} \) is monotonic increasing and bounded above, while \(\{b_n\} \) is monotonic decreasing and bounded below.

(ii) Prove that they have the same limit.

Solution

(a)

\[
\sqrt{xy} \leq \frac{x + y}{2} \text{ if and only if } xy \leq \frac{x^2 + 2xy + y^2}{4} \text{ if and only if }
\]

\[
4xy \leq x^2 + 2xy + y^2 \text{ if and only if } 0 \leq x^2 - 2xy + y^2 \text{ if and only if } 0 \leq (x - y)^2.
\]

This latter inequality holds for every \(x \) and \(y \). Hence the original inequality is true. Also we have equality at each step in the above argument, if and only if \(x = y \).

(b) (i) We will show by induction on \(n \) that

\[
a_n < a_{n+1} < b_{n+1} < b_n,
\]

for every \(n \).

This is true if \(n = 1 \), because then we have

\[
a_1 < a_2 = \sqrt{a_1 b_1} < b_2 = \frac{a_1 + b_1}{2} < b_1,
\]
by part (i). (Notice that \(a_1 < \sqrt{a_1 b_1} \) since \(a_1 < b_1 \).) Suppose now that
\[
a_k < a_{k+1} < b_{k+1} < b_k,
\]
Then
\[
a_{k+1} < a_{k+2} = \sqrt{a_k b_k}
\]
since \(a_k < b_k \).
Also \(a_{k+2} < b_{k+2} \), by Part (i).
Finally \(b_{k+2} < b_{k+1} \), since this latter number is the average of \(a_{k+1} \) and \(b_{k+1} > a_{k+1} \).
Hence the result holds for every \(n \) by induction.
Thus \(\{a_n\} \) is a monotonic increasing sequence which is bounded above . . . Every term is less than \(b_1 \). Also \(\{b_n\} \) is a monotonic decreasing sequence which is bounded below . . . Every term is greater than \(a_1 \). Hence both sequences have limits.
Suppose that \(a_n \to l_1 \) and \(b_n \to l_2 > l_1 \).
Then given \(\epsilon \), there exists \(N \) such that \(|b_n - l_1| < \frac{\epsilon}{2} \) and \(|a_n - l_1| \frac{\epsilon}{2} \), for every \(n > N \).
But then
\[
|b_{n+1} - \frac{l_1 + l_2}{2}| = |\frac{b_n + a_n}{2} - \frac{l_1 + l_2}{2}|
\leq \frac{1}{2}(|b_n - l_2| + |a_n - l_1|)
\leq \frac{\epsilon}{2} + \frac{\epsilon}{2}
< \epsilon.
\]
But this is impossible because then
\[
|b_{n+1} - l_2| > \frac{l_2 - l_1}{2} - \epsilon
\]
and this is obviously greater than \(\epsilon \), if we choose \(\epsilon \) small enough.
Hence \(l_1 = l_2 \).