1. If 0 and 0' are both zeros in \(R \) then, by the existence of zero axiom applied twice,
\[
0 = 0 + 0' = 0'.
\]
If 1 and 1' are both multiplicative identity elements in \(R \) then, by the defining condition for existence of a multiplicate identity element applied twice,
\[
1 = 1 \cdot 1' = 1'.
\]
If \(b \) and \(c \) are both negatives of \(a \in R \), then, by the zero axiom, the negatives axiom and associativity,
\[
b = b + 0 = b + (a + c) = (b + a) + c = 0 + c = c.
\]
If \(b \) and \(c \) are both multiplicative inverses of \(a \in R \), then, by the multiplicative identity condition, the multiplicative inverses condition and associativity,
\[
b = b \cdot 1 = b \cdot (a \cdot c) = (b \cdot a) \cdot c = 1 \cdot c = c.
\]

*2. (a) Let \(a \in R \). By the zero axiom and one half of distributivity,
\[
a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0.
\]
Now using the existence of negatives axiom, the previous observation, associativity and the zero axiom, we have
\[
0 = -(a \cdot 0) + a \cdot 0 = -(a \cdot 0) + (a \cdot 0 + a \cdot 0) = (-a \cdot 0 + a \cdot 0) + a \cdot 0 = 0 + a \cdot 0 = a \cdot 0.
\]
Similarly, using the other half of distributivity, we have 0 = 0 \cdot a.

(b) Let \(a, b \in R \). By part (a), commutativity of addition, distributivity and the negatives and zero axioms, we have
\[
ab + a(-b) = a(-b) + ab = a((-b) + b) = a \cdot 0 = 0
\]
and
\[
ab + (-a)b = (-a)b + ab = ((-a) + a)b = 0 \cdot b = 0.
\]
By uniqueness of the negative of \(ab \), we have
\[
-(ab) = a(-b) = (-a)b.
\]
Thus also
\[
(-a)(-b) = -(a(-b)) = -(-(ab)) = ab,
\]
since, by uniqueness, every element is the negative of its negative.

Let \(R \) be a nontrivial ring with identity, so \(R \) contains at least two elements, so must contain something nonzero, say \(a \neq 0 \). If 1 = 0 then, by part (a),
\[
a = a \cdot 1 = a \cdot 0 = 0,
\]
contradicting that \(a \neq 0 \). Hence 1 \neq 0.
3. Let F be a field, so certainly F is a nontrivial commutative ring with identity. Let $a, b \in F$ and suppose that $ab = 0$. If $a \neq 0$, then, by the definition of a field, the element a possesses a multiplicative inverse a^{-1} in F. By ring axioms and part (a) of the previous exercise,

$$b = 1 \cdot b = (a^{-1}a)b = a^{-1}(ab) = a^{-1} \cdot 0 = 0.$$

This shows that either $a = 0$ or $b = 0$, and completes the proof that F is an integral domain.

Let R be a nontrivial commutative ring with identity. Suppose first that R is an integral domain. Let $a, b, c \in R$ such that $a \neq 0$ and $ab = ac$. Then

$$a(b - c) = a(b + (-c)) = ab + a(-c) = ab + (-ac) = ab + (-ab) = 0.$$

By definition of an integral domain, we can deduce that $b - c = b + (-c) = 0$, so that $b = b + 0 = b + ((-c) + c) = (b + (-c)) + c = 0 + c = c$, verifying cancellativity.

Conversely, suppose that R is cancellative and $a, b \in R$ with $ab = 0$. If $a \neq 0$ then $ab = 0 = a \cdot 0$, by part (a) of the previous exercise, so that $b = 0$, by cancellativity. This shows either $a = 0$ or $b = 0$, verifying that R is an integral domain.

4. Let S be a subring of a ring R, so S is nonempty and closed under addition, multiplication and taking negatives. Any ring axiom that uses universal quantifiers only will automatically hold in S with respect to the operations inherited from R, because all elements of S are elements of R. It remains only to check the axioms that use an existential quantifier. Since S is nonempty we can choose some $a \in S$. Because S is closed under addition and taking negatives, we have $-a \in S$ and

$$0 = a + (-a) \in S.$$

Hence the ring axiom for existence of zero holds also in S, using the zero from R, as all elements of S are elements of R. The ring axiom for existence of negatives now also holds immediately, because S is closed under taking negatives from R.

5. Let S be nonempty subset of a ring R. Suppose first that S is a subring, so S is closed under addition, taking negatives and multiplication. Let $a, b \in S$. Then, by definition of subtraction and the closure properties of S, we have

$$a - b = a + (-b) \in S.$$

This verifies that S is closed under subtraction and multiplication.

Conversely, suppose that S is closed under subtraction and multiplication. Because S is nonempty there exists some $c \in S$. Then $0 = c + (-c) = c - c \in S$, because S is closed under subtraction. Let $a, b \in S$. Then $-b = 0 + (-b) = 0 - b \in S$, again because S is closed under subtraction. This shows that S is closed under taking negatives. Also

$$a + b = a + (-(-b)) = a - (-b) \in S,$$

again because S is closed under subtraction. Thus S is also closed under addition. This completes the proof that S is a subring of R.

6. Clearly all of the sets are nonempty. We check that S_1 is closed under subtraction and multiplication. Let
\[\alpha = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \quad \text{and} \quad \beta = \begin{bmatrix} d & e \\ 0 & f \end{bmatrix} \]
be any elements of S_1, where $a, b, c, d, e, f \in \mathbb{R}$. Then
\[\alpha - \beta = \begin{bmatrix} a - d & b - e \\ 0 & c - f \end{bmatrix} \quad \text{and} \quad \alpha \beta = \begin{bmatrix} ad & ae + bf \\ 0 & cf \end{bmatrix} \]
are both clearly elements of S_1, verifying that S_1 is closed under subtraction and multiplication. The verifications for S_3, S_5 and S_6 are similar, so that S_1, S_3, S_5 and S_6 are subrings of $\text{Mat}_2(\mathbb{R})$. Put
\[\alpha = \beta = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} . \]
Then $\alpha, \beta \in S_2, S_4$. But
\[\alpha \beta = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \notin S_2, S_4. \]
Hence neither S_2 nor S_4 is closed under multiplication, so that neither can be subrings of $\text{Mat}_2(\mathbb{R})$.

Both S_1 and S_3 have a multiplicative identity element, which is the usual 2×2 identity matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. The subring S_5 also has a multiplicative identity element, which is $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. In S_6 the product of any two elements is the zero matrix, so no element of S_6 can fix all others by multiplication, because certainly S_6 contains nonzero matrices. Hence S_6 has no multiplicative identity element.

7. Observe that, in S,
\[0 = 0\phi - 0\phi = (0 + 0)\phi - 0\phi = (0\phi + 0\phi) - 0\phi = 0\phi + (0\phi - 0\phi) = 0\phi + 0 = 0\phi . \]
If $a \in R$ then, by the previous observation, again in S,
\[a\phi + (-a)\phi = (-a)\phi + a\phi = (-a + a)\phi = 0\phi = 0 , \]
so that $-(a\phi) = (-a)\phi$ in S.

*8. Define a mapping $\phi : C \to \mathbb{C}$ by $a + bx \mapsto a + bi$, where $i = \sqrt{-1}$, and $a, b \in \mathbb{R}$. This is clearly a bijection, so it suffices to check that ϕ preserves addition and multiplication. Let $\alpha, \beta \in C$, say
\[\alpha = a + bx \quad \text{and} \quad \beta = c + dx , \]
for some $a, b, c, d \in \mathbb{R}$. Then, using addition of polynomials,
\[\alpha + \beta = (a + c) + (b + d)x , \]
which coincides immediately with its remainder after division by \(x^2 + 1 \) (since it is already a linear polynomial). Hence

\[
(\alpha + \beta) \phi = (((a + c) + (b + d)x) \phi = (a + c) + (b + d)i = (a + bi) + (c + di) = \alpha \phi + \beta \phi,
\]

which verifies that \(\phi \) preserves addition. Multiplication of polynomials and some rearrangement yield

\[
\alpha \beta = ac + (ad + bc)x + bdx^2 = bd(x^2 + 1) + ac - bd + (ad + bc)x,
\]

leaving a remainder of \(ac - bd + (ad + bc)x \) after division by \(x^2 + 1 \), the product of \(\alpha \) and \(\beta \) in \(C \). Hence

\[
(\alpha \beta) \phi = (ac - bd + (ad + bc)x) \phi = (ac - bd) + (ad + bc)i = (a + bi)(c + di) = (\alpha \phi)(\beta \phi),
\]

which verifies that \(\phi \) preserves multiplication. This completes the proof that \(\phi \) is an isomorphism.

9. The addition tables are the same in both cases, because addition of linear polynomials yields linear polynomials, which coincide automatically with their remainders after division by a quadratic:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>(x)</th>
<th>(1 + x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(x)</td>
<td>(1 + x)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(1 + x)</td>
<td>(x)</td>
</tr>
<tr>
<td>(x)</td>
<td>(x)</td>
<td>(1 + x)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(1 + x)</td>
<td>(1 + x)</td>
<td>(x)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

In case (a), when \(p(x) = x^2 + 1 \) we have the following multiplication table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>(x)</th>
<th>(1 + x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(x)</td>
<td>(1 + x)</td>
</tr>
<tr>
<td>(x)</td>
<td>0</td>
<td>(x)</td>
<td>1</td>
<td>(1 + x)</td>
</tr>
<tr>
<td>(1 + x)</td>
<td>0</td>
<td>(1 + x)</td>
<td>(1 + x)</td>
<td>0</td>
</tr>
</tbody>
</table>

The multiplicative identity element of \(R \) is the constant polynomial 1, but \(R \) fails to be a field because the last line of the table does not contain 1, so that \(1 + x \) is nonzero but does not have a multiplicative inverse.
In case (b), when \(p(x) = x^2 + x + 1 \) we have the following multiplication table:

<table>
<thead>
<tr>
<th>.</th>
<th>0</th>
<th>1</th>
<th>(x)</th>
<th>(1 + x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(x)</td>
<td>(1 + x)</td>
</tr>
<tr>
<td>(x)</td>
<td>0</td>
<td>(x)</td>
<td>(1 + x)</td>
<td>1</td>
</tr>
<tr>
<td>(1 + x)</td>
<td>0</td>
<td>(1 + x)</td>
<td>1</td>
<td>(x)</td>
</tr>
</tbody>
</table>

Now every nonzero row contains the multiplicative identity element 1, so all nonzero elements have multiplicative inverses. Hence, in this case, \(R \) is a field with 4 elements.

*10 If \(R \) is any ring then the identity mapping that fixes all elements of \(R \) is clearly an isomorphism, so that \(R \cong R \), verifying that \(\cong \) is reflexive.

Suppose that \(R \) and \(S \) are rings and \(R \cong S \). Then there exists an isomorphism \(\phi : R \to S \). In particular, \(\phi \) is a bijection so the inverse mapping \(\phi^{-1} : S \to R \) exists and is also a bijection. We check that \(\phi^{-1} \) is a ring homomorphism. Let \(a, b \in S \). Then \(a = x\phi \) and \(b = y\phi \) for some \(x, y \in R \), since \(\phi \) is onto. Then

\[
(a + b)\phi^{-1} = (x\phi + y\phi)\phi^{-1} = ((x + y)\phi)\phi^{-1} = x + y = a\phi^{-1} + b\phi^{-1},
\]

and

\[
(ab)\phi^{-1} = ((x\phi)(y\phi))\phi^{-1} = ((xy)\phi)\phi^{-1} = xy = (a\phi^{-1})(b\phi^{-1}),
\]

which verifies that \(\phi^{-1} \) preserves addition and multiplication. Hence \(\phi^{-1} : S \to R \) is an isomorphism, so \(S \cong R \), verifying that \(\cong \) is symmetric.

Suppose that \(R, S \) and \(T \) are rings and \(R \cong S \) and \(S \cong T \). Then there exist isomorphisms \(\alpha : R \to S \) and \(\beta : S \to T \). In particular, \(\alpha \) and \(\beta \) are bijections, so the composite \(\alpha\beta : R \to T \) is a bijection. We check that \(\alpha\beta \) is a ring homomorphism. Let \(a, b \in R \). Then

\[
(a + b)\alpha\beta = (a\alpha + b\alpha)\beta = (a\alpha)\beta + (b\alpha)\beta = a(\alpha\beta) + b(\alpha\beta),
\]

and

\[
(ab)\alpha\beta = ((a\alpha)(b\alpha))\beta = ((a\alpha)\beta)((b\alpha)\beta) = (a(\alpha\beta))(b(\alpha\beta)),
\]

which verifies that \(\alpha\beta \) preserves addition and multiplication. Hence \(\alpha\beta : R \to T \) is an isomorphism, so \(R \cong T \), verifying that \(\cong \) is transitive.