A multiplicity formula for tensor products of SL_2 modules and an explicit Sp_{2n} to $Sp_{2n-2} \times Sp_2$ branching formula.

Nolan Wallach and Oded Yacobi

Abstract. In the restriction of an irreducible representation of Sp_{2n} to the standard Sp_{2n-2} the multiplicity spaces are naturally $Sp_2 \cong SL_2$ modules. We show that these multiplicity spaces are each equivalent to a specified tensor product of n irreducible SL_2 modules. The key to these results is a generalization of the Clebsch-Gordan formula and a result of J. Lepowsky that gives the C_n branching to $C_{n-1} \times C_1$ as a difference of two simple partition functions.

1. Introduction

The purpose of this note is to give an elementary decomposition of the restriction of an irreducible representation of C_n to $C_{n-1} \times C_1$. By a decomposition we mean an explicit description of the C_1-module structure of the multiplicity spaces that occur in the restriction of an irreducible representation of C_n to C_{n-1}. By elementary we mean using relatively simple combinatorial methods. In principle the results of this note can be derived from those of [[4], Theorem 5.2] which uses the theory of Yangians and is far from elementary. As a byproduct of our work we derive a formula for the decomposition of arbitrary tensor products of irreducible representations of SL_2, generalizing the Clebsch-Gordan formula. Here the multiplicities are given as a difference of two generalized Kostant partition functions.

2. Tensor products of $SL(2, \mathbb{C})$ representations

Let $H = SL(2, \mathbb{C})$ and let F^k be the irreducible representation of H of dimension $k + 1$. The Clebsch-Gordan formula implies that if $r_1 \geq r_2$ then

$$F^{r_1} \otimes F^{r_2} \cong F^{r_1 + r_2} \oplus F^{r_1 + r_2 - 2} \oplus \cdots \oplus F^{r_1 - r_2}. \tag{2.1}$$

In this section we extend the Clebsch-Gordan formula to an arbitrary tensor product of representations of H.

2000 Mathematics Subject Classification. Primary 06E15.

The first named author was supported by an NSF summer grant during the writing of this paper.

©2009 American Mathematical Society
We begin by setting up some notation. Let \(\{v_1, \ldots, v_n\} \) be the standard basis for \(\mathbb{R}^n \) and set \(\Sigma_n = \{v_1 \pm v_n, \ldots, v_{n-1} \pm v_n\} \). We identify \(\mathbb{R}^n \) with \((\mathbb{R}^n)^*\); thus if \(v \in \mathbb{R}^n \), \(e^v \) is a function on \((\mathbb{R}^n)^*\). Denote by \(\mathcal{P}_n(v) \) the coefficient of \(e^v \) in the formal product
\[
\prod_{w \in \Sigma_n} \frac{1}{1 - e^w}.
\]
This says that \(\mathcal{P}_n(v) \) is the number of ways of writing
\[
v = \sum_{w \in \Sigma_n} c_w w, \quad c_w \in \mathbb{N}.
\]
Finally let
\[
m_l(r_1, \ldots, r_n) = \dim \text{Hom}_H(F^l, F^{r_1} \otimes \cdots \otimes F^{r_n}).
\]
The following is a reinterpretation of formula (2.1).

Lemma 2.1. Let \(r_1, r_2, l \in \mathbb{N} \). Then
\[
m_l(r_1, r_2) = \mathcal{P}_2(r_1 v_1 + r_2 v_2 - l v_2) - \mathcal{P}_2(r_1 v_1 + r_2 v_2 + (l + 2) v_2).
\]

Proof. Note that \(\mathcal{P}_2(aw_1 + bw_2) = 1 \) if and only if \(b \in \{-a, 2 - a, \ldots, a - 2, a\} \).
The result follows by considering the cases \(r_1 \leq r_2 \) and \(r_1 > r_2 \) separately. \(\square \)

The result of this section is a generalization of Lemma 2.1 to a tensor product of an arbitrary number of irreducible \(H \)-modules. First we develop some combinatorial properties of \(\mathcal{P}_n \).

Let \(\Sigma^+_n = \{v_1 + v_n, \ldots, v_{n-1} + v_n\} \) and \(\Sigma^-_n = \{v_1 - v_n, \ldots, v_{n-1} - v_n\} \). Denote by \(\mathcal{P}^\pm_n(v) \) the coefficient of \(e^v \) in
\[
\prod_{w \in \Sigma^\pm_n} \frac{1}{1 - e^w}.
\]
It is easy to see that
\[
\mathcal{P}_n(v) = \sum_{u+w=v} \mathcal{P}^+_n(u) \mathcal{P}^-_n(w).
\]
Since \(\Sigma^+_n, \Sigma^-_n \) are linearly independent the corresponding partition functions take only values 0 or 1. Furthermore, one can easily check that
\[
\mathcal{P}^+_n(a_1 v_1 + \cdots + a_n v_n) = 1 \iff a_1, \ldots, a_{n-1} \in \mathbb{N} \quad \text{and} \quad \sum_{j=1}^{n-1} a_j = a_n
\]
\[
\mathcal{P}^-_n(b_1 v_1 + \cdots + b_n v_n) = 1 \iff b_1, \ldots, b_{n-1} \in \mathbb{N} \quad \text{and} \quad \sum_{j=1}^{n-1} b_j = -b_n
\]
Let \(v = c_1 v_1 + \cdots + c_n v_n \) and suppose \(v = u + w \) with \(u = a_1 v_1 + \cdots + a_n v_n \) and \(w = b_1 v_1 + \cdots + b_n v_n \). Then \(a_j + b_j = c_j \) for \(j = 1, \ldots, n \). If \(\mathcal{P}^+_n(u) \mathcal{P}^-_n(w) = 1 \) then
\[
c_n = \sum_{j=1}^{n-1} a_j - b_j.
\]
(2.2)

Define a bisection of a natural number \(m \) to be a two-part partition of \(m \). Then \(\mathcal{P}_n(v) \) counts the number of bisections of \(c_1, \ldots, c_{n-1} \) that satisfy (2.2). This description provides a useful recursive formula.
Lemma 2.2.

\[\mathcal{P}_n(c_1v_1 + \cdots + c_nv_n) = \sum_{i=0}^{c_n-1} \mathcal{P}_{n-1}(c_1v_1 + \cdots + c_{n-2}v_{n-2} + (c_{n-1} + c_n - 2i)v_{n-1}) \]

Proof. The \(i\)th summand on the right hand side counts the number of bisections of \(c_1, \ldots, c_{n-2}\) that satisfy \(c_{n-1} + c_n - 2i = \sum_{j=1}^{n-2} a_j - b_j\). (Here \(c_j = a_j + b_j\) for \(j = 1, \ldots, n - 2\).) These bisections correspond to the bisections of \(c_1, \ldots, c_{n-1}\) that satisfy \(c_n = \sum_{j=1}^{n-1} a_j - b_j\) with \(a_{n-1} = i\) and \(b_{n-1} = c_{n-1} - i\).

Theorem 2.3. Let \(r_1, \ldots, r_n, l \in \mathbb{N}\). Then

\[m_l(r_1, ..., r_n) = \mathcal{P}_n(r_1v_1 + \cdots + r_nv_n - lv_n) - \mathcal{P}_n(r_1v_1 + \cdots + r_nv_n + (l + 2)v_n). \]

Proof. We proceed by induction on \(n \geq 2\). If \(n = 2\) use Lemma 2.1. Now suppose \(n > 2\) and the claim holds for \(n - 1\). Let \(r_1, \ldots, r_n, l \in \mathbb{N}\) and to simplify matters write \(S_k = \sum_{j=1}^{k} r_jv_j\) and \(Q(t) = \mathcal{P}_{n-1}(S_{n-2} + tv_{n-1})\). By Lemma 2.2 we obtain

\[\mathcal{P}_n(S_n - lv_n) - \mathcal{P}_n(S_n + (l + 2)v_n) = \sum_{i=0}^{r_{n-1}} Q(r_{n-1} + r_n - 2i - l) - Q(r_{n-1} + r_n - 2i + l + 2). \]

If \(r_{n-1} \leq r_n\) then \(r_{n-1} + r_n - 2i \geq 0\) so by the inductive hypothesis

\[Q(r_{n-1} + r_n - 2i - l) - Q(r_{n-1} + r_n - 2i + l + 2) = m_l(r_1, ..., r_{n-2}, r_{n-1} + r_n - 2i). \]

By the Clebsch-Gordan formula

\[\sum_{i=0}^{r_{n-1}} m_l(r_1, ..., r_{n-2}, r_{n-1} + r_n - 2i) = m_l(r_1, ..., r_{n-2}, r_{n-1}, r_n). \]

If \(r_{n-1} > r_n\) the situation is not as straightforward. As above we have

\[\mathcal{P}_n(S_n - lv_n) - \mathcal{P}_n(S_n + (l + 2)v_n) = m_l(r_1, ..., r_{n-2}, r_{n-1}, r_n) + E \]

where

\[E = \sum_{i=r_{n-1}+1}^{r_{n-1}} Q(r_{n-1} + r_n - 2i - l) - Q(r_{n-1} + r_n - 2i + l + 2). \]

Rewrite \(E\) as

\[\sum_{i=1}^{r_{n-1} - r_n} Q(r_{n-1} - r_n - 2i - l) - Q(r_{n-1} - r_n - 2i + l + 2) \]

and notice that

\[r_{n-1} - r_n - 2i - l = -(r_{n-1} - r_n - 2(r_{n-1} - r_n + 1 - i) + l + 2). \]

Therefore if we set \(C_i = r_{n-1} - r_n - 2i - l\) then by rearranging terms

\[E = \sum_{i=1}^{r_{n-1} - r_n} Q(C_i) - Q(-C_i). \]

But clearly \(Q(t) = Q(-t)\) so \(E = 0\).
3. An application to Sp_{2n} branching

Label a basis for \mathbb{C}^2l as $e_{\pm 1}, \ldots, e_{\pm l}$ where $e_{-i} = e_{2l+1-i}$. Here we view \mathbb{C}^2l as column vectors. Denote by s_l the $l \times l$ matrix with ones on the anti-diagonal and zeros everywhere else. Set

$$J_l = \begin{bmatrix} 0 & s_l \\ -s_l & 0 \end{bmatrix}$$

and define the skew-symmetric bilinear form $\Omega_l(x, y) = x^t J_l y$ on \mathbb{C}^{2l}. Let $G = Sp(\mathbb{C}^{2n}, \Omega_n)$ and define subgroups

$$K = \{ k \in G : ke_n = e_n \text{ and } ke_{-n} = e_{-n} \}$$

$$H = \{ h \in G : he_j = e_j \text{ for } j = \pm 1, \ldots, \pm n - 1 \}$$

Then $K \cong Sp(\mathbb{C}^{2(n-1)}, \Omega_{n-1})$ and $H \cong Sp(\mathbb{C}^2, \Omega_1) \cong SL(2, \mathbb{C})$. Let $\Lambda = (\Lambda_1 \geq \cdots \geq \Lambda_n \geq 0)$ be a decreasing sequence of natural numbers. We identify the set of such Λ with the dominant integral weights of G as in [[1], Proposition 2.5.11]. Let V^Λ be the finite dimensional irreducible regular representation of G of high weight Λ. Similarly a decreasing sequence of $n-1$ natural numbers $\mu = (\mu_1 \geq \cdots \geq \mu_{n-1} \geq 0)$ is identified with the corresponding dominant integral weights of K. Let V^μ be the finite dimensional irreducible regular representation of K of high weight μ.

We say μ doubly interlaces Λ if $\Lambda_i \geq \mu_i \geq \Lambda_{i+2}$ for $i = 1, \ldots, n-1$ (with $\Lambda_{n+1} = 0$). Given Λ, μ set $r_i(\Lambda, \mu) = x_i - y_i$, where $\{x_1 \geq y_1 \geq \cdots \geq x_n \geq y_n\}$ is the decreasing rearrangement of $\{\Lambda_1, \ldots, \Lambda_n, \mu_1, \ldots, \mu_{n-1}, 0\}$.

Theorem 3.1 ([1], Proposition 8.1.5). Let $n \geq 2$. Then $\dim Hom_K(V^\mu, V^\Lambda) > 0$ if and only if μ doubly interlaces Λ. If μ doubly interlaces Λ then $\dim Hom_K(V^\mu, V^\Lambda) = \prod_{j=1}^n (r_i(\Lambda, \mu) + 1)$.

This theorem in particular provides the decomposition of K modules

$$V^\Lambda \cong \bigoplus_{\mu} V^\mu \otimes Hom_K(V^\mu, V^\Lambda)$$

where the sum is over all μ that doubly interlaces Λ. Here K acts on left factor. Since H is a subgroup of the centralizer of K in G, H acts on the multiplicity spaces $Hom_K(V^\mu, V^\Lambda)$. One is thus led to the natural question: what is the H-module structure of $H_K(\mu, \Lambda) = Hom_K(V^\mu, V^\Lambda)$?

The following theorem, due to J. Lepowsky ([3]), provides a partial answer.

Theorem 3.2 ([2], Proposition 9.5.9). Let Λ, μ be as above and set $r_i = r_i(\Lambda, \mu)$. Then

$$\dim Hom_H(F^l, H_K(\mu, \Lambda)) = \mathcal{P}_n(r_1v_1 + \cdots + r_nv_n - lv_n) - \mathcal{P}_n(r_1v_1 + \cdots + r_nv_n + (l+2)v_n).$$

We combine this result with Theorem 2.3 to obtain an explicit decomposition of V^Λ as a $K \times H$ module.

Theorem 3.3. Let Λ, μ be as above and set $r_i = r_i(\Lambda, \mu)$. Then as a $K \times H$-module

$$V^\Lambda \cong \bigoplus_{\mu} V^\mu \otimes (F^{r_1} \otimes \cdots \otimes F^{r_n}).$$

The direct sum is over all μ that doubly interlace Λ.
References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIEGO, 9500 GILMAN DRIVE #0112, LA JOLLA, CA 92093-0112

E-mail address: nwallach@ucsd.edu

E-mail address: oyacobi@math.ucsd.edu