1. (a) Find the radius of convergence \(R \) of the power series \(\sum_{k=1}^{\infty} \frac{x^{3k}}{k} \).

(b) Let \(f(x) \) be the sum of the series in (a) for \(|x| < R \). Calculate \(f'(x) \).

(c) Use part (b) to find \(f(x) \).

Solution

(a) Use the ratio test.

\[
\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{3(k+1)}}{k+1} \frac{k}{x^{3k}} \right| = \frac{k+1}{k} |x|^3
\]

\(\rightarrow |x|^3 < 1, \text{ as } x \to \infty. \)

Hence the radius of convergence is 1.

(b) First if \(|x| < 1 \),

\[f(x) = \frac{x^3}{1} + \frac{x^6}{2} + \frac{x^9}{3} + \frac{x^{12}}{4} + \ldots \]

and so,

\[f'(x) = \frac{3x^2}{1} + \frac{6x^5}{2} + \frac{9x^8}{3} + \frac{12x^{11}}{4} + \ldots \]

\[= 3x^2 + 3x^5 + 3x^8 + \ldots \]

\[= 3x^2(1 + x^3 + x^6 + \ldots), \text{ if } |x| < 1. \]

(c) Since \(1 + x^3 + x^6 + x^9 + \ldots = \frac{1}{1-x^3} \), if \(|x| < 1 \), it follows that

\[f'(x) = \frac{3x^2}{1-x^3} \]

and so \(f(x) \) and

\[
\int_0^x \frac{3t^2}{1-t^3} \, dt = - \int_1^{1-x^3} \frac{du}{u}
\]

\[= - \ln u \bigg|_{1}^{1-x^3} \]

\[= - \ln(1-x^3). \]

Since when \(x = 0, f(x) = 0 \) and \(\ln(1-x^3) = 0 \), it follows that

\[f(x) = - \ln(1-x^3) \]

.
2. Find two linearly independent power series solutions \(\sum a_n x^n \) of the differential equations. Calculate also their radii of convergence.
(a) \(y'' - y = 0 \),
(b) \(y'' - x^2 y = 0 \),
(c) \(y'' - 2xy' + y = 0 \). (This is called Hermite's equation and arises in quantum mechanics in the solution of the Schrödinger equation for a harmonic oscillator.)

Solution

(a)

\[
y = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \ldots
\]
\[
y' = a_1 + 2a_2 x + 3a_3 x^2 + \ldots + (n+1)a_{n+1} x^n + \ldots
\]
\[
y'' = 2a_2 + 3.2a_3 x + 4.3a_4 x^2 + \ldots + (n+2)(n+1)a_{n+2} x^n + \ldots
\]

Hence

\[
y'' = 2a_2 + 3.2a_3 x + 4.3a_4 x^2 + \ldots + (n+2)(n+1)a_{n+2} x^n + \ldots
\]

\[-y = -a_0 - a_1 x - a_2 x^2 - \ldots - a_n x^n - \ldots
\]

Adding we get

\[
2.1a_2 - a_0 = 0
\]
\[
3.2a_3 - a_1 = 0
\]
\[
4.3a_4 - a_2 = 0
\]
\[
\vdots
\]
\[
(n+2)(n+1)a_{n+2} - a_n = 0.
\]

Hence

\[
a_2 = \frac{1}{2!}a_0, \quad a_4 = \frac{1}{4.3}a_2 = \frac{1}{4!}a_0, \ldots, a_{2n} = \frac{1}{2n!}a_0
\]
\[
a_3 = \frac{1}{3!}a_1, \quad a_5 = \frac{1}{5.4}a_3 = \frac{1}{5!}a_1, \ldots, a_{2n+1} = \frac{1}{(2n+1)!}a_1.
\]

Hence

\[
y = a_0(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots) +
\]
\[
a_1(x + \frac{x^3}{3!} + \frac{x^5}{5!} + \ldots)
\]

Both series converge for all \(x \) by the ratio test. Remark.

You have learned in First Year that the solution of the differential equation can be written in the form \(ae^x + be^{-x} \) since the characteristic equation of the differential equation is \(\lambda^2 - 1 \) which has eigen-values \(\pm 1 \). This leads to the eigen-functions \(e^x \) and \(e^{-x} \).

We get our series solution from this as follows:

\[
ae^x + be^{-x} = a(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots) +
\]
\[
b(1 - x + \frac{x^2}{2!} + \frac{x^3}{3!} - \ldots) = (a + b)(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots) +
\]
\[
(a - b)(x + \frac{x^3}{3!} + \frac{x^5}{5!} + \ldots).
\]
(b)

\[y = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \ldots \]
\[y' = a_1 + 2a_2 x + 3a_3 x^2 + \ldots + (n+1)a_{n+1} x^n + \ldots \]
\[y'' = 2a_2 + 3.2a_3 x + 4.3a_4 x^2 + \ldots + (n+2)(n+1)a_{n+2} x^n + \ldots \]

Hence

\[y'' = 2a_2 + 3.2a_3 x + 4.3a_4 x^2 + \ldots + (n+2)(n+1)a_{n+2} x^n + \ldots \]
\[-x^2 y = -a_0 x^2 - a_1 x^3 - a_2 x^4 + \ldots - a_{n-2} x^n - \ldots \]

Hence

\[a_2 = 0 \]
\[a_3 = 0 \]
\[4.3a_4 - a_0 = 0 \]
\[5.4a_5 - a_1 = 0 \]
\[6.5a_6 - a_2 = 0 \]
\[7.6a_7 - a_3 = 0 \]

\[\vdots \]
\[(n+2)(n+1)a_{n+2} - a_n = 0. \]

Hence

\[a_2 = a_3 = a_6 = a_7 = \ldots = a_{4n+2} = a_{4n+3} = 0 \]

and

\[a_4 = \frac{1}{4.3}a_0, \quad a_8 = \frac{1}{8.7}a_4 = \frac{1}{8.7.4.3}a_0, \quad \ldots \]

and

\[a_5 = \frac{1}{5.4}a_1, \quad a_9 = \frac{1}{9.8}a_5 = \frac{1}{9.8.5.4}a_1, \quad \ldots \]

Hence

\[y = a_0 (1 + \frac{1}{4.3} x^3 + \frac{1}{8.7.4.3} x^8 + \ldots) + \]
\[a_1 (x + \frac{1}{5.4} x^5 + \frac{1}{9.8.5.4} x^9 + \ldots) \]

Both series converge for all \(x \) by the ratio test.

(c)

\[y = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \ldots \]
\[y' = a_1 + 2a_2 x + 3a_3 x^2 + \ldots + (n+1)a_{n+1} x^n + \ldots \]
\[y'' = 2a_2 + 3.2a_3 x + 4.3a_4 x^2 + \ldots + (n+2)(n+1)a_{n+2} x^n + \ldots \]

Hence

\[y'' = 2a_2 + 3.2a_3 x + 4.3a_4 x^2 + \ldots + (n+2)(n+1)a_{n+2} x^n + \ldots \]
\[-2xy' = -2a_1 x - 2.2a_2 x^2 - 2.3a_3 x^3 - \ldots - 2na_n x^n - \ldots \]
\[y = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \ldots \]

Hence we have

\[2.1a_2 + a_0 = 0 \]
\[3.2a_3 - a_1 = 0 \]
\[(n+2)(n+1)a_{n+2} - (2n-1)a_n = 0. \]
Therefore
\begin{align*}
a_2 &= \frac{-1}{2!}a_0 \\
a_4 &= \frac{3}{4!}a_2 = \frac{3}{4!}a_0 \\
a_6 &= \frac{7}{6!}a_4 = \frac{7}{6!}a_0 \\
a_8 &= \frac{7}{6!}a_4 = \frac{11.7.3}{8!}a_0 \\
\vdots \\
a_3 &= \frac{1}{3!}a_1 \\
a_5 &= \frac{5}{5!}a_3 = \frac{5}{5!}a_1 \\
a_7 &= \frac{9}{7!}a_5 = \frac{9.5.1}{7!}a_1 \\
a_9 &= \frac{13.9.5.1}{9!}a_1 \\
\vdots
\end{align*}

Hence the solution is
\begin{align*}
y &= a_0 \left(1 - \frac{1}{2}x^2 - \frac{3}{4!}x^4 - \frac{7.3}{6!}x^6 - \ldots \right) + \\
&\quad \quad a_1 \left(x + \frac{1}{3!}x^3 + \frac{5}{5!}x^5 + \frac{9.5.1}{7!}x^7 + \ldots \right).
\end{align*}

Both these series have infinite radii of convergence by the ratio test. For example, in the first series
\begin{align*}
\frac{a_{2n+2}}{a_{2n}} &= \left| \frac{x^{2n+2} \frac{3.7 \ldots (4n-5)}{(2n+2)!} \frac{x^{2n}(2n)!}{3.7 \ldots (4n-9)}}{(2n+2)! \frac{4n-5}{(2n+2)(2n+1)}} \right| \\
&= \left| x^2 \frac{4n-5}{(2n+2)(2n+1)} \right| \\
&\to 0, \text{ as } n \to \infty.
\end{align*}

3. Find the first three terms in each of two linearly independent power series solutions in powers of \(x \) of \(y'' + y \sin x = 0 \).

\textbf{Solution}
\begin{align*}
y &= a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \ldots \\
y' &= a_1 + 2a_2 x + 3a_3 x^2 + \ldots + (n+1)a_{n+1} x^n + \ldots \\
y'' &= 2.1a_2 + 3.2a_3 x + 4.3a_4 x^2 + \ldots + (n+2)(n+1)a_{n+2} x^n + \ldots.
\end{align*}

Hence considering
\begin{equation*}
y'' + \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots \right)y
\end{equation*}
we have
\[0 = 2.1a_2 + 3.2a_3x + 4.3a_4x^2 + 5.4a_5x^3 + 6.5a_6x^4 + 7.6a_7x^5 + 8.6a_8x^6 + \]
\[+ a_0x + a_1x^2 + a_2x^3 + a_3x^4 + a_4x^5 + a_5x^6 + \]
\[- \frac{1}{3!}a_0x^3 - \frac{1}{3!}a_1x^4 - \frac{1}{3!}a_2x^5 - \frac{1}{3!}a_3x^6 - \]
\[+ \frac{1}{5!}a_0x^5 + \frac{1}{5!}a_1x^6. \]

\[\ldots \]

Hence
\[a_2 = 0 \]
\[6a_3 + a_0 = 0 \]
\[12a_4 + a_1 = 0 \]
\[20a_5 + a_2 - \frac{1}{3!}a_0 = 0 \]
\[30a_6 + a_3 - \frac{1}{3!}a_1 = 0 \]
\[42a_7 + a_4 - \frac{1}{6}a_2 + \frac{1}{120}a_0 = 0. \]

Hence
\[a_2 = 0 \]
\[a_3 = -\frac{1}{6}a_0 \]
\[a_4 = -\frac{1}{12}a_1 \]
\[a_5 = \frac{1}{120}a_0 \]
\[a_6 = \frac{1}{180}a_1 + \frac{1}{180}a_0. \]

Hence
\[y = a_0 + a_1x - \frac{1}{6}a_0x^3 - \frac{1}{12}a_1x^4 + \frac{1}{120}a_0x^5 + \left(\frac{1}{180}a_1 + \frac{1}{180}a_0 \right)x^6 + \ldots \]
\[= a_0(1 - \frac{1}{6}x^3 + \frac{1}{120}x^5 - \frac{1}{180}x^6 + \ldots) \]
\[+ a_1(x - \frac{1}{12}x^4 + \frac{1}{180}x^6 + \ldots). \]

4. Classify each of the following functions as odd, even or neither:

(a) \(f(x) = x^3 + 2x \)
(b) \(f(x) = \sin x + \cos x \)
(c) \(f(x) = x \sin x \)
(d) \(f(x) = x^2 \sin x \)
(e) \(f(x) = |x + 2| \)
(f) \(f(x) = \frac{|x|}{x} \)

Solution

(a) \(f(-x) = (-x)^3 + 2(-x) = -(x^3 + 2x) = -f(x) \) and so \(f \) is odd.
(b) \(f(-x) = \sin(-x) + \cos(-x) = -\sin x + \cos x \). This is not of the form \(f(x) \) for all \(x \) nor is it of the form \(-f(x)\) and so \(f \) is neither even nor odd.
(c) \(f(-x) = (-x)\sin(-x) = x \sin x = f(x) \) and so \(f \) is even.
(d) \(f(-x) = (-x)^2 \sin(-x) = -x^2 \sin x = -f(x) \) and so \(f \) is odd.

(e) \(f(-x) = | -x + 2| \) which is neither of the form \(|x + 2|\) nor of the form \(-|x + 2|\). Hence \(f \) is neither even nor odd.

(f) \(f(-x) = \frac{|-x|}{-x} = -\frac{|x|}{x} = -f(x) \) and so \(f \) is odd. (I am assuming that we define \(f(0) \) to be 0 here, otherwise \(f \) is not odd.

5. What is the smallest positive period of the following functions?
 \((a) \ \cos 3x \quad (b) \ \sin \frac{1}{5}x \quad (c) \ \tan x \quad (d) \ \cos^2 2x + \sin 4x. \)

\textit{Solution}

(a) \(\cos 3x \) has period \(\frac{2\pi}{3} \) since
\[
\cos 3(x + \frac{2\pi}{3}) = \cos(3x + 2\pi) = \cos 3x.
\]
This is also the smallest period.

(b) \(\sin \frac{1}{5}x \) has period \(10\pi \) since
\[
\sin \frac{1}{5}(x + 10\pi) = \sin(\frac{1}{5}x + 2\pi) = \sin \frac{1}{5}x.
\]

(c) \(\tan x \) has smallest period \(\pi \).

(d)
\[
\cos^2 2x + \sin 4x = \frac{1 + \cos 4x}{2} + \sin 4x.
\]
Hence the smallest period is \(\frac{2\pi}{4} = \frac{\pi}{2} \).

6. Find the Fourier series expansions of the \(2\pi \)-periodic functions
 \((a) \ \sin^2 x + \cos 2x \quad (b) \ \cos^2 \frac{1}{2}x \quad (c) \ \sin^3 x. \)

\textit{Solution}

(a) The Fourier series is given by:
\[
\sin^2 x + \cos 2x = \frac{1 - \cos 2x}{2} + \cos 2x
= \frac{1}{2} + \frac{1}{2} \cos 2x.
\]

(b)
\[
\cos^2 \frac{1}{2}x = \frac{1 + \cos x}{2}
= \frac{1}{2} + \frac{1}{2} \cos x.
\]

(c) First \(\sin 3x = 3 \sin x - 4 \sin^3 x \) and so
\[
\sin^3 x = \frac{1}{4} (3 \sin x - \sin 3x) = \frac{3}{4} \sin x - \frac{1}{4} \sin 3x.
\]